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@ Bayes' theorem:



Tutart =3

Told = Tstart = 3

p=-4

Tnew = Totd +p = —1
p = min (1, f[f&’”:;) min(1,3.75) = 1
uw=09

p > u= accept

Figure 1.6: For f(Tnew) > f(ua) the
step is always accepted

p=25
Tnew = Tua +p =15

p=min (1. %) = min(L,0.81) = 0.81

u=104

p > u= accept
Figure 1.7: For [(new) < [(2oa) it de-

pends on u whether a step

is accepted

= min(1,0.75) = 0.75

u=108

p < u = reject

Figure 1.8 For p < u the step is re-
jected

Zaa=15
p=-15
Tnew = Tota + =0

= min (1, j/((’

u=0.6

= min(1,1.45) = 1

e > u = accept
Figure 1.9: For p > u the step is ac-
cepted again.

from Bachelor’s thesis of Manuel Wittner

@ Each new step depends only on previous
point

@ Distributed as true distribution in limit
of infinite steps

@ How do we know it has converged?



@ Simple example: Use normal distribution
for proposal; try sampling from
Fermi-distribution

@ We have the freedom to select the width
(and shape) of the proposal function — .
how to find a good value?

@ Does it matter which starting point we
use? And how can we find a good one?
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Proposal and actual steps



@ In example: Repeating MCMC several
times clearly gives different results
@ This is one way to assess convergence

@ It is also costly; we would prefer to have
3x as much statistics in the chain we
actually use instead

@ For few iterations: chain does not

traverse the entire distribution 10000 steps

@ Random walk: standard deviation
~ Uproposal\/ﬁ

@ To converge, the chain should traverse .
the distribution many times

@ |If sitze of distribution is o4, then this
means:

O proposal V N> og4 —ii
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100 steps



Making the proposal steps very wide is
also not good: The step often goes to
regions of low probability — and is
rejected

This causes the chain to stay at one
position for long amounts of time,
convergence gets worse

Somewhere in the middle there is a
sweet spot

In both cases, the problem is that
sometimes we do not move a lot through
the distribution — how to quantify?




Compare the position at step i to the
position at step i 4+ 1, put in diagram

Obviously not independent
For additional step — less correlation

On diagonal: Cases where step is
rejected

Quantify with Pearson coefficient
If fully independent — coefficient is 0

Now check what happens for different
proposal step sizes




@ Autocorrelation function shows how
quickly sample points become
independent

@ The faster this happens, the better the
proposal function

@ Good proposal step sizes typically have

around 50% acceptance ratio for d < 2 * o
and about 25% for higher dimensionality —— o-10

@ Intermediate case is best of the ones o
tried here — almost independent after 10
steps

@ To get an essentially uncorrelated
sample, sometimes only every n'! step is
used for the analysis ¢

@ This does throw away statistics though
and is not generally recommended 02

@ If Njpgep is the amount of steps needed
for the correlation to go down to near 0, o
then a neccessary condition for
convergence is Nsteps > N,-,,dep

Aisteps)



@ Previously: Starting value at 0
@ If it is at +5, then points always appear
there even though pdf is very small

@ Can cause problems when calculating
distribution moments, credible intervals
etc.

@ Will always converge correctly but might
take a very long time -

@ Testing and retesting starting value
difficult in high dimensions

@ However: Most of the points in the
chain would be good starting values . . :

@ I|dea: Run the MCMC for some time;
then throw away these points and take
current point as start

Starting value +5

@ Burn-In; e.g. use 10% of iterations to
find starting value
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Difficult-to-sample posterior distributions

Reasons can be high dimensionality; but also distribution shape
Particularly thin, bendy distributions difficult

Simple Metropolis samplers an have difficulties traversing them
Metropolis-Hastings algorithm actually very flexible

Many techniques developed to deal with different problems
Here, example of Gibbs-sampler

Simple example: Annulus (Ring)
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If step size as big as circle, mostly
rejected steps

If step size as big as edge, takes a long
time to traverse around

Correlation time is very long
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@ Want so sample p(x1, x2,...), (x; the free parameters of the model)
@ Consider leaving all coordinates except for one constant, e.g. p(xi|x2,...)

@ |If it is possible to sample from this conditional probability efficiently, then the
distribution is a good candidate for the Gibbs sampler

@ For the annulus: For constant y, 0.62
R> >y > Ry, one region of flat o4f
probability; sampling is easy 02f

@ For y < R; two regions of equal total E
probability. Flip a coin to select one, ’0-25
then sample flat probability

@ Same for fixed x
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@ Starting at point X(")

@ Keep all coordinates constant except for Xl("); sample a new value for
Xl("H) from this conditional probability p(x1|x2n),x3("), )

@ Update the value for x; and sample x; from the conditional distribution

(n+1)  (n)  (n)

p(X2|X1 1 X3 7 Xy 7)

@ Repeat this for all coordinates always using the updated values

@ The new value is X("+1)

@ Steps are always accepted

@ This is a special case of the Metropolis-Hastings algorithm



@ Each step can now jump to
other parts of the circle

@ But now all states can be
reached from all others

@ Fills up distribution quickly
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Sampler converges nicely
Correlation immediately jumps to 0
But not uncorrelated

Symmetry of the jumps means that £x and %y are each equally likely

— Pearson coefficient is not a good measure of the correlations



@ Bayes' theorem for a set of parameters X and data d-

—

p(dX) (V)
J X p(dlX) p(X)
@ Bayes' theorem for Hypotheses Hy and H;
P(3|H1) p(H1)
p(d|H1) p(H1) + p(d|Ho) p(Ho)

@ If we are interested in only some parameters, the others can be "integrated
out” by marginalization:

p(A|d) =

P(H1|C7) =

mm%:/&mwuﬁ)

@ Using MCMC we can walk through the model/parameter space and find
the marginals

@ But what happens if the different hypotheses have different sets of
parameters? (e.g. GW signal from BH merger vs. only background)

@ Not easily possible with the type of MCMC discussed so far



Exercise 7.3 " Significance of a Peak”

In exercise: Compare two simple hypotheses:
Signal vs. no Signal using likelihood ratio;
Test statistic was a log-likelihood ratio of 2.6

Bayes:

- cata

p(d|Hy) p(Hi) °|

Hi|d) = — —
PURIA) = Gir) p(h) + p(dlHo) p(H)

The normalization drops out in the ratio:

p(Hild) _ p(d|H1) p(Hr)
p(Hold)  p(d|Ho) p(Ho)

- - |h|h|.|l.ll-lu‘mul Lo
The factor p(d|H1)/p(d|Ho) shows how the o w

ratio of probabilities of the probabilities
changes with the addition of the data; it is
called the Bayes' factor

The Bayes’ factor is exp(2.6) ~ 13.5; at this
point the Bayesian analysis is done




@ Bayes' theorem for Hypotheses Hy and H; with parameters 01, 66

p(d|Hi,61) p(Hy,01)
J d01p(d|Hy,01) p(H,01) + [ dbop(d|Ho, o) p(Ho, bo)

p(Hy, 61]d) =
@ We can marginalize out the other parameters:

p(Hh|d) = / Ady p(d|Hy, 63 p(Hy, 67)

@ If we take the ratio of the two posteriors again and make use of
p(H1,01) = p(61|H1) p(Hy), then we get:

p(H|d) _ J 461 p(d|Hh, 61) p(61Hh) p(Hy)
p(Hold) [ dfo p(d|Ho,8o) p(Bo|Ho) P(Ho)

@ Bayes factor contains normalization constants for the posterior for the single models!

@ This integral very much depends on the absolute normalization, thus MCMC cannot be
used!

@ The factor de; p(d|Hi,61) p(61|Hy) only depends on one model, it is sometimes
called the evidence



def model(m, fsig):

1 1 H """normalized pdf for the mass distribution, fsig = signal fraction (0 <= fs
Make Slgnal h.ypOth.eSIS Sllghtl_y more return (1-fsig)*bkg.pdf(m) + fsig*sig.pdf(m)
complex: Variable signal fraction f; PREERS, CoE, O TbAe )
. . . . Towedge = .01

Prior on signal fraction; flat interval for upedge = 0.4

. .« e def prior(mgg):
simplicity return np.greater(mgg, lowedge)*np.greater (upedge,mngg) /(upedge- lowedge)

def LLikelihood(evts, fsig):
For Hip, calculate return np.sum(np. Log (model (evts, Fsig)))

— prior

— scaled posterior

/dfs p(d|fs, Hi) p(fs|Hh)

For Ho, we just need the likelihood: .
p(d|Ho), which was done in the exercise %
Result: R £
Hi|d
PFld) 0o .
p(Hold)
For a fixed signal this was 13.5! o

2 03
signal fraction



Why is the probability so much lower if the parameter is
not fixed?

Large region of the prior in Hj is actually excluded by
the data

@ Remaining prior mass is very low

@ Compare Bayes factor B for different priors (from 0.01

to a)
@ a=020, B=21
e a=04, B=1.02
@ 2a=0.05, B=9.7

The clearer the model is, the more evidence it gives for
the hypothesis

With more free parameters this effect is even stronger;
the peak region will be a small part of the parameter
space

This encodes something like Occam’s razor: More
complex models are disfavoured; more parameters and
more available parameter space decreases the Bayes
factor
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@ Likelihood-distribution has lines of equal value

@ Most of the distribution is in a fairly small region of the
available space

@ Nested Sampling calculates evidence and also gives
posterior distribution of parameters

@ Set of points which is constrained within regions of
larger and larger likelihood

Algorithm:
@ Start with a number of N points sampled from the
prior, i =0
e Find the point with the lowest likelihood, and set L; to
this value

© Remove this point and replace it by another point
sampled from the prior, but only allowing points with a
likelihood larger than L;

@ Repeat steps 2+3 a number of times filling some
variables for each step

@ Finding the new point with the constraints is not trivial,
but can be done for example with MCMC




@ For each step i and likelihood L; (with N points):
o X; =exp(—i/N)
o wi=Xi_1—X;
e Z—Z+ L -w

@ Then Z converges towards the evidence

Parameter space




@ For 1d finding the region is simple

@ 12 points shown after 0, 20, 40, and
60 steps

probability density

1 — prior
—— scaled posterior
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For high dimensions, not so easy to sample from
confined prior

Also not so easy to see when algorithm converged
Need to take into account possibility of "islands”
MCMC methods work for this

Bayes factor of €289 for signal vs. background-only
hypothesis

Overall
Detector-frame total mass M /M ., 20614508
Detector-frame chirp mass A /M, 30475003
Detector-frame primary mass m, /M, 3807800
Detector-frame secondary mass my/ M. 364200
Detector-frame final mass M, /M, 7474004
Source-frame total mass Ms=< /M, P
Source-frame chirp mass M=/}, o3

Source-frame primary mass mi= /M.,
Source-frame secondary mass m3* /M

Source-frame final mass M;™/ M, 62075

Mass ratio ¢ 079543

Effective inspiral spin parameter y; —0.09:81¢ —0.075 i
Dimensionless primary spin magnitude a, 0329 032500
Dimensionless secondary spin magnitude a, 0.57:030 044105008
Final spin a; 067700 06705500
Luminosity distance D, /Mpe 3007170 - 05T
Source redshift 2 00837580 00931363 008825337 0%
Upper bound on primary spin magnitude a, 0.65 074 069 0,08
Upper bound on secondary spin magnitude a1, 0.93 078 089 0,13
Lower bound on mass ratio g 0.64 068 0.66 £0.03

Log Bayes factor In By, 288.7 0.2 200.3 0.1




