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Reminder: Bayesian analysis

Bayes’ theorem:

p(~λ|~d) = p(~d |~λ) p(~λ)∫
d~λ p(~d |~λ) p(~λ)
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Reminder: Markov-Chain Monte Carlo

from Bachelor’s thesis of Manuel Wittner

Each new step depends only on previous
point

Distributed as true distribution in limit
of infinite steps

How do we know it has converged?
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Has the chain converged?

Simple example: Use normal distribution
for proposal; try sampling from
Fermi-distribution

We have the freedom to select the width
(and shape) of the proposal function –
how to find a good value?

Does it matter which starting point we
use? And how can we find a good one?

Proposal and actual steps
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Comparing several outputs

In example: Repeating MCMC several
times clearly gives different results

This is one way to assess convergence

It is also costly; we would prefer to have
3x as much statistics in the chain we
actually use instead

For few iterations: chain does not
traverse the entire distribution

Random walk: standard deviation
∼ σproposal

√
N

To converge, the chain should traverse
the distribution many times

If sitze of distribution is σd , then this
means:

σproposal
√
N � σd

10000 steps

100 steps
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Large steps sizes

Making the proposal steps very wide is
also not good: The step often goes to
regions of low probability – and is
rejected

This causes the chain to stay at one
position for long amounts of time,
convergence gets worse

Somewhere in the middle there is a
sweet spot

In both cases, the problem is that
sometimes we do not move a lot through
the distribution – how to quantify?
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Autocorrelation

Compare the position at step i to the
position at step i + 1, put in diagram

Obviously not independent

For additional step – less correlation

On diagonal: Cases where step is
rejected

Quantify with Pearson coefficient

If fully independent – coefficient is 0

Now check what happens for different
proposal step sizes

σ = 1
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Autocorrelation (2)

Autocorrelation function shows how
quickly sample points become
independent

The faster this happens, the better the
proposal function

Good proposal step sizes typically have
around 50% acceptance ratio for d ≤ 2
and about 25% for higher dimensionality

Intermediate case is best of the ones
tried here – almost independent after 10
steps

To get an essentially uncorrelated
sample, sometimes only every nth step is
used for the analysis

This does throw away statistics though
and is not generally recommended

If Nindep is the amount of steps needed
for the correlation to go down to near 0,
then a neccessary condition for
convergence is Nsteps � Nindep
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Burn-In

Previously: Starting value at 0

If it is at +5, then points always appear
there even though pdf is very small

Can cause problems when calculating
distribution moments, credible intervals
etc.

Will always converge correctly but might
take a very long time

Testing and retesting starting value
difficult in high dimensions

However: Most of the points in the
chain would be good starting values

Idea: Run the MCMC for some time;
then throw away these points and take
current point as start

Burn-In; e.g. use 10% of iterations to
find starting value

Starting value +5
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Difficult distributions
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Difficult-to-sample posterior distributions

Reasons can be high dimensionality; but also distribution shape

Particularly thin, bendy distributions difficult

Simple Metropolis samplers an have difficulties traversing them

Metropolis-Hastings algorithm actually very flexible

Many techniques developed to deal with different problems

Here, example of Gibbs-sampler

Simple example: Annulus (Ring)
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Metropolis sampler on the annulus

If step size as big as circle, mostly
rejected steps

If step size as big as edge, takes a long
time to traverse around

Correlation time is very long
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Conditional probability

Want so sample p(x1, x2, . . .), (xi the free parameters of the model)

Consider leaving all coordinates except for one constant, e.g. p(x1|x2, . . .)

If it is possible to sample from this conditional probability efficiently, then the
distribution is a good candidate for the Gibbs sampler

For the annulus: For constant y ,
R2 > y > R1, one region of flat
probability; sampling is easy

For y < R1 two regions of equal total
probability. Flip a coin to select one,
then sample flat probability

Same for fixed x
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The Gibbs sampler algorithm

Starting at point ~x (n)

Keep all coordinates constant except for x
(n)
1 ; sample a new value for

x
(n+1)
1 from this conditional probability p(x1|x (n)

2 , x
(n)
3 , . . .)

Update the value for x1 and sample x2 from the conditional distribution

p(x2|x (n+1)
1 , x

(n)
3 , x

(n)
4 , . . .)

Repeat this for all coordinates always using the updated values

The new value is ~x (n+1)

Steps are always accepted

This is a special case of the Metropolis-Hastings algorithm
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The Gibbs sampler in action

Each step can now jump to
other parts of the circle

But now all states can be
reached from all others

Fills up distribution quickly
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The Gibbs sampler in action

Each step can now jump to
other parts of the circle

But now all states can be
reached from all others

Fills up distribution quickly
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The Gibbs sampler in action

Each step can now jump to
other parts of the circle

But now all states can be
reached from all others

Fills up distribution quickly
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The Gibbs sampler in action

Each step can now jump to
other parts of the circle

But now all states can be
reached from all others

Fills up distribution quickly
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Correlation coefficient
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Sampler converges nicely

Correlation immediately jumps to 0

But not uncorrelated

Symmetry of the jumps means that ±x and ±y are each equally likely

→ Pearson coefficient is not a good measure of the correlations
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Reminder: Bayesian Hypothesis testing

Bayes’ theorem for a set of parameters ~λ and data ~d :

p(~λ|~d) =
p(~d |~λ) p(~λ)∫
d~λ p(~d |~λ) p(~λ)

Bayes’ theorem for Hypotheses H0 and H1

p(H1|~d) =
p(~d |H1) p(H1)

p(~d |H1) p(H1) + p(~d |H0) p(H0)

If we are interested in only some parameters, the others can be ”integrated
out” by marginalization:

p(λ1|~d) =

∫
dλ2 p(λ1, λ2|~d)

Using MCMC we can walk through the model/parameter space and find
the marginals

But what happens if the different hypotheses have different sets of
parameters? (e.g. GW signal from BH merger vs. only background)

Not easily possible with the type of MCMC discussed so far
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Simple Hypothesis testing

Exercise 7.3 ”Significance of a Peak”

In exercise: Compare two simple hypotheses:
Signal vs. no Signal using likelihood ratio;
Test statistic was a log-likelihood ratio of 2.6

Bayes:

p(H1|~d) =
p(~d |H1) p(H1)

p(~d |H1) p(H1) + p(~d |H0) p(H0)

The normalization drops out in the ratio:

p(H1|~d)

p(H0|~d)
=

p(~d |H1) p(H1)

p(~d |H0) p(H0)

The factor p(~d |H1)/p(~d |H0) shows how the
ratio of probabilities of the probabilities
changes with the addition of the data; it is
called the Bayes’ factor

The Bayes’ factor is exp(2.6) ≈ 13.5; at this
point the Bayesian analysis is done
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Hypotheses with parameters

Bayes’ theorem for Hypotheses H0 and H1 with parameters ~θ1, ~θ0

p(H1, ~θ1|~d) =
p(~d |H1, ~θ1) p(H1, ~θ1)∫

d~θ1p(~d |H1, ~θ1) p(H1, ~θ1) +
∫
d~θ0p(~d |H0, ~θ0) p(H0, ~θ0)

We can marginalize out the other parameters:

p(H1|~d) =

∫
d~θ1 p(~d |H1, ~θ1) p(H1, ~θ1)

If we take the ratio of the two posteriors again and make use of
p(H1, ~θ1) = p(~θ1|H1) p(H1), then we get:

p(H1|~d)

p(H0|~d)
=

∫
d~θ1 p(~d |H1, ~θ1) p(~θ1|H1)∫
d~θ0 p(~d |H0, ~θ0) p(~θ0|H0)

p(H1)

p(H0)

Bayes factor contains normalization constants for the posterior for the single models!

This integral very much depends on the absolute normalization, thus MCMC cannot be
used!

The factor
∫
d~θ1 p(~d |H1, ~θ1) p(~θ1|H1) only depends on one model, it is sometimes

called the evidence
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Hypothesis with parameters

Make signal hypothesis slightly more
complex: Variable signal fraction fs

Prior on signal fraction; flat interval for
simplicity

For H1, calculate∫
dfs p(~d |fs ,H1) p(fs |H1)

For H0, we just need the likelihood:
p(~d |H0), which was done in the exercise

Result:
p(H1|~d)

p(H0|~d)
≈ 1.02

For a fixed signal this was 13.5!
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Comparing different priors

Why is the probability so much lower if the parameter is
not fixed?

Large region of the prior in H1 is actually excluded by
the data

Remaining prior mass is very low

Compare Bayes factor B for different priors (from 0.01

to a)

a = 0.20, B = 2.1
a = 0.4, B = 1.02
a = 0.05, B = 9.7

The clearer the model is, the more evidence it gives for
the hypothesis

With more free parameters this effect is even stronger;
the peak region will be a small part of the parameter
space

This encodes something like Occam’s razor: More
complex models are disfavoured; more parameters and
more available parameter space decreases the Bayes
factor
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Nested Sampling

Likelihood-distribution has lines of equal value

Most of the distribution is in a fairly small region of the
available space

Nested Sampling calculates evidence and also gives
posterior distribution of parameters

Set of points which is constrained within regions of
larger and larger likelihood

Algorithm:
1 Start with a number of N points sampled from the

prior, i = 0

2 Find the point with the lowest likelihood, and set Li to
this value

3 Remove this point and replace it by another point
sampled from the prior, but only allowing points with a
likelihood larger than Li

4 Repeat steps 2+3 a number of times filling some
variables for each step

Finding the new point with the constraints is not trivial,
but can be done for example with MCMC
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Nested Sampling

For each step i and likelihood Li (with N points):

Xi = exp(−i/N)
wi = Xi−1 − Xi

Z → Z + Li · wi

Then Z converges towards the evidence
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Nested Sampling - Example

For 1d finding the region is simple

12 points shown after 0, 20, 40, and
60 steps

Martin Völkl Uni Heidelberg Advanced Bayes 2022-02-03 23 / 25



Black hole merger

For high dimensions, not so easy to sample from
confined prior

Also not so easy to see when algorithm converged

Need to take into account possibility of ”islands”

MCMC methods work for this

Bayes factor of e289 for signal vs. background-only
hypothesis
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