Statistical Methods in
Particle Physics

Selected topic 2:
MNIST classification with a simple
convolutional neural network using Keras

Heidelberg University, WS 2020/21

Klaus Reygers (lectures)
Rainer Stamen, Martin Volkl (tutorials)

Basic architecture of a convolutional neural network

Afshine Amidi, Shervine Amidi
Convolutional Neural Networks cheatsheet
https://github.com/afshinea/stanford-cs-230-deep-learning/blob/master/en/cheatsheet-convolutional-neural-networks. pdf

_.

—

Input image Convolutions Pooling Fully Connected

Statistical Methods in Particle Physics WS 2020/21 | K. Reygers | Selected topic: MNIST classification using Keras 2

https://github.com/afshinea/stanford-cs-230-deep-learning/blob/master/en/cheatsheet-convolutional-neural-networks.pdf

Different types of layers in a CNN

1. Convolutional layers 3. Fully connected layers

-8 -

2. Pooling layers

Max pooling Average pooling
Each pooling operation selects the Each pooling operation averages
Purpose , , :

maximum value of the current view | the values of the current view
Illustration

- Preserves detected features - Downsamples feature map
Comments ,

- Most commonly used - Used in LeNet

Statistical Methods in Particle Physics WS 2020/21 | K. Reygers | Selected topic: MNIST classification using Keras 3

Tensorflow and Keras

Example code used in the following from

S. Wunsch, CERN IML TensorFlow/Keras Workshop
https://qithub.com/stwunsch/iml tensorflow keras workshop

See also Keras website:
https://keras.io/examples/vision/mnist convnet/

TensorFlow: Low-level implementation of operations needed to
implement neural networks in multi-threaded CPU and multi
GPU environments

Keras: High-level convenience wrapper for backend libraries,
e.g. TensorFlow, to implement neural network models

f

Tensorflow

S. Wunsch, https://github.com/stwunsch/iml tensorflow keras workshop/blob/master/slides/slides.pdf

Statistical Methods in Particle Physics WS 2020/21 | K. Reygers | Selected topic: MNIST classification using Keras 4

https://github.com/stwunsch/iml_tensorflow_keras_workshop
https://keras.io/examples/vision/mnist_convnet/
https://github.com/stwunsch/iml_tensorflow_keras_workshop/blob/master/slides/slides.pdf

Defining the CNN In Keras

from keras.models import Sequential
from keras.layers import Dense, Flatten, MaxPooling2D, Conv2D, Input, Dropout

conv layer with 8 3x3 filters

model = Sequential (

[
Input (shape=input shape),
Conv2D (8, kernel size=(3, 3), activation="relu"),
MaxPoolingZ2D (pool size=(2, 2)),
Flatten (),
Dense (16, activation="relu"),
Dense (num_classes, activation="softmax"),

See mnist_keras_train.ipynb and mnist_keras_apply.ipynb on lecture web page.

For performance comparison: simple softmax regression in mnist_softmax_regression.ipynb.

Statistical Methods in Particle Physics WS 2020/21 | K. Reygers | Selected topic: MNIST classification using Keras 5

CNN model summary

model . summary ()

Model: "sequential 1"

Layer (type) Output Shape Param #
conv2d 1 (ConvaD) (Nome, 26, 26, 8 80
max pooling2d 1 (MaxPoolingZ2 (None, 13, 13, 3) 0
flatten 1 (Flatten) (None, 1352) 0

dense 2 (Dense) (None, 106) 21048
dense 3 (Dense) (None, 10) 170

Total params: 21,898
Trainable params: 21,898
Non-trainable params: 0

Statistical Methods in Particle Physics WS 2020/21 | K. Reygers | Selected topic: MNIST classification using Keras

Model training

Compile the model

Using Keras, you have to compile a model, which means adding the loss function, the optimizer algorithm and validation metrics to your
training setup.

model.compile (loss="categorical crossentropy",
optimizer="adam",
metrics=["accuracy"])

Train the model
from keras.callbacks import ModelCheckpoint, EarlyStopping

checkpoint = ModelCheckpoint (
filepath="mnist keras model.h5",
save best only=True,
verbose=1)

early stopping = EarlyStopping(patience=2)

history = model.fit(x train, y train, # Training data
batch size=200, # Batch size
epochs=50, # Maximum number of training epochs
validation split=0.5, # Use 50% of the train dataset for validation
callbacks=[checkpoint, early stoppingl]) # Register callbacks

Epoch 1/50
150/150 [==============================] - O9s 5lms/step - loss: 1.5244 - accuracy: 0.5341 - val loss:
0.3984 - val accuracy: 0.8842

Epoch 00001: val loss improved from inf to 0.39840, saving model to mnist keras model.hb5
Epoch 2/50

150/150 [==============================] - 6s 43ms/step - loss: 0.3608 - accuracy: 0.8961 - val loss:
0.2784 - val accuracy: 0.9201

Statistical Methods in Particle Physics WS 2020/21 | K. Reygers | Selected topic: MNIST classification using Keras 7

Loss and accuracy vs. number of epochs

10 -
—— Training loss .
Validation loss '
0.8 -
0.90
0.6 -
m (.85
S
0.4 -
080
0.2 A 075 - —— Training accuracy
Validation accuracy

2 4 B B 10 12 2 4 B B 10 12
Epochs Epochs

Test the model

The prediction of unseen data is performed using the model.predict (inputs) call. Below, a basic test of the model is done by
calculating the accuracy on the test dataset.

This simple CNN achieves about 97% accuracy.

Get predictions on test dataset Addlﬂg one convolutional |ayel’ INncreases
y_pred = model.predict(x test) accuracy to about 99% (see Keras website)
Compare predictions with ground truth Accuracy with simple softmax regression is 92%.
test accuracy = np.sum(
np.argmax (y test, axis=1)==np.argmax(y pred, axis=1))/float(x test.shape[0])

print ("Test accuracy: {}".format (test accuracy))

Test accuracy: 0.9655
Statistical Methods in Particle Physics WS 2020/21 | K. Reygers | Selected topic: MNIST classification using Keras 8

Test the trained model

Load the model

Loading a Keras model needs only a single line of code, see below. After this call, the model is back in the same state you stored it at the
training step either by the ModelCheckpoint or model.save(...) .

model = load model ("mnist keras model.hb5")

f = "mnist my digit 3.png"

image = np.zeros((l, 28, 28, 1), dtype=np.uint8§)

pngdata = png.Reader (open(f, 'rb')).asDirect ()

for 1 row, row in enumerate (pngdatal2]):
image([0, i row, :, 0] = row

prediction vector = model.predict (image)

prediction = np.argmax (prediction vector)

print (f"Model prediction for each class: {prediction vector}")
print (f"Predicted digit: {prediction}")

plt.axis('off")

plt.imshow (np.squeeze (image), cmap="gray");

Model prediction for each class: [[0. O. 0. 1. 0. O. 0. 0. 0. 0.1]]
Predicted digit: 3

Statistical Methods in Particle Physics WS 2020/21 | K. Reygers | Selected topic: MNIST classification using Keras 9

