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Reminder: Updating knowledge with data

Example: Daily (independent) tests for
disease (e.g. for medical professionals)

Want to know sick (s) or healthy (h) from
positive (+) or negative (−) test result

Likelihood e.g. p(+|s) = p(−|h) = 0.9

We know how to update: Bayes rule (e.g.
negative result, 0.5 prior)

p(s|−) =
p(−|s)p(s)

p(−|s)p(s) + p(−|h)p(h)
= 0.1

Prior for the next (independent)
measurement and so on

But it is also possible to become sick from
one day to the next
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Measuring a changing state
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What if there is a 5% chance to become sick every day?

This means the true state can change – aiming for a moving target

Still straightforward calculation

If pyesterday (s) = 0.1 and there is a 5% chance to become sick, then
ptoday (s) = 0.1 + (1− 0.1) · 0.05 = 0.145

This is now the prior for todays test

General idea: Update state (possibility of infection), apply knowledge
(test) using Bayes, repeat

Martin Völkl Kalman Filtering 2021-02-11 3 / 24



Examples of detector signals for Tracking (ALICE)

Silicon Pixel Detector

Rectangular active
semiconductor
detector regions

Signal essentially
true/false

Time Projection
Chamber

Ionization drifts
towards readout pads
at the end

Reconstruct 3D
clusters of signal using
drift time since event

ADC counts
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Lorentz-corr. clusters

ALI-PUB-141631

Transition Radiation
Detector

Signal from ionization
+ potentially
Transition radiation

Drift in radial
direction, reconstruct
from arrival time

Different types of measurements and measurements of different quantities need
to be combined for tracking

Different dimension of the information and different coordinate systems
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Interaction of tracks and the detector

Tracks interact with detector material

”State” changes

At high momenta: Changes in
direction through Coulomb scattering
∼
√
x

θrms =
13.6 MeV
βcp

z
√

x
X0

(
1 + 0.088 log10

xz2

X0β2

)
Track parameters are a moving target
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Another Complication

Often more than one track creating signals – need way to separate
contributions
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Ideal Tracks

Useful to parametrize tracks with some time variable
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Cosmic muons without magnetic field

(ALICE)

Straight line

Parametrization
~x(t) = ~x0 + ~v0t

ALI-PERF-153661

Homogeneous
magnetic field – helix
shape

x = x0 + r cos(ωt +φ0)

y = y0 + r sin(ωt +φ0)

z = vz t

CMS with muon track

More complex fields
give more complex
track shapes
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The state vector

Locally a 3D track can usually be described by 5 parameters

e.g. A track at Radius r has two free position parameters and three
for the momentum vector

For ALICE two positions, track curvature, helix center position, dip
angle

In two dimensions described by 2 (line) or 3 (circle) parameters

Uncertainty expressed by covariance matrix of parameters

This is the state vector of the particle for a given time variable
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Defining the problem

Similar as in introduction problem: Track state changes between
measurements

First step is to change problem to something easier:

Assume linear state change (by matrix multiplication)
Assume that all state information can be characterized completely by
their state vector and its covariance matrix
Assume measurements are unbiased and can be completely described
by the measurement covariance matrix (in an appropriate coordinate
system)
Assume processes affecting the track state are unbiased and
completely described by the process covariance matrix
Different measurements and process noises are all independent

If all distributions can be considered Gaussian and they only propagate via
linear transformations, all results must also be Gaussian

This suggests that all Bayesian inference should be expressable in terms of
linear algebra

The iterative algorithm for this is called the Kalman filter
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Ingredients

The state vector ~s and its covariance matrix S

A covariance matrix for the process noise W in the coordinates of the state
vector

The measurement vector ~m in the coordinate system of the measurement
(can be different dimensionality)

A covariance matrix for the measurement uncertainty V

A Matrix H transforming from the state vector into the measurement
space

If ~s is the current state, then H~s is the expectation value for the signal

A Matrix F transforming the state vector at the position of the last
measurement to the one at the next measurement
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The Kalman Filter

Assuming we know the state ~sk−1|k−1 at the position of the previous
measurement with all information of the measurements until then

First: Update state and covariance to current position including process
noise

~sk|k−1 = Fk~sk−1|k−1

Sk|k−1 = FkSk|k−1FT
k + Wk

Second: Taking this as the prior, update knowledge with information
from measurement
Define:

Kk = Sk|k−1HT
k

(
Vk + HkSk|k−1HT

k

)−1

~sk|k = ~sk|k−1 + Kk

(
~m −Hk~sk|k−1

)
Sk|k = (I−KkHk) Sk|k−1

K is called the Kalman gain matrix

Change to state depends on difference of measurement to expectation
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Simple example: Track y position

Known track source, detector far away –
horizontal line with unknown s = y , time
variable is x position

Measure position yk , with measurement
uncertainty σ2

meas,k assume no process noise,
F = 1

State update:

sk|k−1 = sk−1|k−1, σ
2
k|k−1 = σ2

k−1|k−1

K =
σ2
k−1

σ2
k−1 + σ2

meas,k

Measurement update:

sk|k = sk|k−1 +
(yk − sk|k−1)

σ2
k|k−1 + σ2

meas,k

σ2
k|k =

(
1−

σ2
k−1

σ2
k−1 + σ2

meas,k

)
σ2
k|k−1
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Simple example: Track y position (2)

sk|k = sk|k−1 +
(yk − sk|k−1)

σ2
k|k−1 + σ2

meas,k

σ2
k|k =

(
1−

σ2
k−1

σ2
k−1 + σ2

meas,k

)
σ2
k|k−1

Iteratively updates position knowledge

Update can be rewritten as:

sk|k =
yk/σ

2
meas,k + sk|k−1/σ

2
k|k−1

1/σ2
k|k−1 + 1/σ2

meas,k

σ2
k|k =

1

1/σ2
k|k−1 + 1/σ2

meas,k

This is exactly the result from the weighted
mean!
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Tracking in two dimensions – State update

Now slope and position are unknown, track
model y = αx + β; x is the time variable

State vector defined as (β, α)

βk is the y-Position of the track at detector
position xk

No process noise W = 0

State update α→ α, β → β + α ·∆x with
∆x = xk − xk−1

State update:

Fk =

(
1 ∆xk
0 1

)
~sk|k−1 = Fk~sk−1|k−1

Sk|k−1 = FkSk|k−1FT
k
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Tracking in two dimensions – Initial guess

State update:

Fk =

(
1 ∆xk
0 1

)
~sk|k−1 = Fk~sk−1|k−1

Sk|k−1 = FkSk|k−1FT
k

For the initial guess, make a minimum χ2 fit
through the first two points (the track seed)

Result is parameters for x = 0, can then
propagate to second point

First step of Kalman filter is then to propagate
to third point – the first new measurement
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Tracking in two dimensions – Measurement Update

Measurement is the y position

Hk~sk|k−1 gives the expected measurement

~s = (β, α), thus Hk = (1 0) projects out the
position

Define:

Kk = Sk|k−1HT
k

(
Vk + HkSk|k−1HT

k

)−1

Kk = (Sβ,β Sβ,α) /
(
σ2
meas,k + Sβ,β

)
~sk|k = ~sk|k−1 + Kk

(
ymeas,k − βk|k−1

)
Sk|k = (I−KkHk) Sk|k−1

If measurement uncertainty small, then K
becomes of order 1, lots of additional
information
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Tracking in two dimensions – Closer Look

Result equivalent to least squares fit
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Why not just use least squares?

If it is equivalent, why not just use a
least squares fit?

If there are several tracks, which
signal to use for a particular detector
layer?

Possible approach: Find combination
with best χ2 and fit, then remove
associated signals; repeat

For two tracks and 8 detectors: Need
to try 28 combinations
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Why not just use least squares?

If it is equivalent, why not just use a
least squares fit?

If there are several tracks, which
signal to use for a particular detector
layer?

Possible approach: Find combination
with best χ2 and fit, then remove
associated signals; repeat

For two tracks and 8 detectors: Need
to try 28 combinations

For ALICE ≈ 165 signals per track,
∼ 2000 tracks in the detectors

2000165 ∼ 10544 combinations, too
much for brute force
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Track Finding

Search for the next detector signals in the range suggested by the prior after
updating the position

E.g. in the ALICE TPC, clusters are searched for within 4σ

Use the Kalman filter on several tracks in parallel to resolve ambiguities

Or explore several possible continutions in parallel and see which one has the
best χ2
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Tracks with process noise

Now include process noise

Multiple scattering does not change
position but direction

Change α→ α+n, where the noise is
drawn from a Gaussian with width σp

This also means that the track slowly
loses information about its initial
state

Process noise can be quantified by
the covariance matrix

W =

(
0 0
0 σ2

p

)
since it only affects the slope
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Tracking reconstruction with process noise

State update:

Fk =

(
1 ∆xk
0 1

)
~sk|k−1 = Fk~sk−1|k−1

Sk|k−1 = FkSk|k−1FT
k + W

The only thing that changes is the
addition of the +W

Measurement update stays the same

As measurement is in position, the
uncertainty in the slope becomes
large; visible in propagation

In the end: Full information about
track parameters at the end of the
detector

Of interest: Track parameters at
beginning of track (e.g. for invariant
mass, decay vertex reconstruction,
interaction vertex reconstruction etc.)
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Information about track parameters at other positions

The initial track parameters can be
found by using the Kalman filter
backwards

Result shows, why it is useful to have
little material in the inner layers of
the detector

Can be useful to go one way for track
finding and then backwards for the
parameters

Information at intermediate stages,
by Filtering from both sides and
averaging at the intermediate
positions, called a Kalman Smoother

Real-life reconstruction can be even
more complex depending on e.g.
which detector gives the best track
seeds, which initial propagation
direction works best etc.

Filtering backwards

ALICE event reconstruction scheme
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Nonlinear dependencies

The Kalman filter assumes track propagation and measurement outputs are
linear in the track parameters + noise

Generalization as usual by linear approximation

Track propagation:

~sk|k−1 = Fk~sk−1|k−1

→ ~sk|k−1 = ~fk(~sk−1|k−1, ~wk−1)

with process noise ~wk−1

Take derivatives wrt. s and w :

(Ak)ij =
∂(fk)i
∂(sk)j

(~sk−1, 0)

(Bk)ij =
∂(fk)i
∂(wk)j

(~sk−1, 0)

Modify propagation equations:

~sk|k−1 = ~fk(~sk−1|k−1, ~wk−1)

Sk|k−1 = AkSk−1|k−1AT
k + BkWk−1BT

k

Knowledge updating:

Hk~sk|k−1 → ~hk(~sk|k−1, ~vk)

with measurement noise ~vk
Take derivatives wrt. s and w

(Pk)ij =
∂(hk)i
∂(sk)j

(~sk−1, 0)

(Qk)ij =
∂(hk)i
∂(vk)j

(~sk−1, 0)

Modify measurement update equations:

Kk = Sk|k−1PT
k

(
QkVkQT

k + PkSk|k−1PT
k

)−1

~sk|k = ~sk|k−1 + Kk

(
~m − ~hk(~sk|k−1, 0)

)
Sk|k = (I−KkPk) Sk|k−1
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Concluding remarks

Kalman filter
computationally efficient
way to include tracking
information

Includes state change by
interaction with material

Can include many types of
detector signals

Much complexity also in finding detector signals, separating them from
each other, removing bias, and track seed finding, not discussed here
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