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Multivariate ana ySiS: G. Cowan, Lecture on Statistical data analysis
An early example from particle physics
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https://www.pp.rhul.ac.uk/~cowan/stat/stat_6.pdf

Machine learning

"Machine learning is the subfield of computer science that gives computers
the ability to learn without being explicitly programmed" — Wikipedia

Example: spam detection J. Mayes, Machine learning 101

Traditional Programming Machine Learning Programs

Manual feature engineering vs. automatic feature detection
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https://docs.google.com/presentation/d/1kSuQyW5DTnkVaZEjGYCkfOxvzCqGEFzWBy4e9Uedd9k/preview?imm_mid=0f9b7e&cmp=em-data-na-na-newsltr_20171213&slide=id.g168a3288f7_0_58

Al, ML, and DL

"Al Is the study of how to make computers perform things that,

at the moment, people do better." Elaine Rich, Artificial intelligence, McGraw-Hill 1983
G. Marcus, E. Davis, Artificial
Rebooting Al Intelligence

Geasoni@ (Search)
Knowledge
Representation

Machine
Learning

"deep” In deep learning: artificial neural nets with many neurons and
multiple layers of nonlinear processing units for feature extraction
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http://rebooting.ai/

Some successes and unsolved problems in Al

Arithmetic (1945) ’ M. Woolridge,
- Easy The Road to Conscious Machines

Sorting lists of numbers (1959)

Playing simple board games (1959)

Playing chess (1997)
Recognizing faces in pictures (2008) . : ,
Solved, after Impressive progress in certain
Usable automated translation (2010) ’ a lot of effort i |d
1I€10S:

Playing Go (2016)
» Image recognition

Usable real-time translation of

spoken words (2016) » Speech recognition

Driverless cars

+ Real progress » Recommendation systems
Automatically providing captions for pictures

Understanding a story & answering | » Automated translation

questions about it

» Analysis of medical data
Human-level automated translation
Interpreting what is going on in a photograph [ Nowhere near
L . . solved
Writing interesting stories
Interpreting a work of art How can we profit from these
Human-level general intelligence | developmen’[s in phySiCSr)
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https://www.penguin.co.uk/books/307/307639/the-road-to-conscious-machines/9780241333907.html

Different modeling approaches

= Simple mathematical representation like linear regression. Favored by
statisticians.

= Complex deterministic models based on scientific understanding of the
physical process. Favored by physicists.

= Complex algorithms to make predictions that are derived from a huge
number of past examples (“machine learning” as developed in the field of
computer science). These are often black boxes.

= Regression models that claim to reach causal conclusions. Used by
economists.

D. Spiegelhalter, The Art of Statistics — Learning from data
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Application of machine learning in experimental
particle physics

= Monte Carlo simulation

» use generative models for faster MC event generation
= Event reconstruction and particle identification

= Data acquisition / trigger

» faster algorithms
= Offline data analysis

» pbetter algorithms
= Detector monitoring

» anomaly detection

“Machine Learning in High Energy Physics Community White Paper”,
arXiv:180/7.02876
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https://arxiv.org/abs/1807.02876

Machine learning: The "hello world" problem

Recognition of handwritten digits

» MNIST database 000 0006 QopODoOCY (OO0
(Modified National Institute of (VY N V72 2 020 N7
Standards and Technology 2222322229222 2
database) 3333333%53>3333333

» 60,000 training images and YU & ¢4 449 Yy £ 448 4d 4 4\ &4
10,000 testing images labeled 55 58535S$S 555<s 58545 S
with correct answer 6 6 6 b obobbdde ¢6 ¢ 6 b

» 28 pixel x 28 pixel T77 7777072002 F7 77

» Algorithms have reached "near- ¥3 ¢ ®8 87 T8RP TTYEL LD
human performance” 7 99999%1929%4994499 9

» Smallest error rate (2018): 0.18% https://en.wikipedia.org/wiki/MNIST_database

Play with MNIST data set and Keras (Stefan Wunsch, CERN IML Workshop):

https://github.com/stwunsch/iml_tensorflow_keras_workshop
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Machine learning: Image recognition

ImageNet database
» 14 million images, 22,000 categories

» Since 2010, the annual ImageNet Large Scale Visual Recognition Challenge
(ILSVRC): 1.4 million images, 1000 categories

» In 2017, 29 of 38 competing teams got less than 5% wrong
https://en.wikipedia.org/wiki/lmageNet

e

[ —

: . . L7 ek
mite - container ship motor scooter leopard
mite container ship motor scooter — ledpard
black widow lifeboat go-kart jaguar
cockroach amphibian moped cheetah
tick fireboat bumper car snow leopard
starfish drilling platform golfcart Egyptian cat

https://www.tensorflow.org/tutorials/image_recognition
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ImageNet: Large Scale Visual Recognition Challenge

Error rate in percent:

2010 2011 2012 2013 2014 2014 2015 Human

Sanchez and Krizhevsky et al Zeiler and &L%gﬁaﬁaar‘nd Szegedy et al Heetal

e Perronnin (AlexNet) Fergus S (GoogleNet)  (Reshep) ~ Bussakowskvetal

O. Russakovsky et al, arXiv:1409.0575
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Further examples (1):

Segmenting and localizing objects
person |
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-urther examples (2):
mage captioning

@ [Lebret, Pinheiro, Collobert 2015][Kulkarni 11][Mitchell 12][Vinyals 14][Mao 14]

A man is doing skateboard tricks on a ramp. The girl with qu hair stands under the umbrella.

A man riding skis on a snow covered ski slope.

NP: a man, skis, the snow, a person, a woman, a snow covered slope, NP: a skateboard, a man, a trick, his skateboard, the air, a NP: a woman, an umbrella, a man, a person, a girl, umbrellas, that, a
a slope, a snowboard, a skier, man. skateboarder, a ramp, a skate board, a person, a woman. little girl, a cell phone.

VP: wearing, riding, holding, standing on, skiing down. VP: doing, riding, is doing, performing, flying through. VP: holding, wearing, is holding, holds, carrying.

PP: on, in, of, with, down. PP: on, of, in, at, with. PP: with, on, of, in, under.

A man wearing skis on the snow. A man riding a skateboard on a ramp. A woman is holding an umbrella.

A slice of pizza sitting on top of a white plate. A baseball player swinging a bat on a field. A bunch of kites flying in the sky on the beach.
NP: aplate, a white plate, a table, pizza, it, a pizza, food, a sandwich, ~ NP: the ball, a game, a baseball player, a man, a tennis court, a ball, NP: the beach, a beach, a kite, kites, the ocean, the water, the sky,
top, a close. home plate, a baseball game, a batter, a field. people, a sandy beach, a group.

VP: topped with, has, is, sitting on, is on. VP: swinging, to hit, playing, holding, is swinging. VP: flying, flies, is flying, flying in, are.

PP: of, on, with, in, up. PP: on, during, in, at, of. PP: on, of, with, in, at.

A table with a plate of pizza on a white plate. A baseball player swinging a bat on a baseball field. People flying kites on the beach.
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Adversarial examples

lan J. Goodfellow, Jonathon Shlens, Christian Szegedy, arXiv:1412.6572v1

x T T
esign(V,J(0,x,y))
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence
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: LeCun 2018, Power And Limits of Deep Learning,
Three types Of |earmng https://www.youtube.com/watch?v=0tEhw5tbrhc

Reinforcement learning

» The machine ("the agent") predicts a
scalar reward given once in a while

» Weak feedback

ﬁ. ﬁ.

A 1!

arxiv:1312.5602
Supervised learning

» The machine predicts a category
based on labeled training data

» Medium feedback

Unsupervised learning Feature 2 Now inetances Aurélien Géron,
. . , 4 N X‘ ° Hands-On Machine
» Describe/find hidden structure from ’ K i‘;’gﬂim Learning with Scikit-
"unlabeled" data o825 S Learn and TensorFlow
. , 0%, %00 ¢ _
» Cluster data in different sub-groups R Example: |
Wlth S|m||ar prOperUeS .. .. Training instances al’]OIHa|y deteCtIOﬂ

Feature 1
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S00ks on machine learning

= |an Goodfellow and Yoshua Bengio and Aaron Courville,
Deep Learning, free online
http://www.deeplearningbbook.org/

= Aurélien Géron, Hands-On Machine Learning with Scikit-

Hands-On
[earn and Tensorflow Machine Lasming
with Scilot-Leam
& TensodFlogy
el /7
P

15
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http://www.deeplearningbook.org/

Multivariate classification

Consider events which can be either signal or background events.

Each event is characterized by n observables:

X = (X1, ..., Xn) "feature vector"
Goal: classify events as signal or background in an optimal way.

This is usually done by mapping the feature vector to a single variable, i.e.,
to scalar "test statistic”:

R" - R: y(X)

A cut y > ¢ to classify events as signal corresponds to selecting a
potentially complicated hyper-surface in feature space. In general superior
to classical "rectangular” cuts on the xi.
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Classification: Learning decision boundaries

rectangular cuts non linear

k-Nearest-Neighbor,
Boosted Decision Trees,
Multi-Layer Perceptrons,
Support Vector Machines

G. Cowan:
https://www.pp.rhul.ac.uk/~cowan/stat_course.html
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M. Kagan,

SUperViSGd |eamiﬂg in d nUtShe” https://indico.cern.ch/event/619370/

Supervised Machine Learning requires labeled training data, i.e., a training
sample where for each event it is known whether it is a signal or background

event

> Y(X7 w > Loss
Function with Function
adjustable
parameters Compare
prediction — > Loss
with true
True labels: label
Higgs =1 >
Bkg =0
Design function y(x’, w) with ajdustable parameters w b L(W,X)

Design a loss function \-
-INnd best parameters which minimize loss N/
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Supervised learning: classification and regression

The codomain Y of the function y: X = Y can be a set of labels or classes
or a continuous domain, e.g., R

Binary classification: Y =4{0,1} e.g., signal or background

Multi-class classification Y ={c, ¢, ..., ¢}

Labels sometimes represented as "one-hot vector”
(no ordering btw. labels): t. =10,0,...,1,...,0}

Y = finite set of labels — classification

Y =real numbers — regression

"All the impressive achievements of deep learning amount to just curve fitting"

J. Pearl, Turing Award Winner 2011,

https://www.quantamagazine.org/to-build-truly-intelligent-machines-teach-them-cause-and-effect-20180515/
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Supervised learning:
Training, validation, and test sample

= Decision boundary fixed with training sample

= Performance on training sample becomes better with more iterations

= Danger of overtraining:
Statistical fluctuations of the training sample will be learnt

= Validation sample = independent labeled data set not used for training
— check for overtraining

= Sign of overtraining: performance on validation sample becomes worse
— Stop training when signs of overtraining are observed ("early stopping")

= Performance: apply classifier to independent test sample
= Often: test sample = validation sample (only small bias)

Statistical Methods in Particle Physics WS 2020/21 | K. Reygers | 9. Machine Learning
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Supervised learning: Cross validation

Rule of thumb if training data not expensive

» Training sample: 50%

. - . o)
> Validation sample: 25% often test sample = validation sample,

» Test sample: 25% .e., training : validation/test = 50:50

Cross validation (efficient use of scarce - validation

t
training data) .

»  Split training sample in k independent - ‘
» Train on 7\ T« resulting in k different - ‘

subset Tk of the full sample T

classifiers -
» For each training event there is one

classifier that didn't use this event for |

training

» Validation results are then combined

training
set

run 1

run 2

run 3

I
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Often used loss functions

Square error 10Ss:

- often used In regression

Cross entropy:
-t e {0, 1}

- Often used In classification

predicted label true label

/

E(y(x,w), t) = (y(X, W) — t)’

predicted “probability”
for outcome t =1

\

E(y(X,w),t) =—tlogy(X, w)
— (1 —t)log(1 - y(x, w))
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More on entropy

Self-information of an event x:  /(x) = — log p(x)

Shannon entropy: H(P) = — Z pi log p;

» Expected amount of information in an event drawn from a distribution P.

» Measure of the minimum of amount of bits needed on average to encode
symbols drawn from a distribution

Cross entropy: H(P, Q) = —E|log gi] = — Z pilog qg;

» Can be interpreted as a measure of the amount of bits needed when a wrong
distribution Q is assumed while the data actually follows a distribution P

» Measure of dissimilarity between distributions P and Q (i.e, a measure of how
well the model Q describes the true distribution P)
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Cross-entropy error function for logistic regression

Let Y € {0,1} be a random variable; outcome of experiment /: y,

Consider one event with feature vector x and label y € {0,1}
By construction the right

Predicted probability g, for outcome Y = 1: property for predicting a
. / probability
=qg¥Y=1)=0(x;W)=oc(wy+ ) wx), o.R - [0,1], o(z) =
cnq()()(og,) 0.1, 0() = ———
Gp=q¥=0)=1-q=1) logistic function

The true probabillities p; are either O or 1, so we can write
pr=p¥=1)=y, pp=1-p; =1-y. With this the cross entropy is:

1
H(p,q) =— Zpk logg, = —ylogo(x,W)—(1-y)log(l —o(X,W))
k=0

| oss function from sum over entire data set:

nsamples

— _— —> —_— —
EGW) == ) ylogo(T, W)+ (1 -y) log(l - o(X,, W))
i=1
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_ogistic regression:
0ss function from maximum likelihood

We can write the two predicted probabillities g, and g, in the following way:

a(Y =y) = o(T; WY - (1 = o(T; W)™

With this the likelihood can be written as

samples

L(W) = H (Y = y)

samples

H (X W)i- (1 — (X, W)

The corresponding Iog—likehhood function is

nsamples

log L(W) = 2 y; log (X W) + (1 — y,) log(1 — 6(X;; W))
i=1
Thus, minimizing the cross entropy loss function corresponds to finding the
maximum likelihood estimate.
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Multinomial logistic regression: Softmax function

In the previous example we considered two classes (0, 1). For multi-class
classification, the logistic function can generalized to the softmax function.

Consider K classes and let z; be the score for class i, 7 = (z,...,2x)

A probabillity for class i can be predicted with the softmax function:

6(D) = — for i=1,..,K
2, €

The softmax functions is often used as the last activation function of a
neural network in order to predict probabilities in a classification task.

Multinomial logistic regression is also known as softmax regression.
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Simple example of logistic regression with scikit-learn (1)

Read data https://scikit-learn.org
Data are from the wikipedia article on logistic regression .

# data: 1. hours studies, 2. passed (0/1)
filename = "data/exam.txt"
df = pd.read csv(filename, engine='python', sep='\s+t+'")

x tmp = df['hours studied'].values
X = np.reshape(x tmp, (-1, 1))
y = df['passed'] .values

Fit the model

from sklearn.linear model import LogisticRegression
clf = LogilsticRegression(penalty='none', fit intercept=True)
clf.fit(x, v);

Calculate predictions

hours studied tmp = np.linspace (0., 6., 1000)
hours studied = np.reshape (hours studied tmp, (-1, 1))
y pred = clf.predict proba (hours studied)
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https://scikit-learn.org

Simple example of logistic regression with scikit-learn (2)

Plot result

df .plot.scatter (x="hours studied',K y='passed')
plt.plot (hours studied, y predf[:,1])

plt.xlabel ("preparation time in hours", fontsize=14)
plt.ylabel ("probability of passing exam", fontsize=14)
plt.savefig("logistic regression.pdf")
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0 1 2 3 4 5 6
preparation time in hours
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Reminder: Neyman—Pearson lemma

The likelihood ratio
~ f(X|H1) H, : signal hypothesis

t(x) =
(X) f(X|Ho) Hy : background hypothesis

IS an optimal test statistic, i.e., it provides highest "signal efficiency" 1 — 3 for a

given "background efficiency” Q.

_ F(X|Hh)
f(X|Ho)

Accept hypothesis if  t(X) > C

Problem: the underlying pdf's are almost never known explicitly.

Two approaches:

1. Estimate signal and background pdf's and construct test statistic based on
Neyman-Pearson lemma

2. Decision boundaries determined directly without approximating the pdf's
(linear discriminants, decision trees, neural networks, ...)
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—stimating PDFs from histograms”?

Consider 2d example:

G. Cowan': https://www.pp.rhul.ac.uk/~cowan/stat_course.html

> > °
signal : "'%—L—b—o‘ : T back-
.°..,f,.§.. O aar e e . ORI d
PR si . .. I || groun
® ‘. :—!1 -
X X

approximate PDF by N(x, y|S) and N(x, y|B)

M bins per variable in d dimensions: Md cells
— hard to generate enough training data (often not practical for d > 1)

In general in machine learning, problems related to a large number of dimensions

of the feature space are referred to as the "curse of dimensionality”
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ROC Curve

Quality of the classification can be characterized by the receiver operating

characteristic (ROC

curve)

Background rejection versus Signal efficiency

1

o
©
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0.7

0.6

Background rejection

e

1 —¢€B 0.5

es: background
efficiency 0.3

0.2

ITMVA

: —— N — . | I | L | L | | L | | L . | L | | L I:
- good % 5
S R e P.??.’F?F ......................................................... E
- MVA Method j 5 5 5 ; A=
:_ .................. Flsher ........... ............... ............... ............... ......... _:
E _ MLP : : : : : : E
S — S"BD'T"E ....................................................................................................... -
- T PDERS o\ -
-~ ——: Likelihood: .
:I L1 1 | L1 1.1 | L1 11 | | I | | | I | | | I | | | I | | | I | | | I | | L1 1 I:

1

0 o1 02 03 04 05 06 07 08 0.9

Signal efficiency
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Nalve Bayesian classifier
(also called "projected likelihood classification”)

Application of the Neyman-Pearson lemma
(ignoring correlations between the x)):

f(x1,%2,...,Xn) approximated as L= fi(x1) h(x): ...  fo(xn)

where f1(x1) = /dXQdX3...dxn f(Xx1, X2, ..., Xn)

fa(x2) = /XmdX3...an f(x1, X2, ..., Xp)

Classification of feature vector x :

L L®
y(X) = Ls(X) + Lo(X) 1+ Lp(X)/Ls(X)

p—t

Performance not optimal if true PDF does not factorize
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k-nearest neighbor method (1)

k-NN classifier
» Estimates probability density around the input vector

» p(X|S)and p(X|B) are approximated by the number of signal and background events in
the training sample that lie in a small volume around the point X

Algorithms finds k nearest neighbors:

k = ks + kg
Probabillity for the event to be of signal type:

ks(X)

ps()?) —
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K-nearest neighbor method (2)

. , , TMVA manual
Simplest choice for distance https://root.cern.ch/guides/tmva-manual
measure in feature space is the 1.5 Vo v T

Fuclidean distance:

R=Ix—-yl

Better: take correlations between
variables into account:

R=1/(%~7)TV-1(z-7)

V' = covariance matrix

"Mahalanobis distance”

The k-NN classifier has best performance when the boundary that separates
signal and background events has irregular features that cannot be easily
approximated by parametric learning methods.
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Fisher linear discriminant

Linear discriminant is simple. Can still be optimal if amount of training data is
limited.

Ansatz for test statistic:  y(X) = Z WiX; = W

Choose parameters w; so that separation between signal and background
distribution is maximum.

Need to define "separation”.

(7s — 7'b)2
>2+ Y7

Fisher: maximize J(w) =

Ty

G. Cowan':
https://www.pp.rhul.ac.uk/~cowan/stat_course.html
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Fisher linear discriminant: Variable definitions

Mean and covariance for signal and background:
,LL?’b = /X,' f()?‘Hsb) dx

Vit = [ (o = )~ 1) F(S1Hoo) d%

Mean and variance of y(X) for signal and background:

Tsb — /y()?)f()?’Hsb) d)_( — W/Tﬁs,b

sb_/(y(X)_st) f(X‘Hsb)dX_ w Vis

G. Cowan':
https://www.pp.rhul.ac.uk/~cowan/stat_course.html
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-Isher linear discriminant:
Determining the coetfticients wi

Numerator of J(w):

(76 — )% = (Z wi (15 — uf-’)) = wiwi( — ) (15 — 1))

= Z wiw;Bj; = w' Bw
ij=1
Denominator of J(w) :

ij=1
Maximize:
. w!'Bw  separation between classes
J(w) = e = : —
w' Ww separation within classes
G. Cowan':

https://www.pp.rhul.ac.uk/~cowan/stat_course.html
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-isher linear discriminant:
Determining the coetfticients wi

Setting g—J — 0 gives:

Wi

y(X)=w'R with W oc W (jis — fip)

We obtain linear decision boundaries.

Weight vector w can be interpreted as a
direction in feature space on which the
events are projected.

G. Cowan':
https://www.pp.rhul.ac.uk/~cowan/stat_course.html
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Fisher linear discriminant: Remarks

In case the signal and background pdfs f(X|Hs) and f(X|H,) are both
multivariate Gaussian with the same covariance but different means, the Fisher

discriminant is
o F(RIH)
X) < In —=
YX) ol )

That is, In this case the Fisher discriminant is an optimal classifier according to
the Neyman-Pearson lemma (as y(X) is a monotonic function of the likelihood
ratio)

Test statistic can be written as

y(X) = wy + Z Wi X;
i=1

where events with y > O are classified as signal. Same functional form as for
the perceptron (prototype of neural networks).
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—xample: Classification with scikit-learn (1)

Iris flower data set https://archive.ics.uci.edu/ml/datasets/Iris

» Introduced 1936 in a paper by Ronald Fisher
» Task: classify flowers

Three species: Iris setosa, Iris virginica and iris versicolor

v

Four features: petal width and length, sepal width/length, in centimeters

v

https://en.wikipedia.org/wiki/Iris_flower_data_se
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—xample: Classification with scikit-learn (2)

# import some data to play with

# columns: Sepal Length, Sepal Width, Petal Length and Petal Width
iris = datasets.load iris()

X = iris.data

y = 1ris.target

# just to create a nice table

df = pd.DataFrame ({"Sepal Length (cm)": X[:,0], "Sepal Width (cm)": X[:,11],
'"Petal Length (cm)': X[:,2], 'Petal Width (cm)': X[:,3],
'category': y})

df .head ()

Sepal Length (cm) Sepal Width (cm) Petal Length (cm) Petal Width (cm) category

0 5.1 3.5 1.4 0.2 0
1 4.9 3.0 1.4 0.2 0
2 4.7 3.2 1.3 0.2 0
3 4.6 3.1 1.5 0.2 0
4 5.0 3.6 1.4 0.2 0

list (iris.target names)

['setosa', 'versicolor', 'virginica']

# split data into training and test data sets

"lll' B;Lv

X train, x test, y train, y test = train test split(X, y, test size=0.5, random state=42)
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—xample: Classification with scikit-learn (3)

Softmax regression

.Eewm

from sklearn.linear model import LogisticRegression C)LIt lJt.

log reg = LogisticRegression(multi class='multinomial', penalty='none') F) )

log reg.fit(x train, y train); . . .
LoglisticRegression

accuracy: 0.96

. [[29 0 O]
k-nearest neighbor [ 0 23 0]
[ O 3 20]]

from sklearn.neighbors import KNeighborsClassifier
kn neigh = KNeighborsClassifier (n neighbors=5)

KNeighborsClassifier
kn neigh.fit(x train, y train);

accuracy: 0.95

[[29 0 O]
. . . . . [ 0 23 0]
Fisher linear discriminant [ 0 4 19]]
from sklearn.discriminant analysis import LinearDiscriminantAnalysis LinearDiscriminantAnalysis
fisher 1d = LinearDiscriminantAnalysis () accuracy: 0.99
fisher 1d.fit(x train, y train); [[29 0 0]
[ 0 23 0]
[ 0O 1 227]
Classification accuracy
for clf in [log reg, kn neigh, fisher 1d]: Wlth SCIkIt_learn It IS
y pred = clf.predict(x test) '
acc = accuracy score(y test, y pred) eXtremely Slmple to
print (type(clf). name ) "
print (f"accuracy: {acc:0.2f}") teSt and apply dlﬁerent

classification methods

# confusion matrix: columns: true class, row: predicted class
print (confusion matrix(y test, y_pred),"\n")
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Precision and recall

Precision:

Fraction of correctly classified instances
among all instances that obtain a certain
class label.

Recall:

TP: true positives
FP: false positives
FN: false negatives

Fraction of positive instances that are
correctly classified.

- TP ' TP
precision = recall =
TP+ FP TP +EN
“purity” “efficiency”
Iris classification y pred = log reg.predict(x test)
exannpky print (classification report(y test, y pred))
precision and lrlecalll for precision recall fl-score support
softmax classification
0 1.00 1.00 1.00 29
: 1 0.88 1.00 0.94 23
see slkllearln.metrlcs. 5 00 g 0 93 3
classification report
accuracy 0.96 75
macro avg 0.96 0.96 0.96 75
welghted avg 0.96 0.96 0.96 75
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Perceptron (1)

Xn

Retina

Associative area

—
e

~
=

>

Treshold element

sign (w’ x)

The perceptron was designed for image
recognition. It was first implemented in hardware
(400 photocells, weights = potentiometer settings).

Rosenblatt, 1957

Output: “binary classifier”

r

1 if w-x+b>0,

0 otherwise

\

e

ASS 2
£ . ..

THE MARK I PERCEPTRON

Mark 1 Perceptron. Source: Rosenblatt, Frank
(1961) Principles of Neurodynamics: Perceptrons
and the Theory of Brain Mechanisms
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Perceptron (2)

McCulloch—Pitts (MCP) neuron (1943)

» First mathematical model of a biological
neuron

» Boolean input
» Equal weights for all inputs
» Threshold hardcoded

Improvements by Rosenblatt:

» Different weights for inputs

» Algorithm to update weights and
threshold given labeled training data

Shortcoming of the perceptron:

it cannot learn the XOR function
Minsky, Papert, 1969

X1
y €{0,1}
O

Xn
Xj € {O, ]_}

OR AND XOR

@ I O
o y
® =

XOR: not linearly separable
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The biological inspiration: the neuron

Cell body
Axon Telodendria
Nucleus( z |
A v
</
. A Axon hillock Synaptic terminals
- "" ‘ ,

| Golgi apparatus
Endoplasmic

. C. elegans (roundworm):
reticulum

LS4 ‘ 302 neurons, each with on average
Mitochondrion ™ Dendrite 25 synaptic connections

/ | N Dendritic branches Human brain:

1011 neurons, each with on average
/000 synaptic connections

https://en.wikipedia.org/wiki/Neuron
https://en.wikipedia.org/wiki/List of animals by number of neurons
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Non-linear transfer / activation function

Examples for h:

hix)

0.8

0.6

0.4

0.2

Discriminant: ~ y(X) = h | wo+ > wix;
=1

1
1+ e X

sigmoid activation functio
— "logistic regression”

("sigmoid” or ”logistic” function), tanh x

Non-linear activation function
needed In neural networks
when feature space is not
linearly separable

Neural net with linear activation
functions is just a perceptron
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Feedforward neural network with one hidden layer

superscripts indicates layer number

%, /
6i(%) =h [ wi) +D wix
j=1
y(R)=h | wg +> wPe(X)
X, j=1

hidden layer

Straightforward to generalize to multiple hidden layers

Statistical Methods in Particle Physics WS 2020/21 | K. Reygers | 9. Machine Learning 48



Neural network output and decision boundaries

P. Bhat, Multivariate Analysis Methods in Particle Physics, inspirehep.net/record/879273

decision
boundaries
for different
cuts on NN
output

Variable x,

Input
layer

25 T T T 1

Output
layer

i 0(x) = f(x,w)

.
—

2030 ne St o

Y 4

¢ Signal

« Background
"«2”l — NN contours

o
pe
-

Variable x,

800=| T T

(o))
o
o

Number of events

200

— Signal

— Background

400 [

0.6

NN output

0.8

/-

output of

;/ neural network

signal
probability
p(s | X1, x2)
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Fun with neural nets in the browser

Q-

DATA

Which dataset do
you want to use?

Ratio of training to
test data: 50%
@

Noise: 0

Batch size: 1

REGENERATE

http://playground.tensorflow.org

Epoch

000,251

FEATURES

Which properties do
you want to feed in?

Xz22

sin(X")

sin(X2)

Learning rate Activation Regularization Regularization rate Problem type
0.03 v Tanh v None v 0 v Classification
+ — 1 HIDDEN LAYER OUTPUT
r W Test loss 0.000
i & Training loss 0.000
6 neurons

Statistical Methods in

——
——————

This is the output
from one neuron.
Hover to see it
larger.

Colors shows

data, neuron and 1| ") E

weight values.

Show test data Discretize output
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Network training

X, . training event, a=1,..., N

t, . correct label for training event a

\

e.g., ta = 1, O for signal and lbackground, respectively

—

w : vector containing all weights

Loss function (example):

Weights are determined by minimizing the loss function (also called error
function)
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Back-propagation (1)

Start with an initial guess w'®) for the weights an then update weights after
each training event:

GGradient descent:
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Back-propagation (2)

Let's write network output as follows:

y(%) = h(u(x)) with u(%) = Zwl% —h( wf:’xk) = h(v(%))

Here we defined ¢o = xo = 1 and the sums start from O to include the offsets.

Weights from hidden layer to output:

£ = 00— 6 5 = 0~ (R = U~ )W ()65

Further application of the chain rule gives weights from input to hidden layer.

“Learning representations by back-propagating errors.”,
Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams

Statistical Methods in Particle Physics WS 2020/21 | K. Reygers | 9. Machine Learning


https://www.iro.umontreal.ca/~pift6266/A06/refs/backprop_old.pdf

Aurélien Géron,

- Hands-On Machine
More on gradient descent Learming with Skt
Learn and TensorFlow
s Stochastic gradient descent o Stochastic Gradient Descent
)%

» just uses one training event at a
time

» fast, but quite irregular approach
to the minimum

» can help escape local minima

» one can decrease learning rate to
settle at the minimum ("simulated
annealing")

= Batch gradient descent

Cost

, o 3% s = Stochastic
» use entire training sample to 36| —  Mini-batch
calculate gradient of loss function 34| | e—e Batch

» computationally expensive 0,321
3.0
= Mini-batch gradient descent

2.8}

» calculate gradient for a random 26
sub-sample of the training set ol | | |
2.5 3.0 3.5 4.0 45
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Universal approximation theorem

https://en.wikipedia.org/wiki/Universal_approximation_theorem

"A feed-forward network with a single
hidden layer containing a finite numler
of neurons (i.e., a multilayer perceptron),
can approximate continuous functions
on compact subsets of Rn."

YANN

One of the first versions of the theorem
was proved by George Cybenko in
1989 for sigmoid activation functions

The theorem does not touch upon the
algorithmic learnability of those
parameters

Statistical Methods in Particle Physics WS 2020/21 | K. Reygers | 9. Machine Learning 55



Deep neural networks

Deep networks: many hidden layers with large numlber of neurons

Big progress in recent years

Challenges

Interest in NN waned before ca. 2006
» Milestone: paper by G. Hinton (20006):

4

vanishing gradient

(

» Hard too train
problem”)

"learning for deep belief nets”

» Training slow

AlphaGo, ...

» Soon: self-driving cars, ...

Image recognition

4

» Risk of overtraining

hidden layer 1  hidden layer 2 hidden layver 3

input layer

o o

= ’3” 5
) %
e -
-

N
s LS
s

o

"
Sy

&y
>

. 4 0
=
&:’4

-
N
u‘:"-' d
A B

\.'

\::_

\\\
\\

/ hﬂ,wrv/}mr/

\

3% ,,,ovo
N ..‘..\\\
, cm '.o..w.u o. v \

A 2///

w«
; ooo:

§

http://neuralnetworksanddeeplearning.com
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Drawbacks of the sigmoid activation function

http://cs231n.stanford.edu/slides

1
o(x) = 1+ e
1_
= Saturated neurons “kill” the
gradients
= Sigmoid outputs are not zero-
fm 0 T centered
- - = exp() Is a bit compute expensive

Sigmoid
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Activation functions

Sigmoid

o(z) = —

l1+e—*

tanh

tanh(x)

Rel U
max(0, )

http://cs231n.stanford.edu/slides

10,

Leaky RelLU

max(0.1z, x)

Maxout
max(wi x + by, wi x + by)

10

ELU

T x>0
ae® —1) <0
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:%e |_U http://cs231n.stanford.edu/slides

f(x) = max(0, x)

10

= Does not saturate (in +region)
= \Very computationally efficient

= Converges much faster than
sigmoid/tanh in practice (e.g. 6X)

~20 10 = Actually more biologically
plausible than sigmoid
RelLU
(Rectified Linear Unit) But: gradient vanishes for x < 0
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Slas-variance tradeoft

Goal: generalization of training data

= Simple models (few parameters): danger of bias

» Classifiers with a small number of degrees of freedom are less prone to
statistical fluctuations: different training samples would result in similar
classification boundaries ("small variance")

= Complex models (many parameters): danger of overfitting

» large variance of decision boundaries for different training samples

Degree 1 Degree 4 Degree 15
- Model —  Model —  Model
True function True function True function

e®e Samples eee Samples eee Samples

underfitting I overfitting

L " x
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—xample of overtraining

Too many neurons/layers make a neural network too flexible
— overtraining

G. Cowan: httpsi//vvww.pp.rhul.ac.uk/~cowan/stat_course.html

> 4 >
- training sample - test sample
2_ A
O— A
2 -2
| | | | | | | | | | | ! ! ! | ! ! ! | ! ! !
-2 0 / 2 4 -2 0 2 4
X X

Network "learns” features that are merely
statistical fluctuations in the training sample
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G. Cowan:

M on |tO ri N 9 ove rt rai N | N 9 https://www.pp.rhul.ac.uk/~cowan/stat_course.html

Monitor fraction of misclassified events (or loss function:)

optimum = minimum of
error rate for test sample

error rate

overtraining =
increase of error rate

test sample

training sample
>

flexibility (e.g., number
of nodes/layers)
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Reqularization: Avoid overfitting nttp://cs231n.stanford.edu/slides

L(W E Li(f(z;, W), y;) + AR(W)
J J
Y Y
Data loss: Model predictions Regularization: Model
should match training data should be “simple”, so it

works on test data

Occam’s Razor:

"Among competing hypotheses,
the simplest is the best”

William of Ockham, 1285 - 1347

In common use:
L2 regularization E(W) =22 Wy,
L1 regularization R(W) =224 221 (Wi
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Another approach to prevent overtitting: Dropout

= Randomly remove nodes during training

= Avoid co-adaptation of nodes

(a) Standard Neural Net (b) After applying dropout.

Srivastava et al., "Dropout: A Simple Way to Prevent Neural Networks from Overfitting"
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Aurélien Géron, Hands-

xavier and He initialization On Machine Learning

with Scikit-Learn and
TensorFlow

= |nitial weights determine speed of
convergence and whether
algorithm converges at all

N

" Softmax
/| output layer

= Xavier Glorot and Yoshua Bengio \, Hidden layer
\

,! (e.g., ReLU)

» Paper "Understanding the
Difficulty of Training Deep

-eedforward Neural Networks" Jpie
» |dea: Variance of the outputs of , )

each layer to be equal to the 1 ?

variance of its inputs Layer with nin inputs connected to

Nout NEUrons In the next layer

Activation function  Uniform distribution [—r, r] Normal distribution (u = 0)

. o 6 _ 2
LOgIStIC r = \/nin‘|‘nout 0 = \/nin‘|‘nout

_ 6 — 2
tanh r = 4\/nin‘|‘nout 0 = 4\/nin+nout
ReLU (and variants) r = ﬁ\/n.nfno : O = ﬁ\/ninfnout
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Pros and cons of multi-layer perceptrons

Pros:

= Capability to learn non-linear models

Cons:
= | 0ss function can have several local minima
= Hyperparameters need to be tuned
» number of layers, neurons per layer, and training iterations
= Sensitive to feature scaling
» preprocessing needed (e.g., scaling of all feature to range [0,1])
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Decision trees

root node __

MiniBooNE Detector

> 100 branch node
_— (node with further

< 100

PMT Hits?

B branching)
4/37
<0.2 GeV =0.2 GeV
S
39/1 ”
<500 cm = 500 cm MiniBooNE: 1520

Radius?

S B photomultiplier signals,
7/1 7/9 goal: separation of ve
/ from vy events
arxXiv:physics/0508045v1

leaf node (no further branching)

Leaf nodes classify events as either signal or backgrouna
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Decision trees Ann.Rev.Nugl.Part.Sci. 61 (2011) 281-309

Easy to interpret and visualize:
Space of feature vectors split up into rectangular volumes
(attributed to either signal or background)

How to build a decision tree in an optimal way?
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Finding optimal cuts

Separation btw. signal and background is often measured with the
Gini index (or Gini impurity):

G =p(1-p)
Here p is the purity:

> cional Wi w; = weight of event /
signa

P = | |
Zsignal Wi + Zbackground 4 lusefulness of weights will
become apparent soon|

Improvement in signal/background separation after splitting a set A into
two sets B and C:

A = WAGA — WBGB — W(:GC where WX — ZW;
X
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Separation measures

o
N
a1

II|IIII|IIII|IIII|IIII|I

arbitrary unit

o
N

0.15

Split criterion

0.1 - Misclas. error

- Entropy
0.05

m— Gini

| | | | | | | | | | | | | | | |
0 0.2 0.4 0.6 0.8 1

signal purity
\P
Entropy: —plnp—(1—p)In(1— p)
Gini index: p(1 — p) lafter Corrado Gini, used to measure income

and wealth inequalities, 1912]

Misclassification rate: 1 — max(p, 1 — p)
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Decision tree pruning

When to stop growing a tree”?
» When all nodes are essentially pure?

» Well, that's overfitting!

Pruning

» Cut back fully grown tree to avoid
overtraining, i.e., replace nodes and
subtrees by leaves
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Single decision trees: Pros and cons

Pros:

= Requires little data preparation

= Can use continuous and categorical inputs

Cons:

= Danger of overfitting training data

= Sensitive to fluctuations in the training data
= Hard to find global optimum

= \When to stop splitting”?
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—nsemble methods: Combine weak learners

= Bootstrap Aggregating (Bagging)

» Sample training data (with replacement) and train a separate model on each of
the derived training sets

' ' A Ntrees
» Classify example with majority vote, or compute (%) = 1 Z (%)
average output from each tree as model output YAx) = Ny oo 4 1 Yilx
| =
= Boosting

» Train N models in sequence, giving more weight to examples not correctly
classified by previous model

» Take weighted average to classify examples y(X) = Zi:l a;yi(X)
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Random forests

= “One of the most widely used and versatile algorithms in data science and
machine learning” (arxiv:1803.08823v3)

= Use bagging to select random example subset

= [rain a tree, but only use random subset of features at each split

» this reduces the correlation between different trees
» makes the decision more robust to missing data
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Boosted decision trees: |dea Weight is increased if

event was misclassified

classifier by the previous classifier
A — oo )

| re-weignt — "Next classifier should
I e Classifier pay more attention to
’ P Cti(x) misclassified events"
1 re-weight
: classifier
Weighted Sample — (x)
" N -
1 re-welght Classifier (i)
. classifier > y(X) = Z w,C(x)
Weighted Sample ———e CO(x) i
1 re-weight
i
: classifier
Weighted Sample

C(m)(x) j

H. Voss, Lecture: Graduierten-Kolleg, http://tmva.sourceforge.net/talks.shtml
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AdaBoost (short for Adaptive Boosting)

Initial training sample

X1, oeey Xn: multivariate event data
Vi, -0 Yo true class labels, +1 or —1
Wl(l), W,(,l) event weights

with equal weights normalized as

i Wi(l) =1
i=1

Train first classifier fi:

fi(X;) >0 classify as signal
fi(X;) <0 classify as background
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AdaBoost: Updating events weights

Define training sample k+1 from training sample k by updating weights:

— oy i (Xi)yi/ 2
w ) = K € 7

- \

normalization factor so that Z W,-(k) =1
=1

| = event iIndex

n

Weight Is increased if event was misclassified by the previous classifier
— "Next classifier should pay more attention to misclassified events”

At each step the classifier fx minimizes error rate

Ex = Z W,-(k)l(y,-fk(ff,-) <0), I(X)=1if Xis true, 0 otherwise
i=1
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AdaBoost: Assigning the classifier score

Assign score to each classifier according to its error rate:

1—€k

A — In
€k

Combined classifier (weighted average):
K
F(X) =) ofi(R)
k=1

It can be shown that the error rate of the combined classifier satisfies

e < H2\/€k(1 —€k)
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Gradient boosting

= | ke In AdaBoost, decision trees are iteratively added to an ensemble
= Can be applied to classification and regression
= Basic idea

» Train a first decision tree
» Then train a second one on the residual errors made by the first tree
» And so on ...

Labeled training data: { X", v}
Model prediction at iteration m: F, (X))

New model: F, . (X) = F,(X) + h,(X)

Find h,(x") by fitting it to
{(719 yl _ Fm(yl))a (?27 y2 _ Fm(72))9 oo (?na yn _ Fm(?n))}
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