
Statistical Methods in
Particle Physics

9. Machine Learning

Heidelberg University, WS 2020/21

Klaus Reygers (lectures)
Rainer Stamen, Martin Völkl (tutorials)

Statistical Methods in Particle Physics WS 2020/21 | K. Reygers | 9. Machine Learning

Multivariate analysis:
An early example from particle physics

2

Signal: e+e− → W+W−

Background: e+e− → qqgg
often 4 well separated hadron jets

4 less well separated hadron jets

← input variables based on jet
structure, event shape, ...
none by itself gives much
separation.

Neural network output:

(Garrido, Juste and Martinez, ALEPH 96-144)

G. Cowan, Lecture on Statistical data analysis

https://www.pp.rhul.ac.uk/~cowan/stat/stat_6.pdf

Statistical Methods in Particle Physics WS 2020/21 | K. Reygers | 9. Machine Learning

Machine learning

3

"Machine learning is the subfield of computer science that gives computers
the ability to learn without being explicitly programmed" – Wikipedia

J. Mayes, Machine learning 101

Manual feature engineering vs. automatic feature detection

Example: spam detection

https://docs.google.com/presentation/d/1kSuQyW5DTnkVaZEjGYCkfOxvzCqGEFzWBy4e9Uedd9k/preview?imm_mid=0f9b7e&cmp=em-data-na-na-newsltr_20171213&slide=id.g168a3288f7_0_58

Statistical Methods in Particle Physics WS 2020/21 | K. Reygers | 9. Machine Learning

Artificial
Intelligence

Machine
Learning

AI, ML, and DL

4

"AI is the study of how to make computers perform things that,
at the moment, people do better." Elaine Rich, Artificial intelligence, McGraw-Hill 1983

"deep" in deep learning: artificial neural nets with many neurons and
multiple layers of nonlinear processing units for feature extraction

G. Marcus, E. Davis,
Rebooting AI

Deep Learning

Probabilistic
Learning

Decision Trees

Genetic Algorithm

Planning

Reasoning Search
Knowledge

Representation

http://rebooting.ai/

Statistical Methods in Particle Physics WS 2020/21 | K. Reygers | 9. Machine Learning

Some successes and unsolved problems in AI

5

M. Woolridge,
The Road to Conscious Machines

Impressive progress in certain
fields:
‣ Image recognition
‣ Speech recognition
‣ Recommendation systems
‣ Automated translation
‣ Analysis of medical data

How can we profit from these
developments in physics?

https://www.penguin.co.uk/books/307/307639/the-road-to-conscious-machines/9780241333907.html

Statistical Methods in Particle Physics WS 2020/21 | K. Reygers | 9. Machine Learning

Different modeling approaches

■ Simple mathematical representation like linear regression. Favored by
statisticians.

■ Complex deterministic models based on scientific understanding of the
physical process. Favored by physicists.

■ Complex algorithms to make predictions that are derived from a huge
number of past examples (“machine learning” as developed in the field of
computer science). These are often black boxes.

■ Regression models that claim to reach causal conclusions. Used by
economists.

6

D. Spiegelhalter, The Art of Statistics – Learning from data

Statistical Methods in Particle Physics WS 2020/21 | K. Reygers | 9. Machine Learning

Application of machine learning in experimental
particle physics
■ Monte Carlo simulation
‣ use generative models for faster MC event generation

■ Event reconstruction and particle identification
■ Data acquisition / trigger
‣ faster algorithms

■ Offline data analysis
‣ better algorithms

■ Detector monitoring
‣ anomaly detection

7

“Machine Learning in High Energy Physics Community White Paper”,
arXiv:1807.02876

https://arxiv.org/abs/1807.02876

Statistical Methods in Particle Physics WS 2020/21 | K. Reygers | 9. Machine Learning

Machine learning: The "hello world" problem

8

Recognition of handwritten digits
‣ MNIST database

(Modified National Institute of
Standards and Technology
database)

‣ 60,000 training images and
10,000 testing images labeled
with correct answer

‣ 28 pixel x 28 pixel
‣ Algorithms have reached "near-

human performance"
‣ Smallest error rate (2018): 0.18% https://en.wikipedia.org/wiki/MNIST_database

Play with MNIST data set and Keras (Stefan Wunsch, CERN IML Workshop):
https://github.com/stwunsch/iml_tensorflow_keras_workshop

Statistical Methods in Particle Physics WS 2020/21 | K. Reygers | 9. Machine Learning

Machine learning: Image recognition

9

ImageNet database
‣ 14 million images, 22,000 categories
‣ Since 2010, the annual ImageNet Large Scale Visual Recognition Challenge

(ILSVRC): 1.4 million images, 1000 categories
‣ In 2017, 29 of 38 competing teams got less than 5% wrong

https://en.wikipedia.org/wiki/ImageNet

https://www.tensorflow.org/tutorials/image_recognition

Statistical Methods in Particle Physics WS 2020/21 | K. Reygers | 9. Machine Learning

ImageNet: Large Scale Visual Recognition Challenge

10

Lecture 1 - Fei-Fei Li & Justin Johnson & Serena Yeung 4/4/201724

Steel drumThe Image Classification Challenge:

1,000 object classes

1,431,167 images

Russakovsky et al. arXiv, 2014O. Russakovsky et al, arXiv:1409.0575

Error rate in percent:

Statistical Methods in Particle Physics WS 2020/21 | K. Reygers | 9. Machine Learning

Further examples (1):
Segmenting and localizing objects

11

Y LeCun
Results

Statistical Methods in Particle Physics WS 2020/21 | K. Reygers | 9. Machine Learning

Further examples (2):
Image captioning

12

Y LeCun
Image captioning: generating a descriptive sentence

[Lebret, Pinheiro, Collobert 2015][Kulkarni 11][Mitchell 12][Vinyals 14][Mao 14]
[Karpathy 14][Donahue 14]...

Statistical Methods in Particle Physics WS 2020/21 | K. Reygers | 9. Machine Learning

Adversarial examples

13

Ian J. Goodfellow, Jonathon Shlens, Christian Szegedy, arXiv:1412.6572v1

Statistical Methods in Particle Physics WS 2020/21 | K. Reygers | 9. Machine Learning

Three types of learning

14

Supervised learning
‣ The machine predicts a category

based on labeled training data
‣ Medium feedback

Reinforcement learning
‣ The machine ("the agent") predicts a

scalar reward given once in a while
‣ Weak feedback

Unsupervised learning
‣ Describe/find hidden structure from

"unlabeled" data
‣ Cluster data in different sub-groups

with similar properties

LeCun 2018, Power And Limits of Deep Learning,
https://www.youtube.com/watch?v=0tEhw5t6rhc

arXiv:1312.5602

Example:
anomaly detection

Aurélien Géron,
Hands-On Machine
Learning with Scikit-
Learn and TensorFlow

Statistical Methods in Particle Physics WS 2020/21 | K. Reygers | 9. Machine Learning

Books on machine learning
■ Ian Goodfellow and Yoshua Bengio and Aaron Courville,

Deep Learning, free online
http://www.deeplearningbook.org/

■ Aurélien Géron, Hands-On Machine Learning with Scikit-
Learn and TensorFlow

15

http://www.deeplearningbook.org/

Statistical Methods in Particle Physics WS 2020/21 | K. Reygers | 9. Machine Learning

Multivariate classification

16

Consider events which can be either signal or background events.

Each event is characterized by n observables:

~x = (x1, ..., xn) "feature vector"

Goal: classify events as signal or background in an optimal way.

This is usually done by mapping the feature vector to a single variable, i.e.,
to scalar "test statistic":

A cut y > c to classify events as signal corresponds to selecting a
potentially complicated hyper-surface in feature space. In general superior
to classical "rectangular" cuts on the xi.

Rn ! R : y(~x)

Statistical Methods in Particle Physics WS 2020/21 | K. Reygers | 9. Machine Learning

Classification: Learning decision boundaries

17

H0

rectangular cuts

linear

non linear

G. Cowan:
https://www.pp.rhul.ac.uk/~cowan/stat_course.html

k-Nearest-Neighbor,
Boosted Decision Trees,
Multi-Layer Perceptrons,
Support Vector Machines
…

Statistical Methods in Particle Physics WS 2020/21 | K. Reygers | 9. Machine Learning

Supervised learning in a nutshell

18

Design a loss function

Design function y(⃗x , ⃗w) with ajdustable parameters ⃗w

Find best parameters which minimize loss

y(~x , ~w)

M. Kagan,
https://indico.cern.ch/event/619370/

Supervised Machine Learning requires labeled training data, i.e., a training
sample where for each event it is known whether it is a signal or background
event

Statistical Methods in Particle Physics WS 2020/21 | K. Reygers | 9. Machine Learning

Supervised learning: classification and regression

19

The codomain Y of the function y: X → Y can be a set of labels or classes
or a continuous domain, e.g., ℝ

Binary classification: Y = {0, 1} e.g., signal or background

Multi-class classification Y = {c1, c2, ..., cn}

ta = {0, 0, ..., 1, ..., 0}
Labels sometimes represented as "one-hot vector"
(no ordering btw. labels):

Y = finite set of labels → classification

Y = real numbers → regression

"All the impressive achievements of deep learning amount to just curve fitting"

J. Pearl, Turing Award Winner 2011,
https://www.quantamagazine.org/to-build-truly-intelligent-machines-teach-them-cause-and-effect-20180515/

Statistical Methods in Particle Physics WS 2020/21 | K. Reygers | 9. Machine Learning

Supervised learning:
Training, validation, and test sample

■ Decision boundary fixed with training sample
■ Performance on training sample becomes better with more iterations
■ Danger of overtraining:

Statistical fluctuations of the training sample will be learnt
■ Validation sample = independent labeled data set not used for training
→ check for overtraining

■ Sign of overtraining: performance on validation sample becomes worse
→ Stop training when signs of overtraining are observed ("early stopping")

■ Performance: apply classifier to independent test sample
■ Often: test sample = validation sample (only small bias)

20

Statistical Methods in Particle Physics WS 2020/21 | K. Reygers | 9. Machine Learning

Supervised learning: Cross validation

21

Cross validation (efficient use of scarce
training data)
‣ Split training sample in k independent

subset Tk of the full sample T
‣ Train on T \ Tk resulting in k different

classifiers
‣ For each training event there is one

classifier that didn't use this event for
training

‣ Validation results are then combined

Rule of thumb if training data not expensive
‣ Training sample: 50%
‣ Validation sample: 25%
‣ Test sample: 25%

often test sample = validation sample,
i.e., training : validation/test = 50:50

Cross Validation

•  Especially when dataset is small, split training set into K-folds
–  Train on (K-1) folds, validate on 1 fold, then iterate
–  Use average estimated performance on K-folds
–  Allows for estimate of performance RMS

•  Even when dataset not small, useful technique to estimate
variance of expected performance, and for comparing different
models / hyperparameters

59	

Training	set	

ValidaZon	set	

[Bishop]	

validation
set

training
set

Statistical Methods in Particle Physics WS 2020/21 | K. Reygers | 9. Machine Learning

Often used loss functions

22

Square error loss:
- often used in regression E (y(~x , ~w), t) = (y(~x , ~w)� t)2

Cross entropy:
- t ∈ {0, 1}
- Often used in classification

E (y(~x , ~w), t) =� t log y(~x , ~w)

� (1� t) log(1� y(~x , ~w))

true labelpredicted label

predicted “probability”
for outcome t = 1

Statistical Methods in Particle Physics WS 2020/21 | K. Reygers | 9. Machine Learning

More on entropy

23

I (x) = � log p(x)Self-information of an event x:

Shannon entropy:

‣ Expected amount of information in an event drawn from a distribution P.
‣ Measure of the minimum of amount of bits needed on average to encode

symbols drawn from a distribution

Cross entropy:

‣ Can be interpreted as a measure of the amount of bits needed when a wrong
distribution Q is assumed while the data actually follows a distribution P

‣ Measure of dissimilarity between distributions P and Q (i.e, a measure of how
well the model Q describes the true distribution P)

H(P ,Q) = �E [log qi] = �
X

pi log qi

H(P) = �
X

pi log pi

Statistical Methods in Particle Physics WS 2020/21 | K. Reygers | 9. Machine Learning

Cross-entropy error function for logistic regression

24

q1 ≡ q(Y = 1) = σ(⃗x ; ⃗w) ≡ σ(w0 +
n

∑
i=1

wixi), σ: ℝ ↦ [0,1], σ(z) =
1

1 + e−z

q0 ≡ q(Y = 0) = 1 − q(Y = 1)

H(p, q) = −
1

∑
k=0

pk log qk = − y log σ(⃗x , ⃗w) − (1 − y) log(1 − σ(⃗x , ⃗w))

logistic function

E(⃗w) = −
nsamples

∑
i=1

yi log σ(⃗x i, ⃗w) + (1 − yi) log(1 − σ(⃗x i, ⃗w))

Predicted probability for outcome :q1 Y = 1
By construction the right
property for predicting a
probability

The true probabilities are either 0 or 1, so we can write
. With this the cross entropy is:

pi
p1 ≡ p(Y = 1) = y, p0 = 1 − p1 ≡ 1 − y

Consider one event with feature vector and label ⃗x y ∈ {0,1}

Loss function from sum over entire data set:

Let be a random variable; outcome of experiment i: Y ∈ {0,1} yi

Statistical Methods in Particle Physics WS 2020/21 | K. Reygers | 9. Machine Learning

Logistic regression:
loss function from maximum likelihood

25

We can write the two predicted probabilities and in the following way:q0 q1

q(Y = y) = σ(⃗x ; ⃗w)y ⋅ (1 − σ(⃗x ; ⃗w))1−y

L(⃗w) =
nsamples

∏
i=1

q(Y = yi)

=
nsamples

∏
i=1

σ(⃗x ; ⃗w)yi ⋅ (1 − σ(⃗x ; ⃗w))1−yi

With this the likelihood can be written as

The corresponding log-likelihood function is

log L(⃗w) =
nsamples

∑
i=1

yi log σ(⃗x i; ⃗w) + (1 − yi) log(1 − σ(⃗x i; ⃗w))

Thus, minimizing the cross entropy loss function corresponds to finding the
maximum likelihood estimate.

Statistical Methods in Particle Physics WS 2020/21 | K. Reygers | 9. Machine Learning

Multinomial logistic regression: Softmax function

In the previous example we considered two classes (0, 1). For multi-class
classification, the logistic function can generalized to the softmax function.

26

σ(⃗z)i =
ezi

∑K
j=1 ezj

 for i = 1,...,K

Consider classes and let be the score for class i, K zi ⃗z = (z1, . . . , zK)

A probability for class i can be predicted with the softmax function:

The softmax functions is often used as the last activation function of a
neural network in order to predict probabilities in a classification task.

Multinomial logistic regression is also known as softmax regression.

Statistical Methods in Particle Physics WS 2020/21 | K. Reygers | 9. Machine Learning

Simple example of logistic regression with scikit-learn (1)

27

Simple example of logistic regression with scikit-learn
In [21]: import numpy as np

import pandas as pd
import matplotlib.pyplot as plt

In [22]:

Read data
Data are from the wikipedia article on logistic regression

In [33]: # data: 1. hours studies, 2. passed ﴾0/1﴿
filename = "data/exam.txt"
df = pd.read_csv(filename, engine='python', sep='\s+')

In [32]: x_tmp = df['hours_studied'].values
x = np.reshape(x_tmp, (1, 1))
y = df['passed'].values

Fit the model

In [25]: from sklearn.linear_model import LogisticRegression
clf = LogisticRegression(penalty='none', fit_intercept=True)
clf.fit(x, y);

Calculate predictions

In [26]: hours_studied_tmp = np.linspace(0., 6., 1000)
hours_studied = np.reshape(hours_studied_tmp, (1, 1))
y_pred = clf.predict_proba(hours_studied)

Plot result

In [27]: df.plot.scatter(x='hours_studied', y='passed')
plt.plot(hours_studied, y_pred[:,1])
plt.xlabel("preparation time in hours", fontsize=14)
plt.ylabel("probability of passing exam", fontsize=14)
plt.savefig("logistic_regression.pdf")

In [28]: clf.get_params()

In [29]: print('Coefficient: ', clf.coef_)
print('Intercept: ', clf.intercept_)

In []:

Out[28]: {'C': 1.0,
 'class_weight': None,
 'dual': False,
 'fit_intercept': True,
 'intercept_scaling': 1,
 'l1_ratio': None,
 'max_iter': 100,
 'multi_class': 'auto',
 'n_jobs': None,
 'penalty': 'none',
 'random_state': None,
 'solver': 'lbfgs',
 'tol': 0.0001,
 'verbose': 0,
 'warm_start': False}

Coefficient: [[1.50464522]]
Intercept: [4.07771764]

https://scikit-learn.org

https://scikit-learn.org

Statistical Methods in Particle Physics WS 2020/21 | K. Reygers | 9. Machine Learning

Simple example of logistic regression with scikit-learn (2)

28

Simple example of logistic regression with scikit-learn
In [21]: import numpy as np

import pandas as pd
import matplotlib.pyplot as plt

In [22]:

Read data
Data are from the wikipedia article on logistic regression

In [33]: # data: 1. hours studies, 2. passed ﴾0/1﴿
filename = "data/exam.txt"
df = pd.read_csv(filename, engine='python', sep='\s+')

In [32]: x_tmp = df['hours_studied'].values
x = np.reshape(x_tmp, (1, 1))
y = df['passed'].values

Fit the model

In [25]: from sklearn.linear_model import LogisticRegression
clf = LogisticRegression(penalty='none', fit_intercept=True)
clf.fit(x, y);

Calculate predictions

In [26]: hours_studied_tmp = np.linspace(0., 6., 1000)
hours_studied = np.reshape(hours_studied_tmp, (1, 1))
y_pred = clf.predict_proba(hours_studied)

Plot result

In [27]: df.plot.scatter(x='hours_studied', y='passed')
plt.plot(hours_studied, y_pred[:,1])
plt.xlabel("preparation time in hours", fontsize=14)
plt.ylabel("probability of passing exam", fontsize=14)
plt.savefig("logistic_regression.pdf")

In [28]: clf.get_params()

In [29]: print('Coefficient: ', clf.coef_)
print('Intercept: ', clf.intercept_)

In []:

Out[28]: {'C': 1.0,
 'class_weight': None,
 'dual': False,
 'fit_intercept': True,
 'intercept_scaling': 1,
 'l1_ratio': None,
 'max_iter': 100,
 'multi_class': 'auto',
 'n_jobs': None,
 'penalty': 'none',
 'random_state': None,
 'solver': 'lbfgs',
 'tol': 0.0001,
 'verbose': 0,
 'warm_start': False}

Coefficient: [[1.50464522]]
Intercept: [4.07771764]

Statistical Methods in Particle Physics WS 2020/21 | K. Reygers | 9. Machine Learning

Reminder: Neyman–Pearson lemma
The likelihood ratio

29

t(~x) =
f (~x |H1)

f (~x |H0)

Problem: the underlying pdf's are almost never known explicitly.

1. Estimate signal and background pdf's and construct test statistic based on
Neyman-Pearson lemma

2. Decision boundaries determined directly without approximating the pdf's
(linear discriminants, decision trees, neural networks, …)

Two approaches:

is an optimal test statistic, i.e., it provides highest "signal efficiency" 1 – β for a
given "background efficiency" α.

H1 : signal hypothesis

H0 : background hypothesis

Accept hypothesis if t(~x) =
f (~x |H1)

f (~x |H0)
> c

Statistical Methods in Particle Physics WS 2020/21 | K. Reygers | 9. Machine Learning

Estimating PDFs from histograms?

30G. Cowan iSTEP 2014, Beijing / Statistics for Particle Physics / Lecture 2 15

Approximate LR from 2D-histograms
Suppose problem has 2 variables. Try using 2-D histograms:

Approximate pdfs using N (x,y|s), N (x,y|b) in corresponding cells.
But if we want M bins for each variable, then in n-dimensions we
have Mn cells; can’t generate enough training data to populate.

 → Histogram method usually not usable for n > 1 dimension.

signal back-
ground

Consider 2d example:

approximate PDF by N(x , y |S) and N(x , y |B)

G. Cowan': https://www.pp.rhul.ac.uk/~cowan/stat_course.html

M bins per variable in d dimensions: Md cells
→ hard to generate enough training data (often not practical for d > 1)
In general in machine learning, problems related to a large number of dimensions
of the feature space are referred to as the "curse of dimensionality"

Statistical Methods in Particle Physics WS 2020/21 | K. Reygers | 9. Machine Learning

ROC Curve
Quality of the classification can be characterized by the receiver operating
characteristic (ROC curve)

31

12 3 Using TMVA

Signal efficiency
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

B
ac

kg
ro

un
d

re
je

ct
io

n

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Signal efficiency
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

B
ac

kg
ro

un
d

re
je

ct
io

n

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MVA Method:
Fisher
MLP
BDT
PDERS
Likelihood

Background rejection versus Signal efficiency

Figure 5: Example for the background rejection versus signal e�ciency (“ROC curve”) obtained by cutting
on the classifier outputs for the events of the test sample.

• TMVA versions in ROOT releases: http://tmva.sourceforge.net/versionRef.html.

• Direct code views via ViewVC: http://tmva.svn.sourceforge.net/viewvc/tmva/trunk/TMVA.

• Class index of TMVA in ROOT: http://root.cern.ch/root/htmldoc/TMVA Index.html.

• Please send questions and/or report problems to the tmva-users mailing list:
http://sourceforge.net/mailarchive/forum.php?forum name=tmva-users (posting messages requires
prior subscription: https://lists.sourceforge.net/lists/listinfo/tmva-users).

3 Using TMVA

A typical TMVA classification or regression analysis consists of two independent phases: the training
phase, where the multivariate methods are trained, tested and evaluated, and an application phase,
where the chosen methods are applied to the concrete classification or regression problem they have
been trained for. An overview of the code flow for these two phases as implemented in the examples
TMVAClassification.C and TMVAClassificationApplication.C (for classification – see Sec. 2.5),
and TMVARegression.C and TMVARegressionApplication.C (for regression) are sketched in Fig. 7.
Multiclass classification does not di↵er much from two class classification from a technical point of
view and di↵erences will only be highlighted where neccessary.

In the training phase, the communication of the user with the data sets and the MVA methods
is performed via a Factory object, created at the beginning of the program. The TMVA Factory
provides member functions to specify the training and test data sets, to register the discriminating

good

better

1 – εB

εB: background
efficiency

Statistical Methods in Particle Physics WS 2020/21 | K. Reygers | 9. Machine Learning

Naïve Bayesian classifier
(also called "projected likelihood classification")

32

Application of the Neyman-Pearson lemma
(ignoring correlations between the xi):

f (x1, x2, ..., xn) approximated as L = f1(x1) · f2(x2) · ... · fn(xn)

where f1(x1) =

Z
dx2dx3...dxn f (x1, x2, ..., xn)

f2(x2) =

Z
dx1dx3...dxn f (x1, x2, ..., xn)

...
Classification of feature vector :

y(~x) =
Ls(~x)

Ls(~x) + Lb(~x)
=

1

1 + Lb(~x)/Ls(~x)

~x

Performance not optimal if true PDF does not factorize

Statistical Methods in Particle Physics WS 2020/21 | K. Reygers | 9. Machine Learning

k-nearest neighbor method (1)

33

k-NN classifier
‣ Estimates probability density around the input vector
‣ and are approximated by the number of signal and background events in

the training sample that lie in a small volume around the point

Algorithms finds k nearest neighbors:

k = ks + kb

Probability for the event to be of signal type:

ps(~x) =
ks(~x)

ks(~x) + kb(~x)

p(~x |S) p(~x |B)
~x

Statistical Methods in Particle Physics WS 2020/21 | K. Reygers | 9. Machine Learning

k-nearest neighbor method (2)

34

8.5 k-Nearest Neighbour (k-NN) Classifier 85

0x
0 0.5 1 1.5

1x
0

0.5

1

1.5

0x
0 0.5 1 1.5

2x

0

0.5

1

1.5

1x
0 0.5 1 1.5

2x

0

0.5

1

1.5

Figure 14: Example for the k-nearest neighbour algorithm in a three-dimensional space (i.e., for three
discriminating input variables). The three plots are projections upon the two-dimensional coordinate planes.
The full (open) circles are the signal (background) events. The k-NN algorithm searches for 20 nearest points
in the nearest neighborhood (circle) of the query event, shown as a star. The nearest neighborhood counts 13
signal and 7 background points so that query event may be classified as a signal candidate.

Like (more or less) all TMVA classifiers, the k-nearest neighbour estimate su↵ers from statistical
fluctuations in the training data. The typically high variance of the k-NN response is mitigated by
adding a weight function that depends smoothly on the distance from a test event. The current
k-NN implementation uses a polynomial kernel

W (x) =

(
(1� |x|

3)3 if |x| < 1 ,

0 otherwise .
(59)

If Rk is the distance between the test event and the kth neighbour, the events are weighted according
to the formula:

WS(B) =

kS(B)X

i=1

W

✓
Ri

Rk

◆
, (60)

where kS(B) is number of the signal (background) events in the neighbourhood. The weighted signal
probability for the test event is then given by

PS =
WS

WS +WB

. (61)

The kernel use is switched on/o↵ by the option UseKernel.

Regression

The k-NN algorithm in TMVA also implements a simple multi-dimensional (multi-target) regression
model. For a test event, the algorithm finds the k-nearest neighbours using the input variables, where
each training event contains a regression value. The predicted regression value for the test event is
the weighted average of the regression values of the k-nearest neighbours, cf. Eq. (39) on page 70.

Simplest choice for distance
measure in feature space is the
Euclidean distance:

Better: take correlations between
variables into account:

R = |~x � ~y |

R =
q

(~x � ~y)TV�1(~x � ~y)

V = covariance matrix

"Mahalanobis distance"

The k-NN classifier has best performance when the boundary that separates
signal and background events has irregular features that cannot be easily
approximated by parametric learning methods.

TMVA manual
https://root.cern.ch/guides/tmva-manual

Statistical Methods in Particle Physics WS 2020/21 | K. Reygers | 9. Machine Learning

Fisher linear discriminant

35

Linear discriminant is simple. Can still be optimal if amount of training data is
limited.

Ansatz for test statistic: y(~x) =
nX

i=1

wixi = ~wT~x

Choose parameters wi so that separation between signal and background
distribution is maximum.

Fisher: maximize

23 Glen Cowan Multivariate Statistical Methods in Particle Physics

Ansatz:

→ Fisher: maximize

Choose the parameters w1, ..., wn so that the pdfs
have maximum ‘separation’. We want:

s b

y

f (y)
tb

large distance between
mean values, small widths

t
s

Linear test statistic
y x=∑

i=1

n

wi xi=
wT x

f y∣s , f y∣b

J w=
s−b

2

s

2b

2

J(~w) =
(⌧s � ⌧b)2

⌃2
s + ⌃2

b

G. Cowan':
https://www.pp.rhul.ac.uk/~cowan/stat_course.html

Need to define "separation".

Statistical Methods in Particle Physics WS 2020/21 | K. Reygers | 9. Machine Learning

Fisher linear discriminant: Variable definitions

36

G. Cowan':
https://www.pp.rhul.ac.uk/~cowan/stat_course.html

µs,b
i =

Z
xi f (~x |Hs,b) d~x

V
s,b
ij =

Z
(xi � µs,b

i)(xj � µs,b
j) f (~x |Hs,b) d~x

Mean and covariance for signal and background:

⌧s,b =

Z
y(~x)f (~x |Hs,b) d~x = ~wT~µs,b

⌃2
s,b =

Z
(y(~x)� ⌧s,b)

2
f (~x |Hs,b) d~x = ~wT

Vs,b~w

Mean and variance of for signal and background:y(~x)

Statistical Methods in Particle Physics WS 2020/21 | K. Reygers | 9. Machine Learning

Fisher linear discriminant:
Determining the coefficients wi

37

G. Cowan':
https://www.pp.rhul.ac.uk/~cowan/stat_course.html

Numerator of :

⌃2
s + ⌃2

b =
nX

i ,j=1

wiwj (V
s + V b)ij ⌘ ~wTW ~w

J(~w)

J(~w)Denominator of :

Maximize:

J(~w) =
~wTB ~w

~wTW ~w
=

separation between classes

separation within classes

(⌧s � ⌧b)
2 =

nX

i=1

wi (µ
s
i � µb

i)

!2

=
nX

i ,j=1

wiwj(µ
s
i � µb

i)(µ
s
j � µb

j)

⌘
nX

i ,j=1

wiwjBij = ~wTB ~w

Statistical Methods in Particle Physics WS 2020/21 | K. Reygers | 9. Machine Learning

Fisher linear discriminant:
Determining the coefficients wi

38

G. Cowan':
https://www.pp.rhul.ac.uk/~cowan/stat_course.html

@J

@wi
= 0

y(~x) = ~wT~x with ~w / W�1(~µs � ~µb)

Setting gives:

linear decision boundary

Weight vector can be interpreted as a
direction in feature space on which the
events are projected.

We obtain linear decision boundaries.

~w

Statistical Methods in Particle Physics WS 2020/21 | K. Reygers | 9. Machine Learning

Fisher linear discriminant: Remarks

39

In case the signal and background pdfs and are both
multivariate Gaussian with the same covariance but different means, the Fisher
discriminant is

f (~x |Hs) f (~x |Hb)

y(~x) / ln
f (~x |Hs)

f (~x |Hb)

That is, in this case the Fisher discriminant is an optimal classifier according to
the Neyman-Pearson lemma (as is a monotonic function of the likelihood
ratio)

y(~x)

Test statistic can be written as

y(~x) = w0 +
nX

i=1

wixi

where events with y > 0 are classified as signal. Same functional form as for
the perceptron (prototype of neural networks).

Statistical Methods in Particle Physics WS 2020/21 | K. Reygers | 9. Machine Learning

Example: Classification with scikit-learn (1)
Iris flower data set
‣ Introduced 1936 in a paper by Ronald Fisher
‣ Task: classify flowers
‣ Three species: iris setosa, iris virginica and iris versicolor
‣ Four features: petal width and length, sepal width/length, in centimeters

40

https://archive.ics.uci.edu/ml/datasets/Iris

https://en.wikipedia.org/wiki/Iris_flower_data_se

sepal width

sepal
length

petal
length

petal width

Statistical Methods in Particle Physics WS 2020/21 | K. Reygers | 9. Machine Learning

Example: Classification with scikit-learn (2)

41

Simple classification example: the iris dataset
In [85]: import matplotlib.pyplot as plt

import pandas as pd
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
from sklearn.metrics import accuracy_score
from sklearn.metrics import confusion_matrix

In [86]: # import some data to play with
columns: Sepal Length, Sepal Width, Petal Length and Petal Width
iris = datasets.load_iris()
X = iris.data
y = iris.target

In [113]: # just to create a nice table
df = pd.DataFrame({"Sepal Length (cm)": X[:,0], "Sepal Width (cm)": X[:,1],
 'Petal Length (cm)': X[:,2], 'Petal Width (cm)': X[:,3],
 'category': y})
df.head()

In [88]: list(iris.target_names)

In [90]: # split data into training and test data sets
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=42)

In [111]: # plot with color code
plt.subplots(1, 2, figsize=(10, 5))

plt.subplot(1, 2, 1)
plt.scatter(X[:, 0], X[:, 1], c=y, edgecolor='k')
plt.xlabel('Sepal length')
plt.ylabel('Sepal width')

plt.subplot(1, 2, 2)
plt.scatter(X[:, 2], X[:, 3], c=y, edgecolor='k')
plt.xlabel('Petal length')
plt.ylabel('Petal width')

Softmax regression
In [91]: from sklearn.linear_model import LogisticRegression

log_reg = LogisticRegression(multi_class='multinomial', penalty='none')
log_reg.fit(x_train, y_train);

k-nearest neighbor regression
In [103]: from sklearn.neighbors import KNeighborsClassifier

kn_neigh = KNeighborsClassifier(n_neighbors=5)
kn_neigh.fit(x_train, y_train);

Fisher linear discriminant
In [106]: from sklearn.discriminant_analysis import LinearDiscriminantAnalysis

fisher_ld = LinearDiscriminantAnalysis()
fisher_ld.fit(x_train, y_train);

Classification accuracy
In [110]: for clf in [log_reg, kn_neigh, fisher_ld]:

 y_pred = clf.predict(x_test)
 acc = accuracy_score(y_test, y_pred)
 print(type(clf).__name__)
 print(f"accuracy: {acc:0.2f}")

 # confusion matrix: columns: true class, row: predicted class
 print(confusion_matrix(y_test, y_pred),"\n")

Out[113]:
Sepal Length (cm) Sepal Width (cm) Petal Length (cm) Petal Width (cm) category

0 5.1 3.5 1.4 0.2 0

1 4.9 3.0 1.4 0.2 0

2 4.7 3.2 1.3 0.2 0

3 4.6 3.1 1.5 0.2 0

4 5.0 3.6 1.4 0.2 0

Out[88]: ['setosa', 'versicolor', 'virginica']

Out[111]: Text(0, 0.5, 'Petal width')

LogisticRegression
accuracy: 0.96
[[29 0 0]
 [0 23 0]
 [0 3 20]]

KNeighborsClassifier
accuracy: 0.95
[[29 0 0]
 [0 23 0]
 [0 4 19]]

LinearDiscriminantAnalysis
accuracy: 0.99
[[29 0 0]
 [0 23 0]
 [0 1 22]]

Statistical Methods in Particle Physics WS 2020/21 | K. Reygers | 9. Machine Learning

Example: Classification with scikit-learn (3)

42

Simple classification example: the iris dataset
In [85]: import matplotlib.pyplot as plt

import pandas as pd
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
from sklearn.metrics import accuracy_score
from sklearn.metrics import confusion_matrix

In [86]: # import some data to play with
columns: Sepal Length, Sepal Width, Petal Length and Petal Width
iris = datasets.load_iris()
X = iris.data
y = iris.target

In [87]: # just to create a nice table
df = pd.DataFrame({"Sepal Length (cm)": X[:,0], "Sepal Width (cm)": X[:,1], 'Petal Length (cm)': X[:,2
], 'Petal Width (cm)': X[:,3], 'category': y})
df.head()

In [88]: list(iris.target_names)

In [90]: # split data into training and test data sets
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=42)

In [111]: # plot with color code
plt.subplots(1, 2, figsize=(10, 5))

plt.subplot(1, 2, 1)
plt.scatter(X[:, 0], X[:, 1], c=y, edgecolor='k')
plt.xlabel('Sepal length')
plt.ylabel('Sepal width')

plt.subplot(1, 2, 2)
plt.scatter(X[:, 2], X[:, 3], c=y, edgecolor='k')
plt.xlabel('Petal length')
plt.ylabel('Petal width')

Softmax regression
In [91]: from sklearn.linear_model import LogisticRegression

log_reg = LogisticRegression(multi_class='multinomial', penalty='none')
log_reg.fit(x_train, y_train);

k-nearest neighbor regression
In [103]: from sklearn.neighbors import KNeighborsClassifier

kn_neigh = KNeighborsClassifier(n_neighbors=5)
kn_neigh.fit(x_train, y_train);

Fisher linear discriminant
In [106]: from sklearn.discriminant_analysis import LinearDiscriminantAnalysis

fisher_ld = LinearDiscriminantAnalysis()
fisher_ld.fit(x_train, y_train);

Classification accuracy
In [110]: for clf in [log_reg, kn_neigh, fisher_ld]:

 y_pred = clf.predict(x_test)
 acc = accuracy_score(y_test, y_pred)
 print(type(clf).__name__)
 print(f"accuracy: {acc:0.2f}")

 # confusion matrix: columns: true class, row: predicted class
 print(confusion_matrix(y_test, y_pred),"\n")

Out[87]:
Sepal Length (cm) Sepal Width (cm) Petal Length (cm) Petal Width (cm) category

0 5.1 3.5 1.4 0.2 0

1 4.9 3.0 1.4 0.2 0

2 4.7 3.2 1.3 0.2 0

3 4.6 3.1 1.5 0.2 0

4 5.0 3.6 1.4 0.2 0

Out[88]: ['setosa', 'versicolor', 'virginica']

Out[111]: Text(0, 0.5, 'Petal width')

LogisticRegression
accuracy: 0.96
[[29 0 0]
 [0 23 0]
 [0 3 20]]

KNeighborsClassifier
accuracy: 0.95
[[29 0 0]
 [0 23 0]
 [0 4 19]]

LinearDiscriminantAnalysis
accuracy: 0.99
[[29 0 0]
 [0 23 0]
 [0 1 22]]

Output:

With scikit-learn it is
extremely simple to
test and apply different
classification methods

Simple classification example: the iris dataset
In [85]: import matplotlib.pyplot as plt

import pandas as pd
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
from sklearn.metrics import accuracy_score
from sklearn.metrics import confusion_matrix

In [86]: # import some data to play with
columns: Sepal Length, Sepal Width, Petal Length and Petal Width
iris = datasets.load_iris()
X = iris.data
y = iris.target

In [113]: # just to create a nice table
df = pd.DataFrame({"Sepal Length (cm)": X[:,0], "Sepal Width (cm)": X[:,1],
 'Petal Length (cm)': X[:,2], 'Petal Width (cm)': X[:,3],
 'category': y})
df.head()

In [88]: list(iris.target_names)

In [90]: # split data into training and test data sets
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=42)

In [111]: # plot with color code
plt.subplots(1, 2, figsize=(10, 5))

plt.subplot(1, 2, 1)
plt.scatter(X[:, 0], X[:, 1], c=y, edgecolor='k')
plt.xlabel('Sepal length')
plt.ylabel('Sepal width')

plt.subplot(1, 2, 2)
plt.scatter(X[:, 2], X[:, 3], c=y, edgecolor='k')
plt.xlabel('Petal length')
plt.ylabel('Petal width')

Softmax regression
In [91]: from sklearn.linear_model import LogisticRegression

log_reg = LogisticRegression(multi_class='multinomial', penalty='none')
log_reg.fit(x_train, y_train);

k-nearest neighbor
In [103]: from sklearn.neighbors import KNeighborsClassifier

kn_neigh = KNeighborsClassifier(n_neighbors=5)
kn_neigh.fit(x_train, y_train);

Fisher linear discriminant
In [106]: from sklearn.discriminant_analysis import LinearDiscriminantAnalysis

fisher_ld = LinearDiscriminantAnalysis()
fisher_ld.fit(x_train, y_train);

Classification accuracy
In [110]: for clf in [log_reg, kn_neigh, fisher_ld]:

 y_pred = clf.predict(x_test)
 acc = accuracy_score(y_test, y_pred)
 print(type(clf).__name__)
 print(f"accuracy: {acc:0.2f}")

 # confusion matrix: columns: true class, row: predicted class
 print(confusion_matrix(y_test, y_pred),"\n")

Out[113]:
Sepal Length (cm) Sepal Width (cm) Petal Length (cm) Petal Width (cm) category

0 5.1 3.5 1.4 0.2 0

1 4.9 3.0 1.4 0.2 0

2 4.7 3.2 1.3 0.2 0

3 4.6 3.1 1.5 0.2 0

4 5.0 3.6 1.4 0.2 0

Out[88]: ['setosa', 'versicolor', 'virginica']

Out[111]: Text(0, 0.5, 'Petal width')

LogisticRegression
accuracy: 0.96
[[29 0 0]
 [0 23 0]
 [0 3 20]]

KNeighborsClassifier
accuracy: 0.95
[[29 0 0]
 [0 23 0]
 [0 4 19]]

LinearDiscriminantAnalysis
accuracy: 0.99
[[29 0 0]
 [0 23 0]
 [0 1 22]]

Statistical Methods in Particle Physics WS 2020/21 | K. Reygers | 9. Machine Learning

Precision and recall
Precision:
Fraction of correctly classified instances
among all instances that obtain a certain
class label.

43

Recall:
Fraction of positive instances that are
correctly classified.

precision =
TP

TP + FP

TP: true positives
FP: false positives
FN: false negatives

“purity”

recall =
TP

TP + FN
“efficiency”

Simple classification example: the iris dataset
In [85]: import matplotlib.pyplot as plt

import pandas as pd
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
from sklearn.metrics import accuracy_score
from sklearn.metrics import confusion_matrix

In [86]: # import some data to play with
columns: Sepal Length, Sepal Width, Petal Length and Petal Width
iris = datasets.load_iris()
X = iris.data
y = iris.target

In [113]: # just to create a nice table
df = pd.DataFrame({"Sepal Length (cm)": X[:,0], "Sepal Width (cm)": X[:,1],
 'Petal Length (cm)': X[:,2], 'Petal Width (cm)': X[:,3],
 'category': y})
df.head()

In [88]: list(iris.target_names)

In [90]: # split data into training and test data sets
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=42)

In [111]: # plot with color code
plt.subplots(1, 2, figsize=(10, 5))

plt.subplot(1, 2, 1)
plt.scatter(X[:, 0], X[:, 1], c=y, edgecolor='k')
plt.xlabel('Sepal length')
plt.ylabel('Sepal width')

plt.subplot(1, 2, 2)
plt.scatter(X[:, 2], X[:, 3], c=y, edgecolor='k')
plt.xlabel('Petal length')
plt.ylabel('Petal width')

Softmax regression
In [91]: from sklearn.linear_model import LogisticRegression

log_reg = LogisticRegression(multi_class='multinomial', penalty='none')
log_reg.fit(x_train, y_train);

k-nearest neighbor
In [103]: from sklearn.neighbors import KNeighborsClassifier

kn_neigh = KNeighborsClassifier(n_neighbors=5)
kn_neigh.fit(x_train, y_train);

Fisher linear discriminant
In [106]: from sklearn.discriminant_analysis import LinearDiscriminantAnalysis

fisher_ld = LinearDiscriminantAnalysis()
fisher_ld.fit(x_train, y_train);

Classification accuracy
In [116]: for clf in [log_reg, kn_neigh, fisher_ld]:

 y_pred = clf.predict(x_test)
 acc = accuracy_score(y_test, y_pred)
 print(type(clf).__name__)
 print(f"accuracy: {acc:0.2f}")

 # confusion matrix: columns: true class, row: predicted class
 print(confusion_matrix(y_test, y_pred))

In [118]: y_pred = log_reg.predict(x_test)
print(classification_report(y_test, y_pred))

In []:

Out[113]:
Sepal Length (cm) Sepal Width (cm) Petal Length (cm) Petal Width (cm) category

0 5.1 3.5 1.4 0.2 0

1 4.9 3.0 1.4 0.2 0

2 4.7 3.2 1.3 0.2 0

3 4.6 3.1 1.5 0.2 0

4 5.0 3.6 1.4 0.2 0

Out[88]: ['setosa', 'versicolor', 'virginica']

Out[111]: Text(0, 0.5, 'Petal width')

LogisticRegression
accuracy: 0.96
[[29 0 0]
 [0 23 0]
 [0 3 20]]
KNeighborsClassifier
accuracy: 0.95
[[29 0 0]
 [0 23 0]
 [0 4 19]]
LinearDiscriminantAnalysis
accuracy: 0.99
[[29 0 0]
 [0 23 0]
 [0 1 22]]

 precision recall f1score support

 0 1.00 1.00 1.00 29
 1 0.88 1.00 0.94 23
 2 1.00 0.87 0.93 23

 accuracy 0.96 75
 macro avg 0.96 0.96 0.96 75
weighted avg 0.96 0.96 0.96 75

Iris classification
example:
precision and recall for
softmax classification

see sklearn.metrics.
classification_report

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html

