Statistical Methods in Particle Physics

9. Machine Learning

Heidelberg University, WS 2020/21

Klaus Reygers (lectures) Rainer Stamen, Martin Völkl (tutorials)

Multivariate analysis:G. Cowan, Lecture on Statistical data analysisAn early example from particle physics

Signal: $e^+e^- \rightarrow W^+W^-$

often 4 well separated hadron jets

Background: $e+e- \rightarrow qqgg$ 4 less well separated hadron jets

 ← input variables based on jet structure, event shape, ...
 none by itself gives much separation.

Neural network output:

Statistical Methods in Particle Physics WS 2020/21 | K. Reygers | 9. Machine Learning 2

Machine learning

"Machine learning is the subfield of computer science that gives computers the ability to learn without being explicitly programmed" – Wikipedia

Example: spam detection

J. Mayes, Machine learning 101

Write a computer program with **explicit rules** to follow

if email contains V!agrå

then mark is-spam;

if email contains ...

if email contains ...

Write a computer program to learn from examples try to classify some emails; change self to reduce errors; repeat;

Traditional Programming

Machine Learning Programs

Manual feature engineering vs. automatic feature detection

Statistical Methods in Particle Physics WS 2020/21 | K. Reygers | 9. Machine Learning 3

AI, ML, and DL

"All is the study of how to make computers perform things that, at the moment, people do better."

Elaine Rich, Artificial intelligence, McGraw-Hill 1983

"deep" in deep learning: artificial neural nets with many neurons and multiple layers of nonlinear processing units for feature extraction

Some successes and unsolved problems in Al

Arithmetic (1945)	Easy	M. Woolridge,			
Sorting lists of numbers (1959)	Lusy	The Road to Conscious Machines			
Playing simple board games (1959)					
Playing chess (1997)					
Recognizing faces in pictures (2008)		Impropoivo progrado in portain			
Usable automated translation (2010)	a lot of effort	fielde:			
Playing Go (2016)		neius.			
Usable real-time translation of		Image recognition			
spoken words (2016)	J	 Speech recognition 			
Driverless cars	Real progress	Recommendation systems			
Automatically providing captions for pictures)	Automated translation			
Understanding a story & answering					
Human-level automated translation		Analysis of medical data			
Interpreting what is going on in a photograph	Nowhere near				
Writing interesting stories	solved				
which ginteresting stories					
Interpreting a work of art		How can we profit from these			
Human-level general intelligence)	developments in physics?			

Different modeling approaches

- Simple mathematical representation like linear regression. Favored by statisticians.
- Complex deterministic models based on scientific understanding of the physical process. Favored by physicists.
- Complex algorithms to make predictions that are derived from a huge number of past examples ("machine learning" as developed in the field of computer science). These are often black boxes.
- Regression models that claim to reach causal conclusions. Used by economists.

D. Spiegelhalter, The Art of Statistics – Learning from data

Application of machine learning in experimental particle physics

- Monte Carlo simulation
 - use generative models for faster MC event generation
- Event reconstruction and particle identification
- Data acquisition / trigger
 - faster algorithms
- Offline data analysis
 - better algorithms
- Detector monitoring
 - anomaly detection

"Machine Learning in High Energy Physics Community White Paper", arXiv:1807.02876

Machine learning: The "hello world" problem

Recognition of handwritten digits

- MNIST database (Modified National Institute of Standards and Technology database)
- 60,000 training images and 10,000 testing images labeled with correct answer
- > 28 pixel x 28 pixel
- Algorithms have reached "nearhuman performance"
- Smallest error rate (2018): 0.18%

https://en.wikipedia.org/wiki/MNIST_database

Play with MNIST data set and Keras (Stefan Wunsch, CERN IML Workshop): https://github.com/stwunsch/iml_tensorflow_keras_workshop

Machine learning: Image recognition

ImageNet database

- ▶ 14 million images, 22,000 categories
- Since 2010, the annual ImageNet Large Scale Visual Recognition Challenge (ILSVRC): 1.4 million images, 1000 categories
- In 2017, 29 of 38 competing teams got less than 5% wrong

https://en.wikipedia.org/wiki/ImageNet

mite	container ship	motor scooter	leopard
mite	container ship	motor scooter	leopard
black widow	lifeboat	go-kart	jaguar
cockroach	amphibian	moped	cheetah
tick	fireboat	bumper car	snow leopard
T at a web a la			E

https://www.tensorflow.org/tutorials/image_recognition

Statistical Methods in Particle Physics WS 2020/21 | K. Reygers | 9. Machine Learning 9

ImageNet: Large Scale Visual Recognition Challenge

Error rate in percent:

O. Russakovsky et al, arXiv:1409.0575

Further examples (2): Image captioning

[Lebret, Pinheiro, Collobert 2015] [Kulkarni 11] [Mitchell 12] [Vinyals 14] [Mao 14]

A man riding skis on a snow covered ski slope. NP: a man, skis, the snow, a person, a woman, a snow covered slope, a slope, a snowboard, a skier, man. VP: wearing, riding, holding, standing on, skiing down.

PP: on, in, of, with, down.

A man wearing skis on the snow.

A slice of pizza sitting on top of a white plate. **NP**: a plate, a white plate, a table, pizza, it, a pizza, food, a sandwich, top, a close. **VP**: topped with, has, is, sitting on, is on. **PP**: of, on, with, in, up. A table with a plate of pizza on a white plate.

A man is doing skateboard tricks on a ramp. NP: a skateboard, a man, a trick, his skateboard, the air, a skateboarder, a ramp, a skate board, a person, a woman. VP: doing, riding, is doing, performing, flying through. PP: on, of, in, at, with.

A man riding a skateboard on a ramp.

A baseball player swinging a bat on a field.
NP: the ball, a game, a baseball player, a man, a tennis court, a ball, home plate, a baseball game, a batter, a field.
VP: swinging, to hit, playing, holding, is swinging.
PP: on, during, in, at, of.
A baseball player swinging a bat on a baseball field.

The girl with blue hair stands under the umbrella.
NP: a woman, an umbrella, a man, a person, a girl, umbrellas, that, a little girl, a cell phone.
VP: holding, wearing, is holding, holds, carrying.
PP: with, on, of, in, under.
A woman is holding an umbrella.

A bunch of kites flying in the sky on the beach.
NP: the beach, a beach, a kite, kites, the ocean, the water, the sky, people, a sandy beach, a group.
VP: flying, flies, is flying, flying in, are.
PP: on, of, with, in, at.
People flying kites on the beach.

Adversarial examples

Ian J. Goodfellow, Jonathon Shlens, Christian Szegedy, arXiv:1412.6572v1

Three types of learning

Reinforcement learning

- The machine ("the agent") predicts a scalar reward given once in a while
- Weak feedback

LeCun 2018, Power And Limits of Deep Learning, https://www.youtube.com/watch?v=0tEhw5t6rhc

arXiv:1312.5602

Supervised learning

- The machine predicts a category based on labeled training data
- Medium feedback

Unsupervised learning

- Describe/find hidden structure from "unlabeled" data
- Cluster data in different sub-groups with similar properties

Aurélien Géron, Hands-On Machine Learning with Scikit-Learn and TensorFlow

Example: anomaly detection Feature 1

Books on machine learning

 Ian Goodfellow and Yoshua Bengio and Aaron Courville, Deep Learning, free online http://www.deeplearningbook.org/

 Aurélien Géron, Hands-On Machine Learning with Scikit-Learn and TensorFlow

Multivariate classification

Consider events which can be either signal or background events.

Each event is characterized by *n* observables:

 $\vec{x} = (x_1, ..., x_n)$ "feature vector"

Goal: classify events as signal or background in an optimal way.

This is usually done by mapping the feature vector to a single variable, i.e., to scalar "test statistic":

 $\mathbb{R}^n \to \mathbb{R}: \quad y(\vec{x})$

A cut y > c to classify events as signal corresponds to selecting a potentially complicated hyper-surface in feature space. In general superior to classical "rectangular" cuts on the x_i .

Classification: Learning decision boundaries

k-Nearest-Neighbor,Boosted Decision Trees,Multi-Layer Perceptrons,Support Vector Machines

G. Cowan: https://www.pp.rhul.ac.uk/~cowan/stat_course.html

Supervised learning in a nutshell

M. Kagan, https://indico.cern.ch/event/619370/

Supervised Machine Learning requires *labeled training data*, i.e., a training sample where for each event it is known whether it is a signal or background event

Supervised learning: classification and regression

The codomain Y of the function y: $X \rightarrow Y$ can be a set of labels or classes or a continuous domain, e.g., \mathbb{R}

Binary classification: $Y = \{0, 1\}$ e.g., signal or backgroundMulti-class classification $Y = \{c_1, c_2, ..., c_n\}$ Labels sometimes represented as "**one-hot vector**"

(no ordering btw. labels):

 $t_a = \{0, 0, ..., 1, ..., 0\}$

Y = finite set of labels \rightarrow classification

 $Y = real numbers \rightarrow regression$

"All the impressive achievements of deep learning amount to just curve fitting"

J. Pearl, Turing Award Winner 2011,

https://www.quantamagazine.org/to-build-truly-intelligent-machines-teach-them-cause-and-effect-20180515/

Supervised learning:

Training, validation, and test sample

- Decision boundary fixed with training sample
- Performance on training sample becomes better with more iterations
- Danger of overtraining:
 Statistical fluctuations of the training sample will be learnt
- Validation sample = independent labeled data set not used for training

 check for overtraining
- Sign of overtraining: performance on validation sample becomes worse
 Stop training when signs of overtraining are observed ("early stopping")
- Performance: apply classifier to independent test sample
- Often: test sample = validation sample (only small bias)

Supervised learning: Cross validation

Rule of thumb if training data not expensive

- ► Training sample: 50%
- Validation sample: 25%
- Test sample: 25%

often test sample = validation sample, i.e., training : validation/test = 50:50

Cross validation (efficient use of scarce training data)

- Split training sample in k independent subset T_k of the full sample T
- Train on $T \setminus T_k$ resulting in k different classifiers
- For each training event there is one classifier that didn't use this event for training
- Validation results are then combined

Often used loss functions

predicted label true label $E(y(\vec{x}, \vec{w}), t) = (y(\vec{x}, \vec{w}) - t)^2$ Square error loss:

- often used in regression

predicted "probability"
for outcome t = 1
$$V(\vec{x}, \vec{w}), t) = -t \log y(\vec{x}, \vec{w})$$
$$-(1-t) \log(1-y(\vec{x}, \vec{w}))$$

Cross entropy:

 $-t \in \{0, 1\}$

- Often used in classification

More on entropy

Self-information of an event x: $I(x) = -\log p(x)$

Shannon entropy:

$$H(P) = -\sum p_i \log p_i$$

- Expected amount of information in an event drawn from a distribution *P*.
- Measure of the minimum of amount of bits needed on average to encode symbols drawn from a distribution

Cross entropy:

$$H(P, Q) = -E[\log q_i] = -\sum p_i \log q_i$$

- Can be interpreted as a measure of the amount of bits needed when a wrong distribution Q is assumed while the data actually follows a distribution P
- Measure of dissimilarity between distributions P and Q (i.e, a measure of how well the model Q describes the true distribution P)

Cross-entropy error function for logistic regression Let $Y \in \{0,1\}$ be a random variable; outcome of experiment *i*: y_i Consider one event with feature vector \vec{x} and label $y \in \{0,1\}$

Predicted probability q_1 for outcome Y = 1: $q_1 \equiv q(Y = 1) = \sigma(\vec{x}; \vec{w}) \equiv \sigma(w_0 + \sum_{i=1}^n w_i x_i), \qquad \sigma: \mathbb{R} \mapsto [0,1], \quad \sigma(z) = \frac{1}{1 + e^{-z}}$ $q_0 \equiv q(Y = 0) = 1 - q(Y = 1)$ By construction the right property for predicting a probability $\sigma: \mathbb{R} \mapsto [0,1], \quad \sigma(z) = \frac{1}{1 + e^{-z}}$ logistic function

The true probabilities p_i are either 0 or 1, so we can write $p_1 \equiv p(Y=1) = y$, $p_0 = 1 - p_1 \equiv 1 - y$. With this the cross entropy is:

$$H(p,q) = -\sum_{k=0}^{1} p_k \log q_k = -y \log \sigma(\vec{x}, \vec{w}) - (1-y) \log(1 - \sigma(\vec{x}, \vec{w}))$$

Loss function from sum over entire data set:

$$E(\vec{w}) = -\sum_{i=1}^{n_{\text{samples}}} y_i \log \sigma(\vec{x}_i, \vec{w}) + (1 - y_i) \log(1 - \sigma(\vec{x}_i, \vec{w}))$$

Statistical Methods in Particle Physics WS 2020/21 | K. Reygers | 9. Machine Learning 24

Logistic regression: loss function from maximum likelihood

We can write the two predicted probabilities q_0 and q_1 in the following way:

$$q(Y = y) = \sigma(\overrightarrow{x}; \overrightarrow{w})^{y} \cdot (1 - \sigma(\overrightarrow{x}; \overrightarrow{w}))^{1-y}$$

With this the likelihood can be written as

$$L(\vec{w}) = \prod_{i=1}^{n_{\text{samples}}} q(Y = y_i)$$
$$= \prod_{i=1}^{n_{\text{samples}}} \sigma(\vec{x}; \vec{w})^{y_i} \cdot (1 - \sigma(\vec{x}; \vec{w}))^{1-y_i}$$

The corresponding log-likelihood function is

$$\log L(\vec{w}) = \sum_{i=1}^{n_{\text{samples}}} y_i \log \sigma(\vec{x}_i; \vec{w}) + (1 - y_i) \log(1 - \sigma(\vec{x}_i; \vec{w}))$$

Thus, minimizing the cross entropy loss function corresponds to finding the maximum likelihood estimate.

Multinomial logistic regression: Softmax function

In the previous example we considered two classes (0, 1). For multi-class classification, the logistic function can generalized to the softmax function.

Consider *K* classes and let z_i be the score for class *i*, $\vec{z} = (z_1, \dots, z_K)$

A probability for class *i* can be predicted with the softmax function:

$$\sigma(\vec{z})_i = \frac{e^{z_i}}{\sum_{j=1}^K e^{z_j}} \quad \text{for} \quad i = 1, \dots, K$$

The softmax functions is often used as the last activation function of a neural network in order to predict probabilities in a classification task.

Multinomial logistic regression is also known as softmax regression.

Simple example of logistic regression with scikit-learn (1)

Read data

https://scikit-learn.org

Data are from the wikipedia article on logistic regression

data: 1. hours studies, 2. passed (0/1)
filename = "data/exam.txt"
df = pd.read csv(filename, engine='python', sep='\s+')

```
x_tmp = df['hours_studied'].values
x = np.reshape(x_tmp, (-1, 1))
y = df['passed'].values
```

Fit the model

```
from sklearn.linear_model import LogisticRegression
clf = LogisticRegression(penalty='none', fit_intercept=True)
clf.fit(x, y);
```

Calculate predictions

```
hours_studied_tmp = np.linspace(0., 6., 1000)
hours_studied = np.reshape(hours_studied_tmp, (-1, 1))
y_pred = clf.predict_proba(hours_studied)
```


Simple example of logistic regression with scikit-learn (2)

Plot result

```
df.plot.scatter(x='hours_studied', y='passed')
plt.plot(hours_studied, y_pred[:,1])
plt.xlabel("preparation time in hours", fontsize=14)
plt.ylabel("probability of passing exam", fontsize=14)
plt.savefig("logistic_regression.pdf")
```


Reminder: Neyman–Pearson lemma

t

The likelihood ratio

$$t(\vec{x}) = rac{f(\vec{x}|H_1)}{f(\vec{x}|H_0)}$$
 H_1 : signal hypothesis H_0 : background hypothesis

is an optimal test statistic, i.e., it provides highest "signal efficiency" $1 - \beta$ for a given "background efficiency" α .

Accept hypothesis if

$$(\vec{x}) = \frac{f(\vec{x}|H_1)}{f(\vec{x}|H_0)} > c$$

Problem: the underlying pdf's are almost never known explicitly.

Two approaches:

- Estimate signal and background pdf's and construct test statistic based on Neyman-Pearson lemma
- 2. Decision boundaries determined directly without approximating the pdf's (linear discriminants, decision trees, neural networks, ...)

Estimating PDFs from histograms?

Consider 2d example:

approximate PDF by N(x, y|S) and N(x, y|B)

M bins per variable in *d* dimensions: *M*^d cells

 \rightarrow hard to generate enough training data (often not practical for d > 1)

In general in machine learning, problems related to a large number of dimensions of the feature space are referred to as the "**curse of dimensionality**"

ROC Curve

Quality of the classification can be characterized by the *receiver operating characteristic* (ROC curve)

Naïve Bayesian classifier (also called "projected likelihood classification")

Application of the Neyman-Pearson lemma (ignoring correlations between the *x_i*):

$$f(x_1, x_2, ..., x_n) \text{ approximated as } L = f_1(x_1) \cdot f_2(x_2) \cdot ... \cdot f_n(x_n)$$

where $f_1(x_1) = \int dx_2 dx_3 ... dx_n f(x_1, x_2, ..., x_n)$
 $f_2(x_2) = \int dx_1 dx_3 ... dx_n f(x_1, x_2, ..., x_n)$

Classification of feature vector \vec{x} :

$$y(\vec{x}) = \frac{L_{\rm s}(\vec{x})}{L_{\rm s}(\vec{x}) + L_{\rm b}(\vec{x})} = \frac{1}{1 + L_{\rm b}(\vec{x})/L_{\rm s}(\vec{x})}$$

Performance not optimal if true PDF does not factorize

k-nearest neighbor method (1)

k-NN classifier

- Estimates probability density around the input vector
- $p(\vec{x}|S)$ and $p(\vec{x}|B)$ are approximated by the number of signal and background events in the training sample that lie in a small volume around the point \vec{x}

Algorithms finds *k* nearest neighbors:

$$k = k_s + k_b$$

Probability for the event to be of signal type:

$$p_s(\vec{x}) = \frac{k_s(\vec{x})}{k_s(\vec{x}) + k_b(\vec{x})}$$

k-nearest neighbor method (2)

Simplest choice for distance measure in feature space is the Euclidean distance:

 $R = |\vec{x} - \vec{y}|$

Better: take correlations between variables into account:

$${\sf R}=\sqrt{(ec x-ec y)^{{\scriptscriptstyle T}}{\sf V}^{-1}(ec x-ec y)}$$

V = covariance matrix

"Mahalanobis distance"

The *k*-NN classifier has best performance when the boundary that separates signal and background events has irregular features that cannot be easily approximated by parametric learning methods.

Fisher linear discriminant

Linear discriminant is simple. Can still be optimal if amount of training data is limited.

Ansatz for test statistic(
$$\vec{x}$$
) = $\sum_{i=1}^{n} W_{\vec{i}} \times \sum_{i=1}^{n} \vec{W}_{i} \times \vec{x} = \vec{W}^{\mathsf{T}} \vec{x}$

f(y|s), f(y|b)Choose parameters w_i so that separation between signal and background distribution is maximum.

Need to define "separation". Fisher: maximize $J(\vec{w}) = \frac{(\tau_s - \tau_b)^2}{\Sigma_s^2 + \Sigma_b^2}$ $f(y) \downarrow^{z} \qquad \tau_b \qquad f(y) \downarrow^{z} \qquad \tau_b \qquad f(y) \downarrow^{z} \qquad f(y) \downarrow^{z} \qquad f(y) \downarrow^{z} \qquad f(y) \downarrow^{z} \qquad f(y) \qquad f$

Fisher linear discriminant: Variable definitions

Mean and covariance for signal and background:

$$\mu_i^{\mathrm{s,b}} = \int x_i f(\vec{x}|H_{\mathrm{s,b}}) \,\mathrm{d}\vec{x}$$
$$V_{ij}^{\mathrm{s,b}} = \int (x_i - \mu_i^{\mathrm{s,b}})(x_j - \mu_j^{\mathrm{s,b}}) \,f(\vec{x}|H_{\mathrm{s,b}}) \,\mathrm{d}\vec{x}$$

Mean and variance of $y(\vec{x})$ for signal and background:

$$\tau_{\mathsf{s},\mathsf{b}} = \int y(\vec{x}) f(\vec{x}|H_{\mathsf{s},\mathsf{b}}) \, \mathsf{d}\vec{x} = \vec{w}^{\mathsf{T}} \vec{\mu}_{\mathsf{s},\mathsf{b}}$$
$$\Sigma_{\mathsf{s},\mathsf{b}}^2 = \int (y(\vec{x}) - \tau_{\mathsf{s},\mathsf{b}})^2 f(\vec{x}|H_{\mathsf{s},\mathsf{b}}) \, \mathsf{d}\vec{x} = \vec{w}^{\mathsf{T}} V_{\mathsf{s},\mathsf{b}} \vec{w}$$

G. Cowan': https://www.pp.rhul.ac.uk/~cowan/stat_course.html

Fisher linear discriminant: Determining the coefficients *w_i*

Numerator of $J(\vec{w})$:

$$(\tau_{s} - \tau_{b})^{2} = \left(\sum_{i=1}^{n} w_{i}(\mu_{i}^{s} - \mu_{i}^{b})\right)^{2} = \sum_{i,j=1}^{n} w_{i}w_{j}(\mu_{i}^{s} - \mu_{i}^{b})(\mu_{j}^{s} - \mu_{j}^{b})$$
$$\equiv \sum_{i,j=1}^{n} w_{i}w_{j}B_{ij} = \vec{w}^{\mathsf{T}}B\vec{w}$$

Denominator of $J(\vec{w})$:

$$\Sigma_{\rm s}^2 + \Sigma_{\rm b}^2 = \sum_{i,j=1}^n w_i w_j \left(V^{\rm s} + V^{\rm b} \right)_{ij} \equiv \vec{w}^{\rm T} W \vec{w}$$

Maximize:

$$J(\vec{w}) = \frac{\vec{w}^{\mathsf{T}} B \vec{w}}{\vec{w}^{\mathsf{T}} W \vec{w}} = \frac{\text{separation between classes}}{\text{separation within classes}}$$

G. Cowan':

https://www.pp.rhul.ac.uk/~cowan/stat_course.html

Fisher linear discriminant: Determining the coefficients *w_i*

Setting
$$\frac{\partial J}{\partial w_i} = 0$$
 gives:

$$y(\vec{x}) = \vec{w}^{\mathsf{T}} \vec{x} \quad \text{with} \quad \vec{w} \propto W^{-1}(\vec{\mu}_{\mathsf{s}} - \vec{\mu}_{\mathsf{b}})$$

We obtain linear decision boundaries.

Weight vector \vec{w} can be interpreted as a direction in feature space on which the events are projected.

G. Cowan': https://www.pp.rhul.ac.uk/~cowan/stat_course.html

linear decision boundary

Fisher linear discriminant: Remarks

In case the signal and background pdfs $f(\vec{x}|H_s)$ and $f(\vec{x}|H_b)$ are both multivariate Gaussian with the same covariance but different means, the Fisher discriminant is

$$y(ec{x}) \propto \ln rac{f(ec{x}|H_{
m s})}{f(ec{x}|H_{
m b})}$$

That is, in this case the Fisher discriminant is an optimal classifier according to the Neyman-Pearson lemma (as $y(\vec{x})$ is a monotonic function of the likelihood ratio)

Test statistic can be written as

$$y(\vec{x}) = w_0 + \sum_{i=1}^n w_i x_i$$

where events with y > 0 are classified as signal. Same functional form as for the **perceptron** (prototype of neural networks).

Example: Classification with scikit-learn (1)

Iris flower data set https://archive.ics.uci.edu/ml/datasets/Iris

- Introduced 1936 in a paper by Ronald Fisher
- Task: classify flowers
- > Three species: iris setosa, iris virginica and iris versicolor
- Four features: petal width and length, sepal width/length, in centimeters

https://en.wikipedia.org/wiki/lris_flower_data_se

Example: Classification with scikit-learn (2)

import some data to play with
columns: Sepal Length, Sepal Width, Petal Length and Petal Width
iris = datasets.load_iris()
X = iris.data
y = iris.target

.

	Sepal Length (cm)	Sepal Width (cm)	Petal Length (cm)	Petal Width (cm)	category
0	5.1	3.5	1.4	0.2	0
1	4.9	3.0	1.4	0.2	0
2	4.7	3.2	1.3	0.2	0
3	4.6	3.1	1.5	0.2	0
4	5.0	3.6	1.4	0.2	0

list(iris.target_names)

```
['setosa', 'versicolor', 'virginica']
```

```
# split data into training and test data sets
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=42)
```

Statistical Methods in Particle Physics WS 2020/21 | K. Reygers | 9. Machine Learning 41

Example: Classification with scikit-learn (3)

Softmax regression

```
from sklearn.linear_model import LogisticRegression
log_reg = LogisticRegression(multi_class='multinomial', penalty='none')
log_reg.fit(x_train, y_train);
```

k-nearest neighbor

```
from sklearn.neighbors import KNeighborsClassifier
kn_neigh = KNeighborsClassifier(n_neighbors=5)
kn_neigh.fit(x_train, y_train);
```

Fisher linear discriminant

```
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
fisher_ld = LinearDiscriminantAnalysis()
fisher_ld.fit(x_train, y_train);
```

Classification accuracy

```
for clf in [log_reg, kn_neigh, fisher_ld]:
    y_pred = clf.predict(x_test)
    acc = accuracy_score(y_test, y_pred)
    print(type(clf).__name__)
    print(f"accuracy: {acc:0.2f}")
    # confusion matrix: columns: true class, row: predicted class
    print(confusion matrix(y test, y pred), "\n")
```

Output:

```
LogisticRegression
accuracy: 0.96
[[29 0 0]
[ 0 23 0]
[ 0 3 20]]
KNeighborsClassifier
accuracy: 0.95
[[29 0 0]
[ 0 23 0]
[ 0 4 19]]
```

```
LinearDiscriminantAnalysis
accuracy: 0.99
[[29 0 0]
[ 0 23 0]
[ 0 1 22]]
```

With scikit-learn it is extremely simple to test and apply different classification methods

Precision and recall

Precision:

Fraction of correctly classified instances among all instances that obtain a certain class label.

precision = $\frac{\text{TP}}{\text{TP} + \text{FP}}$

"purity"

TP: true positives FP: false positives FN: false negatives

Recall:

Fraction of positive instances that are correctly classified.

 $recall = \frac{TP}{TP + FN}$

"efficiency"

Iris classification example:	<pre>y_pred = print(cl</pre>	<pre>y_pred = log_reg.predict(x_test) print(classification_report(y_test, y_pred))</pre>				
precision and recall for softmax classification			precision	recall	f1-score	support
		0	1.00	1.00	1.00	29
con eklaarn matrice		1	0.88	1.00	0.94	23
<u>classification_report</u>		2	1.00	0.87	0.93	23
	accui	racy			0.96	75
	macro	avg	0.96	0.96	0.96	75
	weighted	avg	0.96	0.96	0.96	75

Statistical Methods in Particle Physics WS 2020/21 | K. Reygers | 9. Machine Learning 43