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Multivariate analysis:  
An early example from particle physics

2

Signal: e+e− → W+W−

Background: e+e− → qqgg 
often 4 well separated hadron jets

4 less well separated hadron jets

←  input variables based on jet 
structure, event shape, ... 
none by itself gives much 
separation.

Neural network output:

(Garrido, Juste and Martinez, ALEPH 96-144)

G. Cowan, Lecture on Statistical data analysis 

https://www.pp.rhul.ac.uk/~cowan/stat/stat_6.pdf
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Machine learning

3

"Machine learning is the subfield of computer science that gives computers 
the ability to learn without being explicitly programmed" – Wikipedia 

J. Mayes, Machine learning 101

Manual feature engineering vs. automatic feature detection

Example: spam detection

https://docs.google.com/presentation/d/1kSuQyW5DTnkVaZEjGYCkfOxvzCqGEFzWBy4e9Uedd9k/preview?imm_mid=0f9b7e&cmp=em-data-na-na-newsltr_20171213&slide=id.g168a3288f7_0_58
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Artificial 
Intelligence

Machine 
Learning

AI, ML, and DL

4

"AI is the study of how to make computers perform things that, 
at the moment, people do better." Elaine Rich, Artificial intelligence, McGraw-Hill 1983

"deep" in deep learning: artificial neural nets with many neurons and 
multiple layers of nonlinear processing units for feature extraction

G. Marcus, E. Davis, 
Rebooting AI

Deep Learning

Probabilistic 
Learning

Decision Trees

Genetic Algorithm

Planning

Reasoning Search
Knowledge 

Representation

http://rebooting.ai/
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Some successes and unsolved problems in AI 

5

M. Woolridge, 
The Road to Conscious Machines

Impressive progress in certain 
fields: 
‣ Image recognition 
‣ Speech recognition 
‣ Recommendation systems 
‣ Automated translation 
‣ Analysis of medical data

How can we profit from these 
developments in physics?

https://www.penguin.co.uk/books/307/307639/the-road-to-conscious-machines/9780241333907.html
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Different modeling approaches

■ Simple mathematical representation like linear regression. Favored by 
statisticians. 

■ Complex deterministic models based on scientific understanding of the 
physical process. Favored by physicists. 

■ Complex algorithms to make predictions that are derived from a huge 
number of past examples (“machine learning” as developed in the field of 
computer science). These are often black boxes. 

■ Regression models that claim to reach causal conclusions. Used by 
economists.

6

D. Spiegelhalter, The Art of Statistics – Learning from data
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Application of machine learning in experimental 
particle physics
■ Monte Carlo simulation 
‣ use generative models for faster MC event generation 

■ Event reconstruction and particle identification 
■ Data acquisition / trigger 
‣ faster algorithms 

■ Offline data analysis 
‣ better algorithms 

■ Detector monitoring 
‣ anomaly detection

7

“Machine Learning in High Energy Physics Community White Paper”, 
arXiv:1807.02876

https://arxiv.org/abs/1807.02876
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Machine learning: The "hello world" problem

8

Recognition of handwritten digits  
‣ MNIST database  

(Modified National Institute of 
Standards and Technology 
database)  

‣ 60,000 training images and 
10,000 testing images labeled 
with correct answer 

‣ 28 pixel x 28 pixel 
‣ Algorithms have reached "near-

human performance" 
‣ Smallest error rate (2018): 0.18% https://en.wikipedia.org/wiki/MNIST_database

Play with MNIST data set and Keras (Stefan Wunsch, CERN IML Workshop): 
https://github.com/stwunsch/iml_tensorflow_keras_workshop
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Machine learning: Image recognition

9

ImageNet database 
‣ 14 million images, 22,000 categories 
‣ Since 2010, the annual ImageNet Large Scale Visual Recognition Challenge 

(ILSVRC): 1.4 million images, 1000 categories 
‣ In 2017, 29 of 38 competing teams got less than 5% wrong

https://en.wikipedia.org/wiki/ImageNet

https://www.tensorflow.org/tutorials/image_recognition
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ImageNet: Large Scale Visual Recognition Challenge

10

Lecture 1 -  Fei-Fei Li & Justin Johnson & Serena Yeung 4/4/201724

Steel drumThe Image Classification Challenge: 

1,000 object classes 

1,431,167 images

Russakovsky et al. arXiv, 2014O. Russakovsky et al, arXiv:1409.0575

Error rate in percent:
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Further examples (1):  
Segmenting and localizing objects

11

Y LeCun
Results
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Further examples (2):  
Image captioning

12

Y LeCun
Image captioning: generating a descriptive sentence

[Lebret, Pinheiro, Collobert 2015][Kulkarni 11][Mitchell 12][Vinyals 14][Mao 14]
[Karpathy 14][Donahue 14]...
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Adversarial examples

13

Ian J. Goodfellow, Jonathon Shlens, Christian Szegedy, arXiv:1412.6572v1
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Three types of learning

14

Supervised learning 
‣ The machine predicts a category 

based on labeled training data 
‣ Medium feedback

Reinforcement learning 
‣ The machine ("the agent") predicts a 

scalar reward given once in a while 
‣ Weak feedback

Unsupervised learning 
‣ Describe/find hidden structure from 

"unlabeled" data 
‣ Cluster data in different sub-groups 

with similar properties

LeCun 2018, Power And Limits of Deep Learning,  
https://www.youtube.com/watch?v=0tEhw5t6rhc

arXiv:1312.5602 

Example: 
anomaly detection

Aurélien Géron, 
Hands-On Machine 
Learning with Scikit-
Learn and TensorFlow
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Books on machine learning
■ Ian Goodfellow and Yoshua Bengio and Aaron Courville,  

Deep Learning, free online  
http://www.deeplearningbook.org/ 
 
 

■ Aurélien Géron, Hands-On Machine Learning with Scikit-
Learn and TensorFlow

15

http://www.deeplearningbook.org/
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Multivariate classification

16

Consider events which can be either signal or background events.

Each event is characterized by n observables:

~x = (x1, ..., xn) "feature vector"

Goal: classify events as signal or background in an optimal way.

This is usually done by mapping the feature vector to a single variable, i.e., 
to scalar "test statistic":

A cut y > c to classify events as signal corresponds to selecting a 
potentially complicated hyper-surface in feature space. In general superior 
to classical "rectangular" cuts on the xi.

Rn ! R : y(~x)
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Classification: Learning decision boundaries

17

H0

rectangular cuts

linear

non linear

G. Cowan: 
https://www.pp.rhul.ac.uk/~cowan/stat_course.html

k-Nearest-Neighbor, 
Boosted Decision Trees,  
Multi-Layer Perceptrons, 
Support Vector Machines 
…
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Supervised learning in a nutshell

18

Design a loss function 

Design function y( ⃗x , ⃗w ) with ajdustable parameters  ⃗w

Find best parameters which minimize loss

y(~x , ~w)

M. Kagan, 
https://indico.cern.ch/event/619370/

Supervised Machine Learning requires labeled training data, i.e., a training 
sample where for each event it is known whether it is a signal or background 
event
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Supervised learning: classification and regression

19

The codomain Y of the function y: X → Y can be a set of labels or classes 
or a continuous domain, e.g., ℝ

Binary classification: Y = {0, 1} e.g., signal or background

Multi-class classification Y = {c1, c2, ..., cn}

ta = {0, 0, ..., 1, ..., 0}
Labels sometimes represented as "one-hot vector"  
(no ordering btw. labels):

Y = finite set of labels   →   classification

Y = real numbers   →   regression

"All the impressive achievements of deep learning amount to just curve fitting" 
 
J. Pearl, Turing Award Winner 2011,  
https://www.quantamagazine.org/to-build-truly-intelligent-machines-teach-them-cause-and-effect-20180515/
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Supervised learning: 
Training, validation, and test sample

■ Decision boundary fixed with training sample 
■ Performance on training sample becomes better with more iterations 
■ Danger of overtraining:  

Statistical fluctuations of the training sample will be learnt 
■ Validation sample = independent labeled data set not used for training 
→ check for overtraining 

■ Sign of overtraining: performance on validation sample becomes worse 
→ Stop training when signs of overtraining are observed ("early stopping") 

■ Performance: apply classifier to independent test sample 
■ Often: test sample = validation sample (only small bias)

20
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Supervised learning: Cross validation

21

Cross validation (efficient use of scarce 
training data) 
‣ Split training sample in k independent 

subset Tk of the full sample T 
‣ Train on T \ Tk resulting in k different 

classifiers 
‣ For each training event there is one 

classifier that didn't use this event for 
training 

‣ Validation results are then combined

Rule of thumb if training data not expensive 
‣ Training sample: 50% 
‣ Validation sample: 25% 
‣ Test sample: 25% 

often test sample = validation sample,  
i.e., training : validation/test = 50:50

Cross Validation 

•  Especially when dataset is small, split training set into K-folds 
–  Train on (K-1) folds, validate on 1 fold, then iterate 
–  Use average estimated performance on K-folds 
–  Allows for estimate of  performance RMS 

•  Even when dataset not small, useful technique to estimate 
variance of  expected performance, and for comparing different 
models / hyperparameters 

59	

Training	set	

ValidaZon	set	

[Bishop]	

validation 
set

training 
set
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Often used loss functions

22

Square error loss: 
- often used in regression E (y(~x , ~w), t) = (y(~x , ~w)� t)2

Cross entropy: 
- t ∈ {0, 1} 
- Often used in classification

E (y(~x , ~w), t) =� t log y(~x , ~w)

� (1� t) log(1� y(~x , ~w))

true labelpredicted label

predicted “probability” 
for outcome t = 1
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More on entropy

23

I (x) = � log p(x)Self-information of an event x:

Shannon entropy:

‣ Expected amount of information in an event drawn from a distribution P. 
‣ Measure of the minimum of amount of bits needed on average to encode 

symbols drawn from a distribution

Cross entropy:

‣ Can be interpreted as a measure of the amount of bits needed when a wrong 
distribution Q is assumed while the data actually follows a distribution P 

‣ Measure of dissimilarity between distributions P and Q (i.e, a measure of how 
well the model Q describes the true distribution P)

H(P ,Q) = �E [log qi ] = �
X

pi log qi

H(P) = �
X

pi log pi
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Cross-entropy error function for logistic regression

24

q1 ≡ q(Y = 1) = σ( ⃗x ; ⃗w ) ≡ σ(w0 +
n

∑
i=1

wixi), σ: ℝ ↦ [0,1], σ(z) =
1

1 + e−z

q0 ≡ q(Y = 0) = 1 − q(Y = 1)

H(p, q) = −
1

∑
k=0

pk log qk = − y log σ( ⃗x , ⃗w ) − (1 − y) log(1 − σ( ⃗x , ⃗w ))

logistic function

E( ⃗w ) = −
nsamples

∑
i=1

yi log σ( ⃗x i, ⃗w ) + (1 − yi) log(1 − σ( ⃗x i, ⃗w ))

Predicted probability  for outcome :q1 Y = 1
By construction the right 
property for predicting a 
probability

The true probabilities  are either 0 or 1, so we can write  
. With this the cross entropy is:

pi
p1 ≡ p(Y = 1) = y, p0 = 1 − p1 ≡ 1 − y

Consider one event with feature vector  and label ⃗x y ∈ {0,1}

Loss function from sum over entire data set:

Let  be a random variable; outcome of experiment i: Y ∈ {0,1} yi
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Logistic regression:  
loss function from maximum likelihood

25

We can write the two predicted probabilities  and  in the following way:q0 q1

q(Y = y) = σ( ⃗x ; ⃗w )y ⋅ (1 − σ( ⃗x ; ⃗w ))1−y

L( ⃗w ) =
nsamples

∏
i=1

q(Y = yi)

=
nsamples

∏
i=1

σ( ⃗x ; ⃗w )yi ⋅ (1 − σ( ⃗x ; ⃗w ))1−yi

With this the likelihood can be written as

The corresponding log-likelihood function is

log L( ⃗w ) =
nsamples

∑
i=1

yi log σ( ⃗x i; ⃗w ) + (1 − yi) log(1 − σ( ⃗x i; ⃗w ))

Thus, minimizing the cross entropy loss function corresponds to finding the 
maximum likelihood estimate.
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Multinomial logistic regression: Softmax function

In the previous example we considered two classes (0, 1). For multi-class 
classification, the logistic function can generalized to the softmax function.

26

σ( ⃗z )i =
ezi

∑K
j=1 ezj

 for  i = 1,...,K

Consider  classes and let  be the score for class i,  K zi ⃗z = (z1, . . . , zK)

A probability for class i can be predicted with the softmax function:

The softmax functions is often used as the last activation function of a 
neural network in order to predict probabilities in a classification task.

Multinomial logistic regression is also known as softmax regression.
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Simple example of logistic regression with scikit-learn (1)

27

Simple e_ample of logiZ[ic YegYeZZion ^i[h Zciki[-leaYn
IQ�[21@: imporW�nXmp\�aV�np�

imporW�pandaV�aV�pd�
imporW�maWploWlib.p\ploW�aV�plW�

IQ�[22@: ��

Read da[a
Da[a aYe fYom [he ^ikipedia aY[icle on logiZ[ic YegYeZZion

IQ�[33@: #�daWa:�1.�hRXUV�VWXdieV,�2.�SaVVed�﴾0/1﴿���
ILOHQDPH�=�"GDWD/H[DP.W[W"�
GI�=�SG.UHDGBFVY(ILOHQDPH,�HQJLQH='S\WKRQ',�VHS='?V+')�

IQ�[32@: [BWPS�=�GI['KRXUVBVWXGLHG'@.YDOXHV�
[�=�QS.UHVKDSH([BWPS,�(1,�1))�
\�=�GI['SDVVHG'@.YDOXHV�

Fi[ [he model

IQ�[25@: from�Vklearn.linear_model�imporW�LRJLVWLFRHJUHVVLRQ�
FOI�=�LRJLVWLFRHJUHVVLRQ(SHQDOW\='QRQH',�ILWBLQWHUFHSW=TrXe)�
FOI.ILW([,�\);�

Calc\la[e pYedic[ionZ

IQ�[26@: KRXUVBVWXGLHGBWPS�=�QS.OLQVSDFH(0.,�6.,�1000)�
KRXUVBVWXGLHG�=�QS.UHVKDSH(KRXUVBVWXGLHGBWPS,�(1,�1))�
\BSUHG�=�FOI.SUHGLFWBSURED(KRXUVBVWXGLHG)�

Plo[ YeZ\l[

IQ�[27@: GI.SORW.VFDWWHU([='KRXUVBVWXGLHG',�\='SDVVHG')�
SOW.SORW(KRXUVBVWXGLHG,�\BSUHG[:,1@)�
SOW.[ODEHO("SUHSDUDWLRQ�WLPH�LQ�KRXUV",�IRQWVL]H=14)�
SOW.\ODEHO("SUREDELOLW\�RI�SDVVLQJ�H[DP",�IRQWVL]H=14)�
SOW.VDYHILJ("ORJLVWLFBUHJUHVVLRQ.SGI")�

IQ�[28@: FOI.JHWBSDUDPV()�

IQ�[29@: SULQW('CRHIILFLHQW:�',�FOI.FRHIB)�
SULQW('IQWHUFHSW:�',�FOI.LQWHUFHSWB)�

IQ�[�@: ��

OXW[28@: ^'C':�1.0,�
�'FODVVBZHLJKW':�NRQH,�
�'GXDO':�FDOVH,�
�'ILWBLQWHUFHSW':�TUXH,�
�'LQWHUFHSWBVFDOLQJ':�1,�
�'O1BUDWLR':�NRQH,�
�'PD[BLWHU':�100,�
�'PXOWLBFODVV':�'DXWR',�
�'QBMREV':�NRQH,�
�'SHQDOW\':�'QRQH',�
�'UDQGRPBVWDWH':�NRQH,�
�'VROYHU':�'OEIJV',�
�'WRO':�0.0001,�
�'YHUERVH':�0,�
�'ZDUPBVWDUW':�FDOVH`

CRHIILFLHQW:��[[1.50464522@@�
IQWHUFHSW:��[4.07771764@�

https://scikit-learn.org

https://scikit-learn.org


Statistical Methods in Particle Physics WS 2020/21 | K. Reygers | 9. Machine Learning

Simple example of logistic regression with scikit-learn (2)
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Simple e_ample of logiZ[ic YegYeZZion ^i[h Zciki[-leaYn
IQ�[21@: imporW�nXmp\�aV�np�

imporW�pandaV�aV�pd�
imporW�maWploWlib.p\ploW�aV�plW�

IQ�[22@: ��

Read da[a
Da[a aYe fYom [he ^ikipedia aY[icle on logiZ[ic YegYeZZion

IQ�[33@: #�daWa:�1.�hRXUV�VWXdieV,�2.�SaVVed�﴾0/1﴿���
ILOHQDPH�=�"GDWD/H[DP.W[W"�
GI�=�SG.UHDGBFVY(ILOHQDPH,�HQJLQH='S\WKRQ',�VHS='?V+')�

IQ�[32@: [BWPS�=�GI['KRXUVBVWXGLHG'@.YDOXHV�
[�=�QS.UHVKDSH([BWPS,�(1,�1))�
\�=�GI['SDVVHG'@.YDOXHV�

Fi[ [he model

IQ�[25@: from�Vklearn.linear_model�imporW�LRJLVWLFRHJUHVVLRQ�
FOI�=�LRJLVWLFRHJUHVVLRQ(SHQDOW\='QRQH',�ILWBLQWHUFHSW=TrXe)�
FOI.ILW([,�\);�

Calc\la[e pYedic[ionZ

IQ�[26@: KRXUVBVWXGLHGBWPS�=�QS.OLQVSDFH(0.,�6.,�1000)�
KRXUVBVWXGLHG�=�QS.UHVKDSH(KRXUVBVWXGLHGBWPS,�(1,�1))�
\BSUHG�=�FOI.SUHGLFWBSURED(KRXUVBVWXGLHG)�

Plo[ YeZ\l[

IQ�[27@: GI.SORW.VFDWWHU([='KRXUVBVWXGLHG',�\='SDVVHG')�
SOW.SORW(KRXUVBVWXGLHG,�\BSUHG[:,1@)�
SOW.[ODEHO("SUHSDUDWLRQ�WLPH�LQ�KRXUV",�IRQWVL]H=14)�
SOW.\ODEHO("SUREDELOLW\�RI�SDVVLQJ�H[DP",�IRQWVL]H=14)�
SOW.VDYHILJ("ORJLVWLFBUHJUHVVLRQ.SGI")�

IQ�[28@: FOI.JHWBSDUDPV()�

IQ�[29@: SULQW('CRHIILFLHQW:�',�FOI.FRHIB)�
SULQW('IQWHUFHSW:�',�FOI.LQWHUFHSWB)�

IQ�[�@: ��

OXW[28@: ^'C':�1.0,�
�'FODVVBZHLJKW':�NRQH,�
�'GXDO':�FDOVH,�
�'ILWBLQWHUFHSW':�TUXH,�
�'LQWHUFHSWBVFDOLQJ':�1,�
�'O1BUDWLR':�NRQH,�
�'PD[BLWHU':�100,�
�'PXOWLBFODVV':�'DXWR',�
�'QBMREV':�NRQH,�
�'SHQDOW\':�'QRQH',�
�'UDQGRPBVWDWH':�NRQH,�
�'VROYHU':�'OEIJV',�
�'WRO':�0.0001,�
�'YHUERVH':�0,�
�'ZDUPBVWDUW':�FDOVH`

CRHIILFLHQW:��[[1.50464522@@�
IQWHUFHSW:��[4.07771764@�
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Reminder: Neyman–Pearson lemma
The likelihood ratio

29

t(~x) =
f (~x |H1)

f (~x |H0)

Problem: the underlying pdf's are almost never known explicitly.

1. Estimate signal and background pdf's and construct test statistic based on 
Neyman-Pearson lemma 

2. Decision boundaries determined directly without approximating the pdf's 
(linear discriminants, decision trees, neural networks, …)

Two  approaches:

is an optimal test statistic, i.e., it provides highest "signal efficiency" 1 – β for a 
given "background efficiency" α.

H1 : signal hypothesis

H0 : background hypothesis

Accept hypothesis if t(~x) =
f (~x |H1)

f (~x |H0)
> c
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Estimating PDFs from histograms?

30G. Cowan  iSTEP 2014, Beijing / Statistics for Particle Physics / Lecture 2 15 

Approximate LR from 2D-histograms 
Suppose problem has 2 variables.  Try using 2-D histograms: 

Approximate pdfs using N (x,y|s), N (x,y|b) in corresponding cells. 
But if we want M bins for each variable, then in n-dimensions we 
have Mn cells; can’t generate enough training data to populate. 

 → Histogram method usually not usable for n > 1 dimension. 

signal back- 
ground 

Consider 2d example:

approximate PDF by N(x , y |S) and N(x , y |B)

G. Cowan': https://www.pp.rhul.ac.uk/~cowan/stat_course.html

M bins per variable in d dimensions: Md cells  
→ hard to generate enough training data (often not practical for d > 1)
In general in machine learning, problems related to a large number of dimensions 
of the feature space are referred to as the "curse of dimensionality" 
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ROC Curve
Quality of the classification can be characterized by the receiver operating 
characteristic (ROC curve) 

31

12 3 Using TMVA
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MVA Method:
Fisher
MLP
BDT
PDERS
Likelihood

Background rejection versus Signal efficiency

Figure 5: Example for the background rejection versus signal e�ciency (“ROC curve”) obtained by cutting
on the classifier outputs for the events of the test sample.

• TMVA versions in ROOT releases: http://tmva.sourceforge.net/versionRef.html.

• Direct code views via ViewVC: http://tmva.svn.sourceforge.net/viewvc/tmva/trunk/TMVA.

• Class index of TMVA in ROOT: http://root.cern.ch/root/htmldoc/TMVA Index.html.

• Please send questions and/or report problems to the tmva-users mailing list:
http://sourceforge.net/mailarchive/forum.php?forum name=tmva-users (posting messages requires
prior subscription: https://lists.sourceforge.net/lists/listinfo/tmva-users).

3 Using TMVA

A typical TMVA classification or regression analysis consists of two independent phases: the training
phase, where the multivariate methods are trained, tested and evaluated, and an application phase,
where the chosen methods are applied to the concrete classification or regression problem they have
been trained for. An overview of the code flow for these two phases as implemented in the examples
TMVAClassification.C and TMVAClassificationApplication.C (for classification – see Sec. 2.5),
and TMVARegression.C and TMVARegressionApplication.C (for regression) are sketched in Fig. 7.
Multiclass classification does not di↵er much from two class classification from a technical point of
view and di↵erences will only be highlighted where neccessary.

In the training phase, the communication of the user with the data sets and the MVA methods
is performed via a Factory object, created at the beginning of the program. The TMVA Factory
provides member functions to specify the training and test data sets, to register the discriminating

good

better

1 – εB

εB: background 
efficiency
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Naïve Bayesian classifier  
(also called "projected likelihood classification")

32

Application of the Neyman-Pearson lemma  
(ignoring correlations between the xi):

f (x1, x2, ..., xn) approximated as L = f1(x1) · f2(x2) · ... · fn(xn)

where f1(x1) =

Z
dx2dx3...dxn f (x1, x2, ..., xn)

f2(x2) =

Z
dx1dx3...dxn f (x1, x2, ..., xn)

...
Classification of feature vector    : 

y(~x) =
Ls(~x)

Ls(~x) + Lb(~x)
=

1

1 + Lb(~x)/Ls(~x)

~x

Performance not optimal if true PDF does not factorize
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k-nearest neighbor method (1)

33

k-NN classifier  
‣ Estimates probability density around the input vector 
‣            and             are approximated by the number of signal and background events in 

the training sample that lie in a small volume around the point

Algorithms finds k nearest neighbors:

k = ks + kb

Probability for the event to be of signal type:

ps(~x) =
ks(~x)

ks(~x) + kb(~x)

p(~x |S) p(~x |B)
~x
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k-nearest neighbor method (2)

34

8.5 k-Nearest Neighbour (k-NN) Classifier 85
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Figure 14: Example for the k-nearest neighbour algorithm in a three-dimensional space (i.e., for three
discriminating input variables). The three plots are projections upon the two-dimensional coordinate planes.
The full (open) circles are the signal (background) events. The k-NN algorithm searches for 20 nearest points
in the nearest neighborhood (circle) of the query event, shown as a star. The nearest neighborhood counts 13
signal and 7 background points so that query event may be classified as a signal candidate.

Like (more or less) all TMVA classifiers, the k-nearest neighbour estimate su↵ers from statistical
fluctuations in the training data. The typically high variance of the k-NN response is mitigated by
adding a weight function that depends smoothly on the distance from a test event. The current
k-NN implementation uses a polynomial kernel

W (x) =

(
(1� |x|

3)3 if |x| < 1 ,

0 otherwise .
(59)

If Rk is the distance between the test event and the kth neighbour, the events are weighted according
to the formula:

WS(B) =

kS(B)X

i=1

W

✓
Ri

Rk

◆
, (60)

where kS(B) is number of the signal (background) events in the neighbourhood. The weighted signal
probability for the test event is then given by

PS =
WS

WS +WB

. (61)

The kernel use is switched on/o↵ by the option UseKernel.

Regression

The k-NN algorithm in TMVA also implements a simple multi-dimensional (multi-target) regression
model. For a test event, the algorithm finds the k-nearest neighbours using the input variables, where
each training event contains a regression value. The predicted regression value for the test event is
the weighted average of the regression values of the k-nearest neighbours, cf. Eq. (39) on page 70.

Simplest choice for distance 
measure in feature space is the 
Euclidean distance:

Better: take correlations between 
variables into account:

R = |~x � ~y |

R =
q

(~x � ~y)TV�1(~x � ~y)

V = covariance matrix

"Mahalanobis distance"

The k-NN classifier has best performance when the boundary that separates 
signal and background events has irregular features that cannot be easily 
approximated by parametric learning methods.

TMVA manual 
https://root.cern.ch/guides/tmva-manual
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Fisher linear discriminant

35

Linear discriminant is simple. Can still be optimal if amount of training data is 
limited. 

Ansatz for test statistic: y(~x) =
nX

i=1

wixi = ~wT~x

Choose parameters wi so that separation between signal and background 
distribution is maximum.

Fisher: maximize

23 Glen Cowan Multivariate Statistical Methods in Particle Physics

Ansatz:

→  Fisher:  maximize

Choose the parameters w1, ..., wn so that the pdfs
have maximum ‘separation’.  We want:

s b

y

f (y)
tb

large distance  between 
mean values, small widths

t
s

Linear test statistic
y x=∑

i=1

n

wi xi=
wT x

f  y∣s , f  y∣b

J  w=
s−b

2

s

2b

2

J(~w) =
(⌧s � ⌧b)2

⌃2
s + ⌃2

b

G. Cowan': 
https://www.pp.rhul.ac.uk/~cowan/stat_course.html

Need to define "separation".
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Fisher linear discriminant: Variable definitions

36

G. Cowan': 
https://www.pp.rhul.ac.uk/~cowan/stat_course.html

µs,b
i =

Z
xi f (~x |Hs,b) d~x

V
s,b
ij =

Z
(xi � µs,b

i )(xj � µs,b
j ) f (~x |Hs,b) d~x

Mean and covariance for signal and background:

⌧s,b =

Z
y(~x)f (~x |Hs,b) d~x = ~wT~µs,b

⌃2
s,b =

Z
(y(~x)� ⌧s,b)

2
f (~x |Hs,b) d~x = ~wT

Vs,b~w

Mean and variance of         for signal and background:y(~x)
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Fisher linear discriminant:  
Determining the coefficients wi

37

G. Cowan': 
https://www.pp.rhul.ac.uk/~cowan/stat_course.html

Numerator of          :

⌃2
s + ⌃2

b =
nX

i ,j=1

wiwj (V
s + V b)ij ⌘ ~wTW ~w

J(~w)

J(~w)Denominator of          :

Maximize:

J(~w) =
~wTB ~w

~wTW ~w
=

separation between classes

separation within classes

(⌧s � ⌧b)
2 =

 
nX

i=1

wi (µ
s
i � µb

i )

!2

=
nX

i ,j=1

wiwj(µ
s
i � µb

i )(µ
s
j � µb

j )

⌘
nX

i ,j=1

wiwjBij = ~wTB ~w
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Fisher linear discriminant:  
Determining the coefficients wi

38

G. Cowan': 
https://www.pp.rhul.ac.uk/~cowan/stat_course.html

@J

@wi
= 0

y(~x) = ~wT~x with ~w / W�1(~µs � ~µb)

Setting                  gives:            

linear decision boundary

Weight vector    can be interpreted as a 
direction in feature space on which the 
events are projected.

We obtain linear decision boundaries.

~w
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Fisher linear discriminant: Remarks
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In case the signal and background pdfs              and              are both 
multivariate Gaussian with the same covariance but different means, the Fisher 
discriminant is

f (~x |Hs) f (~x |Hb)

y(~x) / ln
f (~x |Hs)

f (~x |Hb)

That is, in this case the Fisher discriminant is an optimal classifier according to 
the Neyman-Pearson lemma (as         is a monotonic function of the likelihood 
ratio)

y(~x)

Test statistic can be written as 

y(~x) = w0 +
nX

i=1

wixi

where events with y > 0 are classified as signal. Same functional form as for 
the perceptron (prototype of neural networks).
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Example: Classification with scikit-learn (1)
Iris flower data set 
‣ Introduced 1936 in a paper by Ronald Fisher  
‣ Task: classify flowers 
‣ Three species: iris setosa, iris virginica and iris versicolor 
‣ Four features: petal width and length, sepal width/length, in centimeters

40

https://archive.ics.uci.edu/ml/datasets/Iris

https://en.wikipedia.org/wiki/Iris_flower_data_se

sepal width

sepal 
length

petal 
length

petal width
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Example: Classification with scikit-learn (2)

41

Simple classiÄca[ion e_ample: [he iris da[ase[
IQ�>85@: imSRUW�maWSlRWlib.S\SlRW�aV�SlW�

imSRUW�SaQdaV�aV�Sd�
fURm�VkleaUQ�imSRUW�GDWDVHWV�
fURm�VkleaUQ.mRdel_VelecWiRQ�imSRUW�WUDLQBWHVWBVSOLW�
fURm�VkleaUQ.meWUicV�imSRUW�FODVVLILFDWLRQBUHSRUW�
fURm�VkleaUQ.meWUicV�imSRUW�DFFXUDF\BVFRUH�
fURm�VkleaUQ.meWUicV�imSRUW�FRQIXVLRQBPDWUL[�

IQ�>86@: #�LPSRUW�VRPe�daWa�WR�SOa\�ZLWh�
#�cROXPQV:�SeSaO�LeQgWh,�SeSaO�WLdWh,�PeWaO�LeQgWh�aQd�PeWaO�WLdWh�
LULV�=�GDWDVHWV.ORDGBLULV()�
;�=�LULV.GDWD�
\�=�LULV.WDUJHW�

IQ�>113@: #�MXVW�WR�cUeaWe�a�QLce�WabOe�
GI�=�SG.DDWDFUDPH(^"SHSDO�LHQJWK�(FP)":�;>:,0@,�"SHSDO�:LGWK�(FP)":�;>:,1@,��
�������������������'PHWDO�LHQJWK�(FP)':�;>:,2@,�'PHWDO�:LGWK�(FP)':�;>:,3@,��
�������������������'FDWHJRU\':�\`)�
GI.KHDG()�

IQ�>88@: OLVW(LULV.WDUJHWBQDPHV)�

IQ�>90@: #�VSOLW�daWa�LQWR�WUaLQLQg�aQd�WeVW�daWa�VeWV�
[BWUDLQ,�[BWHVW,�\BWUDLQ,�\BWHVW�=�WUDLQBWHVWBVSOLW(;,�\,�WHVWBVL]H=0.5,�UDQGRPBVWDWH=42)�

IQ�>111@: #�SORW�ZLWh�cRORU�cRde�
SOW.VXESORWV(1,�2,�ILJVL]H=(10,�5))�
�
SOW.VXESORW(1,�2,�1)�
SOW.VFDWWHU(;>:,�0@,�;>:,�1@,�F=\,�HGJHFRORU='N')�
SOW.[ODEHO('SHSDO�OHQJWK')�
SOW.\ODEHO('SHSDO�ZLGWK')�
�
SOW.VXESORW(1,�2,�2)�
SOW.VFDWWHU(;>:,�2@,�;>:,�3@,�F=\,�HGJHFRORU='N')�
SOW.[ODEHO('PHWDO�OHQJWK')�
SOW.\ODEHO('PHWDO�ZLGWK')�

SVf[Ta_ YegYeZZiVU
IQ�>91@: fURm�VkleaUQ.liQeaU_mRdel�imSRUW�LRJLVWLFRHJUHVVLRQ�

ORJBUHJ�=�LRJLVWLFRHJUHVVLRQ(PXOWLBFODVV='PXOWLQRPLDO',�SHQDOW\='QRQH')�
ORJBUHJ.ILW([BWUDLQ,�\BWUDLQ);�

k-UeaYeZ[ UeighbVY YegYeZZiVU
IQ�>103@: fURm�VkleaUQ.QeighbRUV�imSRUW�KNHLJKERUVCODVVLILHU�

NQBQHLJK�=�KNHLJKERUVCODVVLILHU(QBQHLJKERUV=5)�
NQBQHLJK.ILW([BWUDLQ,�\BWUDLQ);�

FiZheY liUeaY diZcYiTiUaU[
IQ�>106@: fURm�VkleaUQ.diVcUimiQaQW_aQal\ViV�imSRUW�LLQHDUDLVFULPLQDQWAQDO\VLV�

ILVKHUBOG�=�LLQHDUDLVFULPLQDQWAQDO\VLV()�
ILVKHUBOG.ILW([BWUDLQ,�\BWUDLQ);�

ClaZZiÄca[iVU acc\Yac`
IQ�>110@: fRU�FOI�iQ�>ORJBUHJ,�NQBQHLJK,�ILVKHUBOG@:�

����\BSUHG�=�FOI.SUHGLFW([BWHVW)�
����DFF�=�DFFXUDF\BVFRUH(\BWHVW,�\BSUHG)�
����SULQW(W\SH(FOI).BBQDPHBB)�
����SULQW(I"DFFXUDF\:�^DFF:0.2I`")�
�����
����#�cRQfXVLRQ�PaWUL[:�cROXPQV:�WUXe�cOaVV,�URZ:�SUedLcWed�cOaVV�
����SULQW(FRQIXVLRQBPDWUL[(\BWHVW,�\BSUHG),"\Q")�

OXW>113@:
SeWaS LeUN[O (cT) SeWaS WPd[O (cT) Pe[aS LeUN[O (cT) Pe[aS WPd[O (cT) ca[eNVY`

0 5.1 3.5 1.4 0.2 0

1 4. 3.0 1.4 0.2 0

2 4.� 3.2 1.3 0.2 0

3 4.6 3.1 1.5 0.2 0

4 5.0 3.6 1.4 0.2 0

OXW>88@: >'VHWRVD',�'YHUVLFRORU',�'YLUJLQLFD'@

OXW>111@: TH[W(0,�0.5,�'PHWDO�ZLGWK')

LRJLVWLFRHJUHVVLRQ�
DFFXUDF\:�0.96�
>>29��0��0@�
�>�0�23��0@�
�>�0��3�20@@��
�
KNHLJKERUVCODVVLILHU�
DFFXUDF\:�0.95�
>>29��0��0@�
�>�0�23��0@�
�>�0��4�19@@��
�
LLQHDUDLVFULPLQDQWAQDO\VLV�
DFFXUDF\:�0.99�
>>29��0��0@�
�>�0�23��0@�
�>�0��1�22@@��
�
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Example: Classification with scikit-learn (3)

42

Simple classiÄca[ion e_ample: [he iris da[ase[
In�[85]: imSRUW�maWSlRWlib.S\SlRW�aV�SlW�

imSRUW�SaQdaV�aV�Sd�
fURm�VkleaUQ�imSRUW�datasets�
fURm�VkleaUQ.mRdel_VelecWiRQ�imSRUW�train_test_split�
fURm�VkleaUQ.meWUicV�imSRUW�classification_report�
fURm�VkleaUQ.meWUicV�imSRUW�accuracy_score�
fURm�VkleaUQ.meWUicV�imSRUW�confusion_matrix�

In�[86]: #�LPSRUW�VRPe�daWa�WR�SOa\�ZLWh�
#�cROXPQV:�SeSaO�LeQgWh,�SeSaO�WLdWh,�PeWaO�LeQgWh�aQd�PeWaO�WLdWh�
iris�=�datasets.load_iris()�
X�=�iris.data�
y�=�iris.target�

In�[87]: #�MXVW�WR�cUeaWe�a�QLce�WabOe�
df�=�pd.DataFrame({"Sepal�Length�(cm)":�X[:,0],�"Sepal�Width�(cm)":�X[:,1],�'Petal�Length�(cm)':�X[:,2
],�'Petal�Width�(cm)':�X[:,3],�'category':�y})�
df.head()�

In�[88]: list(iris.target_names)�

In�[90]: #�VSOLW�daWa�LQWR�WUaLQLQg�aQd�WeVW�daWa�VeWV�
x_train,�x_test,�y_train,�y_test�=�train_test_split(X,�y,�test_size=0.5,�random_state=42)�

In�[111]: #�SORW�ZLWh�cRORU�cRde�
plt.subplots(1,�2,�figsize=(10,�5))�
�
plt.subplot(1,�2,�1)�
plt.scatter(X[:,�0],�X[:,�1],�c=y,�edgecolor='k')�
plt.xlabel('Sepal�length')�
plt.ylabel('Sepal�width')�
�
plt.subplot(1,�2,�2)�
plt.scatter(X[:,�2],�X[:,�3],�c=y,�edgecolor='k')�
plt.xlabel('Petal�length')�
plt.ylabel('Petal�width')�

SVf[Ta_ YegYeZZiVU
In�[91]: fURm�VkleaUQ.liQeaU_mRdel�imSRUW�LogisticRegression�

log_reg�=�LogisticRegression(multi_class='multinomial',�penalty='none')�
log_reg.fit(x_train,�y_train);�

k-UeaYeZ[ UeighbVY YegYeZZiVU
In�[103]: fURm�VkleaUQ.QeighbRUV�imSRUW�KNeighborsClassifier�

kn_neigh�=�KNeighborsClassifier(n_neighbors=5)�
kn_neigh.fit(x_train,�y_train);�

FiZheY liUeaY diZcYiTiUaU[
In�[106]: fURm�VkleaUQ.diVcUimiQaQW_aQal\ViV�imSRUW�LinearDiscriminantAnalysis�

fisher_ld�=�LinearDiscriminantAnalysis()�
fisher_ld.fit(x_train,�y_train);�

ClaZZiÄca[iVU acc\Yac`
In�[110]: fRU�clf�iQ�[log_reg,�kn_neigh,�fisher_ld]:�

����y_pred�=�clf.predict(x_test)�
����acc�=�accuracy_score(y_test,�y_pred)�
����print(type(clf).__name__)�
����print(f"accuracy:�^acc:0.2f`")�
�����
����#�cRQfXVLRQ�PaWUL[:�cROXPQV:�WUXe�cOaVV,�URZ:�SUedLcWed�cOaVV�
����print(confusion_matrix(y_test,�y_pred),"\Q")�

Out[87]:
SeWaS LeUN[O (cT) SeWaS WPd[O (cT) Pe[aS LeUN[O (cT) Pe[aS WPd[O (cT) ca[eNVY`

0 5.1 3.5 1.4 0.2 0

1 4. 3.0 1.4 0.2 0

2 4.� 3.2 1.3 0.2 0

3 4.6 3.1 1.5 0.2 0

4 5.0 3.6 1.4 0.2 0

Out[88]: ['setosa',�'versicolor',�'virginica']

Out[111]: Text(0,�0.5,�'Petal�width')

LogisticRegression�
accuracy:�0.96�
[[29��0��0]�
�[�0�23��0]�
�[�0��3�20]]��
�
KNeighborsClassifier�
accuracy:�0.95�
[[29��0��0]�
�[�0�23��0]�
�[�0��4�19]]��
�
LinearDiscriminantAnalysis�
accuracy:�0.99�
[[29��0��0]�
�[�0�23��0]�
�[�0��1�22]]��
�

Output:

With scikit-learn it is 
extremely simple to 
test and apply different 
classification methods

Simple classiÄca[ion e_ample: [he iris da[ase[
IQ�>85@: imSRUW�maWSlRWlib.S\SlRW�aV�SlW�

imSRUW�SaQdaV�aV�Sd�
fURm�VkleaUQ�imSRUW�GDWDVHWV�
fURm�VkleaUQ.mRdel_VelecWiRQ�imSRUW�WUDLQBWHVWBVSOLW�
fURm�VkleaUQ.meWUicV�imSRUW�FODVVLILFDWLRQBUHSRUW�
fURm�VkleaUQ.meWUicV�imSRUW�DFFXUDF\BVFRUH�
fURm�VkleaUQ.meWUicV�imSRUW�FRQIXVLRQBPDWUL[�

IQ�>86@: #�LPSRUW�VRPe�daWa�WR�SOa\�ZLWh�
#�cROXPQV:�SeSaO�LeQgWh,�SeSaO�WLdWh,�PeWaO�LeQgWh�aQd�PeWaO�WLdWh�
LULV�=�GDWDVHWV.ORDGBLULV()�
;�=�LULV.GDWD�
\�=�LULV.WDUJHW�

IQ�>113@: #�MXVW�WR�cUeaWe�a�QLce�WabOe�
GI�=�SG.DDWDFUDPH(^"SHSDO�LHQJWK�(FP)":�;>:,0@,�"SHSDO�:LGWK�(FP)":�;>:,1@,��
�������������������'PHWDO�LHQJWK�(FP)':�;>:,2@,�'PHWDO�:LGWK�(FP)':�;>:,3@,��
�������������������'FDWHJRU\':�\`)�
GI.KHDG()�

IQ�>88@: OLVW(LULV.WDUJHWBQDPHV)�

IQ�>90@: #�VSOLW�daWa�LQWR�WUaLQLQg�aQd�WeVW�daWa�VeWV�
[BWUDLQ,�[BWHVW,�\BWUDLQ,�\BWHVW�=�WUDLQBWHVWBVSOLW(;,�\,�WHVWBVL]H=0.5,�UDQGRPBVWDWH=42)�

IQ�>111@: #�SORW�ZLWh�cRORU�cRde�
SOW.VXESORWV(1,�2,�ILJVL]H=(10,�5))�
�
SOW.VXESORW(1,�2,�1)�
SOW.VFDWWHU(;>:,�0@,�;>:,�1@,�F=\,�HGJHFRORU='N')�
SOW.[ODEHO('SHSDO�OHQJWK')�
SOW.\ODEHO('SHSDO�ZLGWK')�
�
SOW.VXESORW(1,�2,�2)�
SOW.VFDWWHU(;>:,�2@,�;>:,�3@,�F=\,�HGJHFRORU='N')�
SOW.[ODEHO('PHWDO�OHQJWK')�
SOW.\ODEHO('PHWDO�ZLGWK')�

SVf[Ta_ YegYeZZiVU
IQ�>91@: fURm�VkleaUQ.liQeaU_mRdel�imSRUW�LRJLVWLFRHJUHVVLRQ�

ORJBUHJ�=�LRJLVWLFRHJUHVVLRQ(PXOWLBFODVV='PXOWLQRPLDO',�SHQDOW\='QRQH')�
ORJBUHJ.ILW([BWUDLQ,�\BWUDLQ);�

k-UeaYeZ[ UeighbVY
IQ�>103@: fURm�VkleaUQ.QeighbRUV�imSRUW�KNHLJKERUVCODVVLILHU�

NQBQHLJK�=�KNHLJKERUVCODVVLILHU(QBQHLJKERUV=5)�
NQBQHLJK.ILW([BWUDLQ,�\BWUDLQ);�

FiZheY liUeaY diZcYiTiUaU[
IQ�>106@: fURm�VkleaUQ.diVcUimiQaQW_aQal\ViV�imSRUW�LLQHDUDLVFULPLQDQWAQDO\VLV�

ILVKHUBOG�=�LLQHDUDLVFULPLQDQWAQDO\VLV()�
ILVKHUBOG.ILW([BWUDLQ,�\BWUDLQ);�

ClaZZiÄca[iVU acc\Yac`
IQ�>110@: fRU�FOI�iQ�>ORJBUHJ,�NQBQHLJK,�ILVKHUBOG@:�

����\BSUHG�=�FOI.SUHGLFW([BWHVW)�
����DFF�=�DFFXUDF\BVFRUH(\BWHVW,�\BSUHG)�
����SULQW(W\SH(FOI).BBQDPHBB)�
����SULQW(I"DFFXUDF\:�^DFF:0.2I`")�
�����
����#�cRQfXVLRQ�PaWUL[:�cROXPQV:�WUXe�cOaVV,�URZ:�SUedLcWed�cOaVV�
����SULQW(FRQIXVLRQBPDWUL[(\BWHVW,�\BSUHG),"\Q")�

OXW>113@:
SeWaS LeUN[O (cT) SeWaS WPd[O (cT) Pe[aS LeUN[O (cT) Pe[aS WPd[O (cT) ca[eNVY`

0 5.1 3.5 1.4 0.2 0

1 4. 3.0 1.4 0.2 0

2 4.� 3.2 1.3 0.2 0

3 4.6 3.1 1.5 0.2 0

4 5.0 3.6 1.4 0.2 0

OXW>88@: >'VHWRVD',�'YHUVLFRORU',�'YLUJLQLFD'@

OXW>111@: TH[W(0,�0.5,�'PHWDO�ZLGWK')

LRJLVWLFRHJUHVVLRQ�
DFFXUDF\:�0.96�
>>29��0��0@�
�>�0�23��0@�
�>�0��3�20@@��
�
KNHLJKERUVCODVVLILHU�
DFFXUDF\:�0.95�
>>29��0��0@�
�>�0�23��0@�
�>�0��4�19@@��
�
LLQHDUDLVFULPLQDQWAQDO\VLV�
DFFXUDF\:�0.99�
>>29��0��0@�
�>�0�23��0@�
�>�0��1�22@@��
�
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Precision and recall
Precision: 
Fraction of correctly classified instances 
among all instances that obtain a certain 
class label.

43

Recall: 
Fraction of positive instances that are 
correctly classified.

precision =
TP

TP + FP

TP: true positives 
FP: false positives 
FN: false negatives

“purity”

recall =
TP

TP + FN
“efficiency”

Simple classiÄca[ion e_ample: [he iris da[ase[
In�[85]: imSRUW�maWSlRWlib.S\SlRW�aV�SlW�

imSRUW�SandaV�aV�Sd�
fURm�VkleaUn�imSRUW�datasets�
fURm�VkleaUn.mRdel_VelecWiRn�imSRUW�train_test_split�
fURm�VkleaUn.meWUicV�imSRUW�classification_report�
fURm�VkleaUn.meWUicV�imSRUW�accuracy_score�
fURm�VkleaUn.meWUicV�imSRUW�confusion_matrix�

In�[86]: #�LPSRUW�VRPe�daWa�WR�SOa\�ZLWh�
#�cROXPQV:�SeSaO�LeQgWh,�SeSaO�WLdWh,�PeWaO�LeQgWh�aQd�PeWaO�WLdWh�
iris�=�datasets.load_iris()�
X�=�iris.data�
y�=�iris.target�

In�[113]: #�MXVW�WR�cUeaWe�a�QLce�WabOe�
df�=�pd.DataFrame({"Sepal�Length�(cm)":�X[:,0],�"Sepal�Width�(cm)":�X[:,1],��
�������������������'Petal�Length�(cm)':�X[:,2],�'Petal�Width�(cm)':�X[:,3],��
�������������������'category':�y`)�
df.head()�

In�[88]: list(iris.target_names)�

In�[90]: #�VSOLW�daWa�LQWR�WUaLQLQg�aQd�WeVW�daWa�VeWV�
x_train,�x_test,�y_train,�y_test�=�train_test_split(X,�y,�test_size=0.5,�random_state=42)�

In�[111]: #�SORW�ZLWh�cRORU�cRde�
plt.subplots(1,�2,�figsize=(10,�5))�
�
plt.subplot(1,�2,�1)�
plt.scatter(X[:,�0],�X[:,�1],�c=y,�edgecolor='k')�
plt.xlabel('Sepal�length')�
plt.ylabel('Sepal�width')�
�
plt.subplot(1,�2,�2)�
plt.scatter(X[:,�2],�X[:,�3],�c=y,�edgecolor='k')�
plt.xlabel('Petal�length')�
plt.ylabel('Petal�width')�

SVf[Ta_ YegYeZZiVU
In�[91]: fURm�VkleaUn.lineaU_mRdel�imSRUW�LogisticRegression�

log_reg�=�LogisticRegression(multi_class='multinomial',�penalty='none')�
log_reg.fit(x_train,�y_train);�

k-UeaYeZ[ UeighbVY
In�[103]: fURm�VkleaUn.neighbRUV�imSRUW�KNeighborsClassifier�

kn_neigh�=�KNeighborsClassifier(n_neighbors=5)�
kn_neigh.fit(x_train,�y_train);�

FiZheY liUeaY diZcYiTiUaU[
In�[106]: fURm�VkleaUn.diVcUiminanW_anal\ViV�imSRUW�LinearDiscriminantAnalysis�

fisher_ld�=�LinearDiscriminantAnalysis()�
fisher_ld.fit(x_train,�y_train);�

ClaZZiÄca[iVU acc\Yac`
In�[116]: fRU�clf�in�[log_reg,�kn_neigh,�fisher_ld]:�

����y_pred�=�clf.predict(x_test)�
����acc�=�accuracy_score(y_test,�y_pred)�
����print(type(clf).__name__)�
����print(f"accuracy:�^acc:0.2f`")�
�����
����#�cRQfXVLRQ�PaWUL[:�cROXPQV:�WUXe�cOaVV,�URZ:�SUedLcWed�cOaVV�
����print(confusion_matrix(y_test,�y_pred))�

In�[118]: y_pred�=�log_reg.predict(x_test)�
print(classification_report(y_test,�y_pred))�

In�[�]: ��

Out[113]:
SeWaS LeUN[O (cT) SeWaS WPd[O (cT) Pe[aS LeUN[O (cT) Pe[aS WPd[O (cT) ca[eNVY`

0 5.1 3.5 1.4 0.2 0

1 4. 3.0 1.4 0.2 0

2 4.� 3.2 1.3 0.2 0

3 4.6 3.1 1.5 0.2 0

4 5.0 3.6 1.4 0.2 0

Out[88]: ['setosa',�'versicolor',�'virginica']

Out[111]: Text(0,�0.5,�'Petal�width')

LogisticRegression�
accuracy:�0.96�
[[29��0��0]�
�[�0�23��0]�
�[�0��3�20]]�
KNeighborsClassifier�
accuracy:�0.95�
[[29��0��0]�
�[�0�23��0]�
�[�0��4�19]]�
LinearDiscriminantAnalysis�
accuracy:�0.99�
[[29��0��0]�
�[�0�23��0]�
�[�0��1�22]]�

��������������precision����recall��f1score���support�
�
�����������0�������1.00������1.00������1.00��������29�
�����������1�������0.88������1.00������0.94��������23�
�����������2�������1.00������0.87������0.93��������23�
�
����accuracy���������������������������0.96��������75�
���macro�avg�������0.96������0.96������0.96��������75�
weighted�avg�������0.96������0.96������0.96��������75�
�

Iris classification 
example: 
precision and recall for 
softmax classification 
 
see sklearn.metrics. 
classification_report 
 

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html
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Perceptron (1)

44

Y LeCun
1957: The Perceptron (the first learning machine)

A simple simulated neuron with adaptive “synaptic weights”
Computes a weighted sum of inputs 

Output is +1 if the weighted sum is above a thresold, -1 otherwise.

y=sign(∑
i=1

N

W i X i+ b)

Rosenblatt, 1957

Mark 1 Perceptron. Source: Rosenblatt, Frank 
(1961) Principles of Neurodynamics: Perceptrons 
and the Theory of Brain Mechanisms

x1

xn

h(~x) =

(
1 if ~w · ~x + b > 0,

0 otherwise

y(~x) = ~w · ~x + b

Output: “binary classifier”

The perceptron was designed for image 
recognition. It was first implemented in hardware 
(400 photocells, weights = potentiometer settings). 
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Perceptron (2)

45

McCulloch–Pitts (MCP) neuron (1943)
‣ First mathematical model of a biological 

neuron 
‣ Boolean input 
‣ Equal weights for all inputs 
‣ Threshold hardcoded

Improvements by Rosenblatt:
‣ Different weights for inputs 
‣ Algorithm to update weights and 

threshold given labeled training data

x1

xn

xi 2 {0, 1}

y 2 {0, 1}

Shortcoming of the perceptron: 
it cannot learn the XOR function
Minsky, Papert, 1969

OR AND XOR

a . a . go . j o¥ .#o.O:O
§

2 = 1

XOR: not linearly separable 
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The biological inspiration: the neuron

46

https://en.wikipedia.org/wiki/Neuron 
https://en.wikipedia.org/wiki/List_of_animals_by_number_of_neurons

Human brain: 
1011 neurons, each with on average 
7000 synaptic connections

C. elegans (roundworm): 
302 neurons, each with on average 
25 synaptic connections

https://en.wikipedia.org/wiki/Neuron
https://en.wikipedia.org/wiki/List_of_animals_by_number_of_neurons
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Non-linear transfer / activation function

47

Discriminant: y(~x) = h

 
w0 +

nX

i=1

wixi

!

Examples for h:

h(
x)

x

sigmoid activation function 
→ "logistic regression" 

1

1 + e�x
(”sigmoid” or ”logistic” function), tanh x

Non-linear activation function 
needed in neural networks 
when feature space is not 
linearly separable

Neural net with linear activation 
functions is just a perceptron
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Feedforward neural network with one hidden layer

48

y(~x) = h

0

@w (2)
10 +

mX

j=1

w (2)
1j �j(~x)

1

A

y(~x)

�1(~x)

�m(~x)

superscripts indicates layer number

Straightforward to generalize to multiple hidden layers

�i (~x) = h

0

@w (1)
i0 +

nX

j=1

w (1)
ij xj

1

A
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Neural network output and decision boundaries

49

P. Bhat, Multivariate Analysis Methods in Particle Physics, inspirehep.net/record/879273

NS61CH12-Bhat ARI 17 September 2011 7:17
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Figure 3
(a) A schematic representation of a three-layer feed-forward neural network (NN). (b) Distributions of NN
output (discriminant) trained on data shown in panel c (same data as in Figure 2). (c) Equi-probability
contours (decision boundaries) corresponding to cuts of 0.02, 0.1, 0.4, 0.8, and 0.95 on the NN output
shown in panel b, superposed on signal and background data distributions. The data points to the right of
each contour have NN output values above the displayed cut. (d ) Signal-probability surface as given by the
NN output, D(x1, x2) ∼ p(s|x1, x2), in the feature space.

3.5. Neural Networks
Feed-forward NNs (Figure 3a), also known as multilayer perceptrons (MLPs), are the most
popular and widely used multivariate methods. An MLP consists of an interconnected group of
neurons or nodes arranged in layers; each node processes the information it receives with an
activation (or transformation) function, then passes the result to the next layer of nodes. The
first layer, known as the input layer, receives the feature variables. This is followed by one or
more hidden layers of nodes. The last layer outputs the final response of the network. Each
interconnection is characterized by a weight, and each processing node may have a bias or a

www.annualreviews.org • Multivariate Analysis Methods 293
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Fun with neural nets in the browser

50

http://playground.tensorflow.org

http://playground.tensorflow.org
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Network training

51

E (~w) =
1

2

NX

a=1

(y(~xa, ~w)� ta)
2 =

NX

a=1

Ea(~w)

~xa : training event, a = 1, ...,N

ta : correct label for training event a

e.g., ta = 1, 0 for signal and background, respectively 

Loss function (example):

~w : vector containing all weights

Weights are determined by minimizing the loss function (also called error 
function)
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Back-propagation (1)

52

~w (⌧+1) = ~w (⌧) � ⌘rEa(~w
(⌧))

Start with an initial guess         for the weights an then update weights after 
each training event:

~w (0)

learning rateStochastic Gradient Descent and Variants  
•  Gradient descent is computationally 

costly (since we compute gradient 
over full training set) 

•  Stochastic gradient descent 
–  Compute gradient on one event at a 

time (in practice a small batch) 
–  Noisy estimates average out 
–  Stochastic behavior can allow “jumping” 

out of  bad critical points 

–  Scales well with dataset and model size 
–  But can have some convergence 

difficulties 

–  Improvements include: 
Momentum, RMSprop, AdaGrad, … 

74	

w2	

w1	

w2	

w1	h'p://danielnouri.org/notes/category/deep-learning/		

Gradient descent:
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Back-propagation (2)

Let's write network output as follows:

Here we defined φ0 = x0 = 1 and the sums start from 0 to include the offsets.

Weights from hidden layer to output:

Ea =
1

2
(ya � ta)

2 ! @Ea

@w (2)
1j

= (ya � ta)h
0(u(~xa))

@u

@w (2)
1j

= (ya � ta)h
0(u(~xa))�j(~xa)

y(~x) = h(u(~x)) with u(~x) =
mX

j=0

w (2)
1j �j(~x), �j(~x) = h

 
nX

k=0

w (1)
jk xk

!
⌘ h (vj(~x))

Further application of the chain rule gives weights from input to hidden layer.

“Learning representations by back-propagating errors.”, 
Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams

https://www.iro.umontreal.ca/~pift6266/A06/refs/backprop_old.pdf
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More on gradient descent
■ Stochastic gradient descent 
‣ just uses one training event at a 

time 
‣ fast, but quite irregular approach 

to the minimum 
‣ can help escape local minima 
‣ one can decrease learning rate to 

settle at the minimum ("simulated 
annealing") 

■ Batch gradient descent 
‣ use entire training sample to 

calculate gradient of loss function 
‣ computationally expensive  

■ Mini-batch gradient descent 
‣ calculate gradient for a random 

sub-sample of the training set

54

Stochastic Gradient Descent

Aurélien Géron, 
Hands-On Machine 
Learning with Scikit-
Learn and TensorFlow



Statistical Methods in Particle Physics WS 2020/21 | K. Reygers | 9. Machine Learning

Universal approximation theorem

55

"A feed-forward network with a single 
hidden layer containing a finite number 
of neurons (i.e., a multilayer perceptron), 
can approximate continuous functions 
on compact subsets of ℝn."

v cascading of neurons: multilayer networks

for example: double layer perceptron

output signal is a function of an inner (hidden) layer of neurons

t x s a0 aiyi x

with

yi x s w0 wikxk

‹ N1 input layer neurons

‹ N2 hidden layer neurons

‹ N1 N2 N2 2 parameters

Introduction to (T)MVA - Multivariate classifiers M. Schmelling, January 31, 2018 14

One of the first versions of the theorem 
was proved by George Cybenko in 
1989 for sigmoid activation functions

The theorem does not touch upon the 
algorithmic learnability of those 
parameters

https://en.wikipedia.org/wiki/Universal_approximation_theorem
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Deep neural networks

56
http://neuralnetworksanddeeplearning.com

Deep networks: many hidden layers with large number of neurons 

Challenges 
‣ Hard too train ("vanishing gradient 

problem") 
‣ Training slow 
‣ Risk of overtraining

Big progress in recent years 
‣ Interest in NN waned before ca. 2006 
‣ Milestone: paper by G. Hinton (2006): 

"learning for deep belief nets" 
‣ Image recognition, AlphaGo, … 
‣ Soon: self-driving cars, …
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Drawbacks of the sigmoid activation function

■ Saturated neurons “kill” the 
gradients  

■ Sigmoid outputs are not zero-
centered  

■ exp() is a bit compute expensive 

57

)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� $SULO���������)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� $SULO�����������

$FWLYDWLRQ�)XQFWLRQV

6LJPRLG

� 6TXDVKHV�QXPEHUV�WR�UDQJH�>���@
� +LVWRULFDOO\�SRSXODU�VLQFH�WKH\�

KDYH�QLFH�LQWHUSUHWDWLRQ�DV�D�
VDWXUDWLQJ�³ILULQJ�UDWH´�RI�D�QHXURQ

��SUREOHPV�

�� 6DWXUDWHG�QHXURQV�³NLOO´�WKH�
JUDGLHQWV

�� 6LJPRLG�RXWSXWV�DUH�QRW�
]HUR�FHQWHUHG

�� H[S���LV�D�ELW�FRPSXWH�H[SHQVLYH

�(x) =
1

1 + e�x

http://cs231n.stanford.edu/slides
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Activation functions

58

)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH����� $SULO�����������

6LJPRLG

WDQK

5H/8

/HDN\�5H/8

0D[RXW

(/8

$FWLYDWLRQ�IXQFWLRQV

http://cs231n.stanford.edu/slides
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ReLU

■ Does not saturate (in +region)  
■ Very computationally efficient  
■ Converges much faster than  

sigmoid/tanh in practice (e.g. 6x)  
■ Actually more biologically 

plausible than sigmoid 

59

)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� $SULO���������)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� $SULO�����������

$FWLYDWLRQ�)XQFWLRQV

5H/8
�5HFWLILHG�/LQHDU�8QLW�

� &RPSXWHV�I�[�� �PD[���[�

� 'RHV�QRW�VDWXUDWH��LQ��UHJLRQ�
� 9HU\�FRPSXWDWLRQDOO\�HIILFLHQW
� &RQYHUJHV�PXFK�IDVWHU�WKDQ�
VLJPRLG�WDQK�LQ�SUDFWLFH��H�J���[�

� $FWXDOO\�PRUH�ELRORJLFDOO\�SODXVLEOH�
WKDQ�VLJPRLG

� 1RW�]HUR�FHQWHUHG�RXWSXW
� $Q�DQQR\DQFH�

KLQW��ZKDW�LV�WKH�JUDGLHQW�ZKHQ�[����"

f (x) = max(0, x)

But: gradient vanishes for x < 0

http://cs231n.stanford.edu/slides
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Bias-variance tradeoff

■ Simple models (few parameters): danger of bias 
‣ Classifiers with a small number of degrees of freedom are less prone to 

statistical fluctuations: different training samples would result in similar 
classification boundaries ("small variance") 

■ Complex models (many parameters): danger of overfitting 
‣ large variance of decision boundaries for different training samples

60

underfitting overfitting

Goal: generalization of training data
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Example of overtraining

61

Too many neurons/layers make a neural network too flexible 
→ overtraining  

training sample test sample

Network "learns" features that are merely 
statistical fluctuations in the training sample

G. Cowan: https://www.pp.rhul.ac.uk/~cowan/stat_course.html



Statistical Methods in Particle Physics WS 2020/21 | K. Reygers | 9. Machine Learning

Monitoring overtraining

62

Monitor fraction of misclassified events (or loss function:)

er
ro

r r
at

e

flexibility (e.g., number 

of nodes/layers)

test sample

training sample

optimum = minimum of 
error rate for test sample

overtraining = 
increase of error rate

G. Cowan: 
https://www.pp.rhul.ac.uk/~cowan/stat_course.html
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Regularization: Avoid overfitting

63

)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH����� $SULO�����������

'DWD�ORVV��0RGHO�SUHGLFWLRQV�
VKRXOG�PDWFK�WUDLQLQJ�GDWD

5HJXODUL]DWLRQ��0RGHO�
VKRXOG�EH�³VLPSOH´��VR�LW�
ZRUNV�RQ�WHVW�GDWD

2FFDP¶V�5D]RU��
³$PRQJ�FRPSHWLQJ�K\SRWKHVHV��
WKH�VLPSOHVW�LV�WKH�EHVW´
:LOOLDP�RI�2FNKDP�������������

)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH����� $SULO���������

5HJXODUL]DWLRQ

��

 �UHJXODUL]DWLRQ�VWUHQJWK
�K\SHUSDUDPHWHU�

,Q�FRPPRQ�XVH��
/��UHJXODUL]DWLRQ
/��UHJXODUL]DWLRQ
(ODVWLF�QHW��/����/��
0D[�QRUP�UHJXODUL]DWLRQ��PLJKW�VHH�ODWHU�
'URSRXW��ZLOO�VHH�ODWHU�
)DQFLHU��%DWFK�QRUPDOL]DWLRQ��VWRFKDVWLF�GHSWK

http://cs231n.stanford.edu/slides
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Another approach to prevent overfitting: Dropout

■ Randomly remove nodes during training 
■ Avoid co-adaptation of nodes

64

Srivastava et al., "Dropout: A Simple Way to Prevent Neural Networks from Overfitting"

http://jmlr.org/papers/volume15/srivastava14a.old/srivastava14a.pdf
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Xavier and He initialization
■ Initial weights determine speed of 

convergence and whether 
algorithm converges at all 

■ Xavier Glorot and Yoshua Bengio 
‣ Paper "Understanding the 

Difficulty of Training Deep 
Feedforward Neural Networks" 

‣ Idea: Variance of the outputs of 
each layer to be equal to the 
variance of its inputs

65

Activation function Uniform distribution [�r , r ] Normal distribution (µ = 0)

Logistic r =
q

6
nin+nout

� =
q

2
nin+nout

tanh r = 4
q

6
nin+nout

� = 4
q

2
nin+nout

ReLU (and variants) r =
p
2
q

6
nin+nout

� =
p
2
q

2
nin+nout

Layer with nin inputs connected to 
nout neurons in the next layer

Aurélien Géron, Hands-
On Machine Learning 
with Scikit-Learn and 
TensorFlow

http://goo.gl/1rhAef
http://goo.gl/1rhAef
http://goo.gl/1rhAef
http://goo.gl/1rhAef
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Pros and cons of multi-layer perceptrons

■ Capability to learn non-linear models

66

Pros:

■ Loss function can have several local minima 
■ Hyperparameters need to be tuned 
‣ number of layers, neurons per layer, and training iterations 

■ Sensitive to feature scaling 
‣ preprocessing needed (e.g., scaling of all feature to range [0,1])

Cons:
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Decision trees
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< 0.2 GeV * 0.2 GeV
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arXiv:physics/0508045v1

MiniBooNE: 1520 
photomultiplier signals, 
goal: separation of νe 
from νμ events

root node

branch node 
(node with further 
branching)

leaf node (no further branching)

Leaf nodes classify events as either signal or background
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Decision trees
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Ann.Rev.Nucl.Part.Sci. 61 (2011) 281-309

Easy to interpret and visualize: 
Space of feature vectors split up into rectangular volumes  
(attributed to either signal or background)  

NS61CH12-Bhat ARI 17 September 2011 7:17
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Figure 5
(a) A schematic of a binary decision tree with two feature variables x1 and x2. (b) Illustration of the
corresponding partitions of the two-dimensional feature space. (c) Signal probability calculated as the ratio of
signal counts divided by the sum of signal and background counts in bins of two-dimensional histograms for
the data set shown in Figure 4. (d ) Signal probability approximated with five decision trees (DTs) (through
the use of AdaBoost) using the same data.

Note that, geometrically, the DT procedure amounts to recursively partitioning the feature
space into hypercubic regions or bins with edges aligned with the axes of the feature space.
Essentially, a DT creates M disjoint regions or a d-dimensional histogram with M bins of varying
bin size, and a response value is assigned to each bin. A DT, therefore, gives a piecewise constant
approximation to the function being modeled, say, the discriminant D(x). As the training data set
becomes arbitrarily large and as the bin sizes approach zero, the predictions of a DT approach
those of the target function, provided that the number of bins also grows arbitrarily large (but at
a rate slower than that of the data-set size).

The DT algorithm is applicable to discrimination of n classes, even though what I have de-
scribed is the binary DT method used in two-class signal/background discrimination. Figure 5

www.annualreviews.org • Multivariate Analysis Methods 297
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How to build a decision tree in an optimal way?
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Finding optimal cuts

69

Separation btw. signal and background is often measured with the 
Gini index (or Gini impurity):

G = p(1� p)

Here p is the purity:

p =

P
signal wiP

signal wi +
P

background wi

wi = weight of event i

[usefulness of weights will 
become apparent soon]

Improvement in signal/background separation after splitting a set A into 
two sets B and C:

� = WAGA �WBGB �WCGC where WX =
X

X

wi
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Separation measures

70

Misclassification rate: 1�max(p, 1� p)

Entropy: �p ln p � (1� p) ln(1� p)

Gini index: p(1� p)

p

[after Corrado Gini, used to measure income 
and wealth inequalities, 1912]

Splitting a node: examples

Node purity

Signal (background) event i with weight w i
s (w i

b
)

p =

P
i2signal

w
i

sP
i2signal

w i
s
+
P

j2bkg
w

j

b

Signal purity (= purity)
ps = p = s

s+b

Background purity
pb = b

s+b
= 1� ps = 1� p

Common impurity functions

misclassification error
= 1�max(p, 1� p)

(cross) entropy
= �

P
i=s,b pi log pi
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Yann Coadou (CPPM) — Boosted decision trees ESIPAP’16, Archamps, 9 February 2016 11/71
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Decision tree pruning

71

8.12 Boosted Decision and Regression Trees 109

Figure 18: Schematic view of a decision tree. Starting from the root node, a sequence of binary splits using
the discriminating variables xi is applied to the data. Each split uses the variable that at this node gives the
best separation between signal and background when being cut on. The same variable may thus be used at
several nodes, while others might not be used at all. The leaf nodes at the bottom end of the tree are labeled
“S” for signal and “B” for background depending on the majority of events that end up in the respective
nodes. For regression trees, the node splitting is performed on the variable that gives the maximum decrease
in the average squared error when attributing a constant value of the target variable as output of the node,
given by the average of the training events in the corresponding (leaf) node (see Sec. 8.12.3).

8.12.1 Booking options

The boosted decision (regression) treee (BDT) classifier is booked via the command:

factory->BookMethod( Types::kBDT, "BDT", "<options>" );

Code Example 50: Booking of the BDT classifier: the first argument is a predefined enumerator, the second
argument is a user-defined string identifier, and the third argument is the configuration options string.
Individual options are separated by a ’:’. See Sec. 3.1.5 for more information on the booking.

Several configuration options are available to customize the BDT classifier. They are summarized
in Option Tables 22 and 24 and described in more detail in Sec. 8.12.2.

When to stop growing a tree? 
‣ When all nodes are essentially pure? 
‣ Well, that's overfitting!

Pruning 
‣ Cut back fully grown tree to avoid 

overtraining, i.e., replace nodes and 
subtrees by leaves 
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Single decision trees: Pros and cons

■ Requires little data preparation 
■ Can use continuous and categorical inputs

72

Pros:

■ Danger of overfitting training data 
■ Sensitive to fluctuations in the training data 
■ Hard to find global optimum 
■ When to stop splitting?

Cons:
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Ensemble methods: Combine weak learners

■ Bootstrap Aggregating (Bagging) 
‣ Sample training data (with replacement) and train a separate model on each of 

the derived training sets 
‣ Classify example with majority vote, or compute  

average output from each tree as model output

73

y(~x) =
1

Ntrees

NtreesX

i=1

yi (~x)

■ Boosting 
‣ Train N models in sequence, giving more weight to examples not correctly 

classified by previous model 
‣ Take weighted average to classify examples y(~x) =

PNtrees

i=1 ↵iyi (~x)PNtrees

i=1 ↵i
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Random forests

■ “One of the most widely used and versatile algorithms in data science and 
machine learning” (arXiv:1803.08823v3)   

■ Use bagging to select random example subset  

■ Train a tree, but only use random subset of features at each split 
‣ this reduces the correlation between different trees 
‣ makes the decision more robust to missing data

74
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Boosted decision trees: Idea

75
12Helge Voss Graduierten-Kolleg, Freiburg,  11.-15. Mai 2009  ʊ Multivariate Data Analysis and Machine Learning 

Boosting

Training Sample
classifier 

C(0)(x)

Weighted Sample

re-weight
classifier 

C(1)(x)

Weighted Sample

re-weight
classifier 

C(2)(x)

Weighted Sample

re-weight

Weighted Sample

re-weight

classifier 
C(3)(x)

classifier 
C(m)(x)

ClassifierN
(i)

i
i

y(x) w C (x) ¦

H. Voss, Lecture: Graduierten-Kolleg, http://tmva.sourceforge.net/talks.shtml

Weight is increased if 
event was misclassified 
by the previous classifier

→ "Next classifier should 
pay more attention to 
misclassified events"

http://tmva.sourceforge.net/talks.shtml
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AdaBoost (short for Adaptive Boosting)

76

Initial training sample

~x1, ...,~xn: multivariate event data

y1, ..., yn: true class labels, +1 or �1

w (1)
1 , ...,w (1)

n event weights

with equal weights normalized as
nX

i=1

w (1)
i = 1

Train first classifier f1:

f1(~xi ) > 0 classify as signal

f1(~xi ) < 0 classify as background
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AdaBoost: Updating events weights

77

Define training sample k+1 from training sample k by updating weights:

w (k+1)
i = w (k)

i

e�↵k fk (~xi )yi/2

Zk

normalization factor so that 
i = event index

Weight is increased if event was misclassified by the previous classifier
→ "Next classifier should pay more attention to misclassified events"

At each step the classifier fk minimizes error rate

"k =
nX

i=1

w (k)
i I (yi fk(~xi )  0), I (X ) = 1 if X is true, 0 otherwise

nX

i=1

w (k)
i = 1
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AdaBoost: Assigning the classifier score

78

Assign score to each classifier according to its error rate:

↵k = ln
1� "k
"k

Combined classifier (weighted average):

f (~x) =
KX

k=1

↵k fk(~x)

" 
KY

k=1

2
p
"k(1� "k)

It can be shown that the error rate of the combined classifier satisfies
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Gradient boosting

■ Like in AdaBoost, decision trees are iteratively added to an ensemble 
■ Can be applied to classification and regression 
■ Basic idea 
‣ Train a first decision tree 
‣ Then train a second one on the residual errors made by the first tree 
‣ And so on …

79

Labeled training data: { ⃗x i, yi}

Model prediction at iteration m: Fm( ⃗x i)

New model: Fm+1( ⃗x ) = Fm( ⃗x ) + hm( ⃗x )

Find  by fitting it to 
 

hm( ⃗x )

{( ⃗x 1, y1 − Fm( ⃗x 1)), ( ⃗x 2, y2 − Fm( ⃗x 2)), . . . ( ⃗x n, yn − Fm( ⃗x n))}
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General remarks on multi-variate analyses (MVAs)
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H. Voss, Multivariate Data Analysis and Machine Learning in High Energy Physics 
http://tmva.sourceforge.net/talks.shtml

Important: find good input variables for MVA methods  
‣ Good separation power between S and B 
‣ No strong correlation among variables 
‣ No correlation with the parameters you try to measure in your signal sample! 

Pre-processing 
‣ Apply obvious variable transformations and let MVA method do the rest 
‣ Make use of obvious symmetries: if e.g. a particle production process is symmetric in 

polar angle θ use |cos θ| and not cos θ as input variable  
‣ It is generally useful to bring all input variables to a similar numerical range

MVA Methods 
‣ More effective than classic cut-based analyses  
‣ Take correlations of input variables into account
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Example of a feature transformation

81

H. Voss, Multivariate Data Analysis and Machine Learning in High Energy Physics 
http://tmva.sourceforge.net/talks.shtml

20Helge Voss Graduierten-Kolleg, Freiburg,  11.-15. Mai 2009  ʊ Multivariate Data Analysis and Machine Learning 

Linear Discriminant and non linear correlations
assume the following non-linear correlated data:
� the Linear discriminant obviousl doesn’t do a very good job here:

� Of course, these can easily de-correlated:
Æhere: linear discriminator works perfectly 
on de-correlated data

l 2 2

|

var 0 var 0 var1
var 0var1 a tan
var1

 �

§ · ¨ ¸
© ¹
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Linear Discriminant and non linear correlations
assume the following non-linear correlated data:
� the Linear discriminant obviousl doesn’t do a very good job here:

� Of course, these can easily de-correlated:
Æhere: linear discriminator works perfectly 
on de-correlated data

l 2 2

|

var 0 var 0 var1
var 0var1 a tan
var1

 �

§ · ¨ ¸
© ¹

In this case a linear classifier works well 
after feature transformation
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Which method to use?

■ Linear model  
■ Nearest Neighbors  
■ (Deep?) Neural network  
■ Decision tree ensemble  
■ …

82

M. Kagan, 
https://indico.cern.ch/event/619370/
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No free lunch theorem
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Any two optimization algorithms are equivalent when their 
performance is averaged across all possible problems

David Wolpert, William Macready, 1997

"Folkloric" version:

If an algorithm performs well on a certain class of problems 
then it necessarily pays for that with degraded performance on 
the set of all remaining problems

In other words:

Domain knowledge and/or biases in the choice of the algorithms 
(link) 

How do we pay for our lunch?

Relevance for practical problem?

https://de.wikipedia.org/wiki/No-free-Lunch-Theoreme

https://pdfs.semanticscholar.org/fee1/abe79f179f465d2725be63e97a50034bc511.pdf
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Practical advice – Which algorithm to choose?
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M. Kagan, https://indico.cern.ch/event/619370/

From Kaggle competitions:

Structured data: "High level" features that have meaning
‣ feature engineering + decision trees 
‣ Random forests 
‣ XGBoost

Unstructured data: "Low level" features, no individual meaning
‣ deep neural networks 
‣ e.g. image classification: convolutional NN
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Outlook 1: Convolutional neutral networks (CNNs)

■ CNNs emerged from the study of the visual cortex 
■ Behind many deep learning successes (e.g. in 

image recognition) 
■ Partially connected layers 
‣ Fully connected layers impractical for large images 

(too many neurons, overfitting) 
■ Key component: Convolutional layers 
‣ Set of learnable filters 
‣ From low-level features at the first layers to high- 

level features a the end
85

Example of a  
convolutional layer: 
Receptive field of each neuron: 
3×3 region of the previous layer

arXiv:1803.08823

sliding filter
arXiv:1603.07285
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Outlook 2: Autoencoders
■ Unsupervised method based 

on neural networks to learn a 
representation of the input 
data 

■ Autoencoders learn to copy 
the input to the output layer 
‣ low dimensional coding of the 

input in the central layer 
■ The decoder generates data 

based on the coding 
(generative model) 

■ Applications 
‣ Dimensionality reduction 
‣ Denoising of data 
‣ Machine translation 
‣ …  

86
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Outlook 3: Generative adversarial network (GANs)

■ Discriminator's classification provides a signal that the 
generator uses to update its weights 

■ Application in particle physics: fast detector simulation 
‣ Full GEANT simulation usually very CPU intensive
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https://developers.google.com/machine-learning/gan/gan_structure

(neural network)

(neural network)

Video: 
Digits produced by a GAN

http://www.apple.com/de/

