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Point estimates and limits
http://pdg.lbl.gov/2017/reviews/rpp2016-rev-statistics.pdf

One often reports a point estimate and its standard deviation: 6, 0y

In some situation this is not adequate and one rather reports an interval
instead, e.g. when

» the p.d.f. of the estimator is not Gaussian

» one has physical boundaries on the possible values of the parameter

Goals
» communicate as objectively as possible the result of the experiment

» provide an interval that is constructed to cover the true value of the parameter with a
specified probability

» provide the information needed by the consumer of the result to draw conclusions about
the parameter or to make a particular decision

» draw conclusions about the parameter that incorporate stated prior beliefs.
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Bayesian credible intervals

>

Bayesian approach:
report full posterior p.d.f.

In case a range is desired:
iIntegrate posterior p.d.f.

Oup
1—a:/ p(6]x) df

elo

cf. LIGO paper: 1 —a =0.9
("90% credible interval®)

posterior distribution P(0)

Different options to construct the interval [Bio, Bup]:
» [—oo0, Bio] and [Bup, =0] both correspond to a probability a/2
»  Antisymmetric intervals, e.g. [—eo, Bup] corresponding to probability 1 —a

»  Symmetric interval around maximum value corresponding to probability 1 —a

v

p(B]x) higher than for any 6 not belonging to the set (could give disjoint intervals)
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Sayesian upper limits

3

1 — = /_ p(6]x) d6
/

In case of a physical lower
bound, lower integration limit is
replaces by physics bound
(e.g., mass of a particle m > 0)

posterior distribution P(0)

up
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—xample:
Bayesian upper limits for a Poisson variable n (1)

In a counting experiment one would like to measure a signal s. Suppose the
average number of background counts b is known:

(5 - b)n e_(s_|_b)

Likelihood for n counts: P(n|s) = |
n:
, - 0, <0
Let's take the following prior for s:  w(s) = 4
\1, s>0
Upper limit:
Sup [ P(n|s)m(s)ds ,._.,p [SwTb
1 — = ds = == = frf(x;n+1,1)d
“ /_oo PEIMds = 1= B nls)n(s) ds /o y a1, 1) o
We obtain: fr(x; o, B) = r(&l)ﬁa x@Le™x/P

spp = F'(1—a)—b, where F = CDF of the gamma distr. fr(x; n+ 1, 1)
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—xample:
Bayesian upper limits for a poisson variable n (2)

Special case: b =0

n S up
import numpy as np o
from scipy.stats import gamma
0 2.30
def ul (alpha, n, b): 1 3.89
Baysian Poisson upper limits 2 0. 32
1 - alpha: confidence level 3 ©.08
n: observed counts A 7 .99
b: background
rrrrn 5 9.27
return gamma.ppf(l. - alpha, n + 1) - b 6 10.53
7 11.77
print("n s up") g
print(" _______ n) 8 __2099
for n in range (10) : O 14 .21

print (£f"{n} {ul(0.1, n, 0):.2f}")

Can write this also in terms of the 1 __4
¥* distribution: P T 5l L —a2(n+1)] )
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Frequentist confidence intervals

Construct interval that includes (covers) the true value of the parameter with a
probability p

= p Is called the coverage probability

= Constructed confidence interval depends on data and would fluctuate if we
were to repeat the experiment many times

= coverage probability = fraction of intervals that would cover the true value In
repeated experiments
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Neyman construction (1)

The Neyman construction for constructing frequentist confidence intervals
iInvolves the following steps:

1. Given a true value of the parameter 6, determine a p.d.f. f(x; B) for the
outcome of the experiment. Often x is an estimator for the 6.

2. Using some procedure, define an interval in x that has a specified probability
(say, 90%) of occurring

3. Do this for all possible true values of 6, and build a confidence belt of these
Intervals.

In practice, the p.d.f. of step 1 might come from Monte Carlo simulations.
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Neyman Construction (2)

&3

confidence: belt
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Coverage of the Neyman interval

A

@/\

N

@A @ vin @Z. @
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Confidence interval for a Gaussian distributed estimator

—~ 1

Consider a parameter © whose S 09t 0 o
estimator is distributed as T 0.8E T
C0.7F
0.6
1 1 (0 -0y
g(0;0) = ———exp <_ > ) 0.45
210y, 2 99 0.3F
0.2
0.1
"'sampling distribution” 0—" ;
§
Determine lower bound 61 of the
confidence interval for 6 by solving =20 aF
o A A T 0.8F
o — / g(0:01)d0 =1~ G(Bown,0) D07
Jobs 05—
Analogously for the upper bound 62: 83:
é\obs 022
v :/ g(0;6,)d0 = G(Oyps, 62) “E .
oo \ 0 5 6
cumulative distribution function 0
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Confidence interval for a Gaussian distributed estimator

With the aid of the CDF of the standard Gaussian @ we can write this as:

A é\05_6’
alzl—G(eobs,el)zl—cp( > 1)

99

= G(é\obs,ﬁz) _ o (eobs — 92)

94

This gives:

Here @1 is the inverse function of @, i.e., the quantile function of the standard
Gaussian.
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Classical confidence intervals for the mean of the
Poisson distribution (1)

Equations for the confidence interval limits 61 and 62:

— P(n 2 Nobs; 91)
— P(n < Nobs; 92)

This gives:
nobs_]- nobs_]-
Z f(n;6;)=1— Z f(mb)=1- ) —1|e_91
N=nNobs n=0 n:
Nobs Nobs n

Z f(n; 0,) = Z —2e—92
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Classical confidence intervals for the mean of the
Poisson distribution (2)

Using the the following relation between the Poisson distribution and the x2
distribution

Nobs Vn . o0
Z e = /2 f2(z; ngs = 2(nops + 1)) dz

=1 — FX2 (ZV; 2(nobs T 1)))

AN

F,» : CFD of the v? distribution

we obtain
0, = ~F - ay; 2
1 — 5 2 [041; nobs]
1
92 — 5 X21[1 — Qo; 2(nobs + ].)]

\

[identical to Bayesian upper limits (b = 0)]
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Classical con
Poisson distribution (3)

ldence intervals for the mean of the

Nabs

lower limit 6,

a1= 0.1 a1 =0.05 a1=0.01

upper limit 6

ar=().1 a2 =0.00 a2=0.01

Ot W= W DN ==

0.105 0.051
0.532 0.359
1.10 0.818
1.74 1.37
243 1.97

0.010
0.149
0.436
0.823
1.28

2.30
3.89
0.32
6.68
7.99

0.27

3.00 4.61
4.74 6.64
6.30 8.41
(.75 10.04
9.15 11.60
10.51 13.11

cf. slide 6 (Bayesian
upper limits, b = 0)
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Classical Gaussian upper limits with physical limit

Suppose the estimator of a

parameter B follows a Gaussian with o S
known standard deviation o = 1: CD§ 45F
A 1 A 4

0;0) = —(6 - 6)?/2 :
s(0:0) = —ew (<0-072)  5g
3t

Physically allowed region: 6 > 0 5 5
An example would be the 2f
measurement of the neutrino mass: 1 5F
m=0 15
Let's construct the 95% CL upper 0.5
limit confidence belt (1.640) 0t

H =2~ s, =3.64 @95%CL
But what if we measured -2?: § = —2 ~~ s,, = —0.36 @ 95%CL

A negative upper limit”? Has anything gone wrong"?
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Classical Gaussian Upper Limits with Physical Limit

f=—2~ s, =—0.36 @ 95%CL

We stipulated 6 = 0O, i.e. the confidence interval is an empty set ...

If we measured —1.63 the confidence interval would be [0, 0.01]. Does this
really mean that in this case there is a 95% chance that the true value of 6 is
between O and 0.017
No, it just means that we have observed a downward fluctuation
»  Suppose the true value is zero (B = 0) = acceptance region @ 95% CL is [—oo, 1.64]
» We expect a negative result in 50% of the cases
» We expect a measurement less than —1.64 in 5% of the cases

» We expect a measurement less than -2 in 2.3% of the cases

Sometimes a negative result is shifted to zero, i.e., 0 + 1.64 o is reported as
upper limit.

That's not helpful. Always report the observed value even if it is in the

unphysical regime. Otherwise the result cannot be combined with other results
IN meta analyses.
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Interpretation of Frequentist Confidence Intervals

So has anything gone wrong with the construction of the confidence
interval”?

Actually no, nothing has gone wrong.

= Even though one should not, there is a tendency to interpret frequentist
confidence intervals as Bayesian objects. That is, If one constructs the
confidence interval in our example one tends to think that the true value lies
in this interval with 95% probability

= But that's not right. We have to think in terms of repeated experiments. The
obtained interval covers the true value in 95% of the experiments.

= [his does not mean that the interval obtained in a single experiment
contains the true value with 95% probability.
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The "ﬂip—ﬂOp" pr0b|em Feldman, Cousins, physics/9711021v2

Let us suppose that physicist X takes the following attitude in an
experiment designed to measure a small quantity:

= |f the result x is less then 3o, | will state an upper limit

= |[f the result is greater than 3o, | will state a central confidence interval from
the standard tables

— S0 what is reported in this case is decided after the measurement

L et's take a look at the confidence band

[Variables in the paper by Feldman and Cousins: x = 6, = 6. Confidence band for
90% CL. Otherwise same situation: Gaussian sampling distribution with c = 1 and
physical regime p = 0. In the following we'll use x and p.]
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The "flip-flop" problem: Confidence band

0+ 1'28.0. X + 1.280 upper limit lower and upper limit
upper limit for . .-
i for positive x < 30) for positive x > 30)
negative x)
_IIIIIIIIIIIIIIIIIIIIIIIIIIIII_
5
4
= k
a‘ b
2 C
1 =
Feldman, Cousins, C _
physics/9711021v2 0 FENEEEENEE NENEE SN SR AR
-2 -1 0) 1 2 3 4

Measured Mean x
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The "flip-flop" problem: Coverage

6 _IIII!IIII!IIII!IIII!IIII!IIII_ TheCOVGrageOftheintervals
- f 5 f 5 5 1 iswrong
D[ —_ » Small y: overcoverage
E E » Example: py=2
4 [ o G - acceptance region is
- C ] xel[2-1.28,2 + 1.64]
= F 1 — coverage is only 85%
QB3 s s s e e
é’ C undéercove!rage : » More general:
C : for 1.36 < p < 4.28 the
0 (— — —e IR, S— — chance of finding a measured
C : : : : : value x in acceptance region is
- only 85%, not the desired 90%
1 i S e —
- 71  Thisis a serious problem of
O_IlllillllillllilllliIlll 1111 ’[heﬂip—ﬂoppingapprOaCh

-2 -1 0 1 2 3 4

Feldman, Cousins,
Measured Mean x

physics/9711021v2
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Problems with classical confidence intervals

= |n some situations the confidence interval can be an empty set
= they do not elegantly handle unphysical cases
= they do not continuously vary between

a) giving upper limits in case of a very small signal and
b) giving upper and lower limits in case of a more significant signal

Feldman & Cousins proposed a solution in their paper
— Feldman-Cousins confidence intervals
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Feldman-Cousins ordering principle for the construction
of confidence intervals

The Neyman construction does not specify how, for a fixed true value p,
to define the interval that covers a fraction 1 — a (e.g. 95%) of the

observed outcomes Xx.
A K
\ >

X

Feldman & Cousins introduced an ordering principle based on the likelihood
ratio:

 P(x|p)
= P livest)

Upest IS the best fit obtained from data (maximum likelihood), taking the
physically allowed region into account.

Order procedure for fixed u: add values of x to the interval from highest R to
lower R until the desired value 1 — a is reached.
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Application of Feldman-Cousins to Gaussian upper
imits with physical limit (1)

Sampling distribution in our example oy 1 TN
with physical limit y = 0 (ox = 1): g(xip) = NoT <P ( (x = 1) /2)

In this case the best estimate is given by

2

0, x<0

=
Hbest X X 2 0

\

So R is given by
exp (—5(x — 1)?)
P ) e (=)
P(X‘Mbest)

x <0

R

exp (—3(x — p)?) 0
1 x>

In practice, for each p find interval limits x1 and x2 by solving numerically:

R(x1) = R(x2) and /X2 g(x|p)dx =1—«

X1
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Application of Feldman-Cousins to Gaussian upper
imits with physical limit (2)

Measured Mean x

_I 1 I Frrri I rrri I rrri I rrri 1 I_

~ 90%:CL corfidence belt

_I L1 1 I L1 11 I L1 11 I ] 1 I L1 11 I 11 I_
-2 -1 0 1 2 3 4

Some nice features:

» Confidence interval is never
empty

= Smooth transition from giving
upper limit to two-sided
interval

= [ells you when to quote
upper limit and when to quote
an interval

= Correct coverage
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—eldman-Cousins confidence intervals for the mean of
the Poisson Distribution (1)

Let's go back to the counting experiment with signal s and known average
number of background counts b:

(5 —+ b)n e_(s_|_b)
n!

P(n|s) =

Classical method sometimes gives negative upper limit when neps < b.

This problem is addressed by the Feldman-Cousins method.

The paper contains look-up tables for upper limits and confidence intervals.
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—eldman-Co
mean of the

USINS confidence intervals for the
Poisson Distribution (2)

TABLE IV. 90% C.L. intervals for the Poisson signal mean pu, for total events observed ng, for

known mean background b ranging from 0 to 5.

S
o
-

S

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

5.0

OO Ot WN K- O

0.00, 2.44
0.11, 4.36
0.53, 5.91
1.10, 7.42
1.47, 8.60
1.84, 9.99
2.21,11.47
3.56,12.53
3.96,13.99
4.36,15.30
5.50,16.50
5.91,17.81
7.01,19.00
7.42,20.05
8.50,21.50
9.48,22.52
9.99,23.99

11.04,25.02 10.54,24.52 10.04,24.02
11.47,26.16 10.97,25.66 10.47,25.16

0.00, 1.94
0.00, 3.86
0.03, 5.41
0.60, 6.92
1.17, 8.10
1.53, 9.49
1.90,10.97
3.06,12.03
3.46,13.49
3.86,14.80
5.00,16.00
5.41,17.31
6.51,18.50
6.92,19.55
8.00,21.00
8.98,22.02
9.49,23.49

0.00, 1.61
0.00, 3.36
0.00, 4.91
0.10, 6.42
0.74, 7.60
1.25, 8.99
1.61,10.47
2.56,11.53
2.96,12.99
3.36,14.30
4.50,15.50
4.91,16.81
6.01,18.00
6.42,19.05
7.50,20.50
8.48,21.52
8.99,22.99

0.00, 1.33
0.00, 2.91
0.00, 4.41
0.00, 5.92
0.24, 7.10
0.93, 8.49
1.33, 9.97
2.09,11.03
2.51,12.49
2.91,13.80
4.00,15.00
4.41,16.31
5.51,17.50
5.92,18.55
7.00,20.00
7.98,21.02
8.49,22.49
9.54,23.52
9.97,24.66

0.00, 1.26
0.00, 2.53
0.00, 3.91
0.00, 5.42
0.00, 6.60
0.43, 7.99
1.08, 9.47
1.59,10.53
2.14,11.99
2.53,13.30
3.50,14.50
3.91,15.81
5.01,17.00
5.42,18.05
6.50,19.50
7.48,20.52
7.99,21.99
9.04,23.02
9.47,24.16

0.00, 1.18
0.00, 2.19
0.00, 3.45
0.00, 4.92
0.00, 6.10
0.00, 7.49
0.65, 8.97
1.18,10.03
1.81,11.49
2.19,12.80
3.04,14.00
3.45,15.31
4.51,16.50
4.92,17.55
6.00,19.00
6.98,20.02
7.49,21.49
8.54,22.52
8.97,23.66

0.00, 1.08
0.00, 1.88
0.00, 3.04
0.00, 4.42
0.00, 5.60
0.00, 6.99
0.15, 8.47
0.89, 9.53
1.51,10.99
1.88,12.30
2.63,13.50
3.04,14.81
4.01,16.00
4.42,17.05
5.50,18.50
6.48,19.52
6.99,20.99
8.04,22.02
8.47,23.16

12.51,27.51 12.01,27.01 11.51,26.51 11.01,26.01 10.51,25.51 10.01,25.01 9.51,24.51
13.55,28.52 13.05,28.02 12.55,27.52 12.05,27.02 11.55,26.52 11.05,26.02 10.55,25.52 10.05,25.02 9.55,24.52

0.00, 1.06
0.00, 1.59
0.00, 2.67
0.00, 3.95
0.00, 5.10
0.00, 6.49
0.00, 7.97
0.39, 9.03
1.06,10.49
1.59,11.80
2.27.13.00
2.67,14.31
3.54,15.50
3.95,16.55
5.00,18.00
5.98,19.02
6.49,20.49
7.54,21.52
7.97,22.66
9.01,24.01

0.00, 1.01
0.00, 1.39
0.00, 2.33
0.00, 3.53
0.00, 4.60
0.00, 5.99
0.00, 7.47
0.00, 8.53
0.66, 9.99
1.33,11.30
1.94,12.50
2.33,13.81
3.12,15.00
3.53,16.05
4.50,17.50
5.48,18.52
5.99,19.99
7.04,21.02
7.47,22.16
8.51,23.51

0.00, 0.98
0.00, 1.22
0.00, 1.73
0.00, 2.78
0.00, 3.60
0.00, 4.99
0.00, 6.47
0.00, 7.53
0.00, 8.99
0.43,10.30
1.19,11.50
1.73,12.81
2.38,14.00
2.78,15.05
3.59,16.50
4.48,17.52
4.99,18.99
6.04,20.02
6.47,21.16
7.51,22.51
8.55,23.52
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Feldman-Cousins method: Discussion

Nice features:
+ State-of-the art for frequentist confidence intervals

+ Avoids flip-flop problem, correct coverage
+ Handles interval estimates at physical boundaries

Drawbacks:

- Construction of F-C confidence intervals is complicated, usually has to be
done numerically

- Systematic uncertainties not easily included

- Counter-intuitive result in case of counting experiments with different
background (see next slide)
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Feldman-Cousins method: The paradox of fewer than
expected background events

Consider two counting experiments
» Experiment A: expects background b = O ("carefully designed experiment”)

» Experiment B: expects background b =5

Suppose now both experiments measure n = 0 counts.
Feldman-Cousins upper limits at 90% CL.:

» Experiment A: syp =2.44
» Experiment B: syp = 0.98

Weird: The FC method says that the experiment B in which a larger
background is expected gives the better (more stringent) upper limit.

Experiment B must have observed a downward fluctuation of the
background. How can a fluctuation result in a better upper limit?
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Suggestion in the Feldman-Cousins paper

"Our suggestion for doing this is that in cases in which the measurement is
less than the estimated background, the experiment report both the upper
limit and the “sensitivity” of the experiment, where the “sensitivity” is defined
as the average upper limit that would lbe obtained by an ensemble of
experiments with the expected background and no true signal. [...]

Thus, an experiment that measures 2 events and has an expected
background of 3.5 events would report a 90% C.L. upper limit of 2.7 events
(from Tab. V), but a sensitivity of 4.6 events (from Tab. XII)."

Feldman, Cousins, physics/9711021v2
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ClLs method: Motivation

Consider an experiment with low sensitivity
("background dominated experiment").

» By construction, one rejects a true hypothesis with a certain probability (e.g. 5%)
» Problem: exclusion of parameter values to which one has no sensitivity
» Example Higgs search: my = 1000 TeV rejected with a chance of 5%

» "Spurious exclusion”

This problem was addressed for the LEP Higgs searches in the late 1990'ies
and led to the ClLs method A. Read, J. Phys. G 28, 2693 (2002), T. Junk, NIM A, 434, 435 (1999)

» Explicitly consider experimental sensitivity in limit setting

» Reduce spurious exclusion by a particular choice of the critical region

» Frequentist-motivated approach, but NOT frequentist (“modified frequentist method”)
» Name a bit misleading, as the CLs exclusion region is not a confidence interval

» Qvercoverage by construction: conscious choice to give up frequentist coverage to
take sensitivity into account

» "Despite its shaky foundations in statistical theory, it has been producing sensible
results for over a decade" (http://cds.cern.ch/record/2203243)
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http://cds.cern.ch/record/2203243

G. Cowan, https://www.pp.rhul.ac.uk/~cowan/stat_course.html

CLs procedure (1)

L(x|s + b)
L(x|b)

Test statistic: @ = —21n

f(Q)

llllllll/lllll'lll

e  f(Qlb)

0.06

| ps—i—b

signal-like <@ l l = background-like
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G. Cowan, https://www.pp.rhul.ac.uk/~cowan/stat_course.html

ClLs procedure (2)

Low sensitivity: the distributions under s and s+b are very close

()

§ 05_ /
L/ (Qls+b)
N\
0.35— ;
025— ;
i Psib
Pb o P >
o:- _—
-10 -8 -6 -4 -2 0

Q
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G. Cowan, https://www.pp.rhul.ac.uk/~cowan/stat_course.html

CLs Procedure (3)

f(Q)

Standard p-value test:

SO0, pio

Reject s+b hypothesis if Q

0.06 obs
Psib S i \ g /

N

0.04 —
CLs method: :
Reject s+b hypothesis if I_CLb 0.02 - CL
B el 5 s+b
pb \: — Ps+b

CL
CL, :— 1ps—|—b _ C|S_+b <a | |
— Pb b %80 60 40 20 0
\ Q
more stringent than standard
p-value testas 1 —pp < 1

Increases “effective” p-value when the two distributions become close (prevents
exclusion if sensitivity is low)
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G. Cowan, https://www.pp.rhul.ac.uk/~cowan/stat_course.html

Upper Limits on py = o/osm In Higgs searches

Signal for Higgs hypothesis:  s(my) = Lint - osm

Line -o(my) _ a(mp)
int - osm(my)  osm(mp)
u=1: SM w/ Higgs, u = 0: SM w/0 Higgs (background only model)

Signal strength p: n=ypu-s(my)+b, p= ;
/

Carry out CLs procedure for all values 350 [

of u = o/osm. Reject p if ool f(uupl0)
_ Pu o green: |
CL, := T o < 0.05 .soE 16

£ 200}
This defines upper limit pup at 95% B lSOE_
CL (smallest value of p that can be o
rejected by the CLs criterion) oor
50
At a given value of mu, we have an |

observed value of pup, and we can T

also find the distribution f(uup|O) ~_ background .

only hypothesis
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Upper limits on y = o/osm In HIggs searches

95% CL Iimitonpy < 1 = Standard model with mn rejected

ATLAS, Phys.Lett. B716 (2012) 1-29 (arXiv:1207.7214)

“E ATLAS 2011-2012 -1 E
- \s=7TeV: [Ldt=4.6-48fb" = 20 -
— — Observed y

\s =8 TeV: [Ldt = 5.8-5.9 fb’

95% CL Limit on
- I

---- Bkg. Expected

10" = (a) CL, Limits _
110 150 200 300 400 500
Consistency within 20 everywhere mH [GeV]

except for my = 125 GeV
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Higgs discovery (this time from ATLAS paper)

Reject also background only hypothesis at my = 125 GeV

and check consistency with p = 1

local p-value

Q_O ET T T 1T | L | L | L | L | L | L 1T T T5
= ATLAS 2011-2012  __
S (s=7TeV: [Ldt=46-481b" =
\s=8TeV: [Ldt=5.8-5.9 fb” [x1o
1 Egete = uuppaugey ~ = \ugupupupauuupepeiabeblubeeellubegee e e pspugugepaiapuupe g = Oo
2 10 L == miatutulelle et e e 1o
Tl = 20
10-3 T Uy USRS 30
0% sy 4
10° 4o
10 s
107 50
10°
107 grmmmmmm e M - - 60
10-10 hRS
10-11 I I | | I I | | I I | | I I | | 11 11 | 1 I‘I~‘L| [ I | | 111 1 i
110 115 120 125 130 135 140 145 150
m, [GeV]

— discovery!!!

signal strength

|ATL'AS| 2014 -2o|12

W,ZH — bb

l |
' m, = 126.0 GeV

Vs=7TeV: [Ldt=4.7b"
H— 1t

Vs =7TeV: [Ldt=4.6-4.7 fo”
*

H—WW" = vy
Vs =7TeV: [Ldt=4.7 fo”
Vs=8TeV: [Ldt=5.81b"
H—vy

\s=7TeV: Ldt=4.8 fb"
Vs=8TeV: [Ldt=5.91"

H—zZ" - 4
Vs=7TeV: [Ldt=4.81fb"
Vs=8TeV: [Ldt=5381fb"

Combined
(s=7TeV: fLdt=46-481b" u = 14+0.3
Vs =8TeV: [Ldt=58-591fb"

e
| |

-1

ATLAS, Phys.Lett. B716 (2012) 1-29 (arXiv:1207.7214)

o 1
Signal strength (u)

Statistical Methods in Particle Physics WS 2020/21 | K. Reygers | 8. Confidence Limits and Intervals 37



Higgs discovery

CERN Seminar on 4. July 2012
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Higgs discovery

‘| think we have it!”

(Rolf Heuer,
CERN director general in 2012
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