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Point estimates and limits

2

One often reports a point estimate and its standard deviation: ✓̂, �̂✓̂

In some situation this is not adequate and one rather reports an interval 
instead, e.g. when  
‣ the p.d.f. of the estimator is not Gaussian 
‣ one has physical boundaries on the possible values of the parameter

Goals 
‣ communicate as objectively as possible the result of the experiment  
‣ provide an interval that is constructed to cover the true value of the parameter with a 

specified probability  
‣ provide the information needed by the consumer of the result to draw conclusions about 

the parameter or to make a particular decision  
‣ draw conclusions about the parameter that incorporate stated prior beliefs.

http://pdg.lbl.gov/2017/reviews/rpp2016-rev-statistics.pdf
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Bayesian credible intervals
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Bayesian approach: 
report full posterior p.d.f.
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In case a range is desired: 
integrate posterior p.d.f.

1� ↵ =

Z ✓up

✓lo

p(✓|x) d✓

cf. LIGO paper: 1 – α = 0.9 
("90% credible interval")

Different options to construct the interval [θlo, θup]: 
‣ [–∞, θlo] and [θup, ∞] both correspond to a probability α/2   
‣ Antisymmetric intervals, e.g. [–∞, θup] corresponding to probability 1 – α 
‣ Symmetric interval around maximum value corresponding to probability 1 – α 
‣ p(θ|x) higher than for any θ not belonging to the set (could give disjoint intervals) 
‣ …
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Bayesian upper limits
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In case of a physical lower 
bound, lower integration limit is 
replaces by physics bound 
(e.g., mass of a particle m > 0)
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Example:  
Bayesian upper limits for a Poisson variable n  (1)

5

In a counting experiment one would like to measure a signal s. Suppose the 
average number of background counts b is known:

Likelihood for n counts: P(n|s) = (s + b)n

n!
e�(s+b)

Let's take the following prior for s: ⇡(s) =

(
0, < 0

1, s � 0

Upper limit:

We obtain:

sup = F�1(1� ↵)� b, where F = CDF of the gamma distr. f�(x ; n + 1, 1)

f�(x ;↵,�) =
1

�(↵)�↵
x↵�1e�x/�

1� ↵ =

Z sup

�1
p(s|n) ds =

R sup
�1 P(n|s)⇡(s) ds
R1
�1 P(n|s)⇡(s) ds

x :=s+b
=

Z sup+b

0
f�(x ; n + 1, 1) dx
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Example:  
Bayesian upper limits for a poisson variable n  (2)

6

Special case: b = 0
Baysian Poisson upper limits

IQ�[4]: import�nump\�as�np�
from�scip\.stats�import�gamma�

IQ�[10]: def�Xl(alSha,�Q,�b):�
����"""�
����Ba\ViaQ�PRiVVRQ�XSSeU�OiPiWV�
����1��aOSha:�cRQfideQce�OeYeO�
����Q:�RbVeUYed�cRXQWV�
����b:�bacNgURXQd�
����"""�
����return�gamma.SSf(1.��alSha,�Q�+�1)��b�

IQ�[15]: SUiQW("Q��V_XS")�
SUiQW("")�
for�Q�in�UaQge(10):�
����SUiQW(f"^Q`��^Xl(0.1,�Q,�0):.2f`")�

IQ�[�]: ��

Q��V_XS�
�
0��2.30�
1��3.89�
2��5.32�
3��6.68�
4��7.99�
5��9.27�
6��10.53�
7��11.77�
8��12.99�
9��14.21�

Baysian Poisson upper limits
IQ�[4]: import�nump\�as�np�

from�scip\.stats�import�gamma�

IQ�[10]: def�Xl(alSha,�Q,�b):�
����"""�
����Ba\ViaQ�PRiVVRQ�XSSeU�OiPiWV�
����1��aOSha:�cRQfideQce�OeYeO�
����Q:�RbVeUYed�cRXQWV�
����b:�bacNgURXQd�
����"""�
����return�gamma.SSf(1.��alSha,�Q�+�1)��b�

IQ�[15]: SUiQW("Q��V_XS")�
SUiQW("")�
for�Q�in�UaQge(10):�
����SUiQW(f"^Q`��^Xl(0.1,�Q,�0):.2f`")�

IQ�[�]: ��

Q��V_XS�
�
0��2.30�
1��3.89�
2��5.32�
3��6.68�
4��7.99�
5��9.27�
6��10.53�
7��11.77�
8��12.99�
9��14.21�

Can write this also in terms of the 
 distribution:χ2 sup =

1

2
F�1
�2 [1� ↵, 2(n + 1)] (b = 0)
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Frequentist confidence intervals

■ p is called the coverage probability  
■ Constructed confidence interval depends on data and would fluctuate if we  

were to repeat the experiment many times 
■ coverage probability = fraction of intervals that would cover the true value in 

repeated experiments

7

Construct interval that includes (covers) the true value of the parameter with a 
probability p
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Neyman construction (1)

1. Given a true value of the parameter θ, determine a p.d.f. f(x; θ) for the 
outcome of the experiment. Often x is an estimator for the θ. 

2. Using some procedure, define an interval in x that has a specified probability 
(say, 90%) of occurring  

3. Do this for all possible true values of θ, and build a confidence belt of these 
intervals.

8

The Neyman construction for constructing frequentist confidence intervals 
involves the following steps:

In practice, the p.d.f. of step 1 might come from Monte Carlo simulations.
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Coverage of the Neyman interval

10
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Confidence interval for a Gaussian distributed estimator

11

Consider a parameter θ whose 
estimator is distributed as

"sampling distribution"

↵1 =

Z 1

✓̂obs

g(✓̂; ✓1) d✓̂ ⌘ 1� G (✓̂obs, ✓1)

Determine lower bound θ1 of the 
confidence interval for θ by solving

α1

Analogously for the upper bound θ2:

↵2 =

Z ✓̂obs

�1
g(✓̂; ✓2) d✓̂ ⌘ G (✓̂obs, ✓2)

cumulative distribution function

α2

g(✓̂; ✓) =
1p
2⇡�✓̂

exp

 
�1

2

(✓̂ � ✓)2

�2
✓̂

!
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Confidence interval for a Gaussian distributed estimator

12

With the aid of the CDF of the standard Gaussian Φ we can write this as:

This gives:

Here Φ–1 is the inverse function of Φ, i.e., the quantile function of the standard 
Gaussian.

↵1 = 1� G (✓̂obs, ✓1) = 1� �

 
✓̂obs � ✓1

�✓̂

!

↵2 = G (✓̂obs, ✓2) = �

✓
✓obs � ✓2

�✓̂

◆

✓1 = ✓obs � �✓̂�
�1(1� ↵1)

✓2 = ✓obs + �✓̂�
�1(1� ↵2)

���1(y) = ��1(1� y)
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Classical confidence intervals for the mean of the  
Poisson distribution (1)

13

f (n; ⌫) =
⌫n

n!
e�⌫

Equations for the confidence interval limits θ1 and θ2:

This gives:

↵1 =
1X

n=nobs

f (n; ✓1) = 1�
nobs�1X

n=0

f (n; ✓1) = 1�
nobs�1X

n=0

✓n1
n!

e�✓1

↵2 =
nobsX

n=0

f (n; ✓2) =
nobsX

n=0

✓n2
n!

e�✓2

↵1 = P(n � nobs; ✓1)

↵2 = P(n  nobs; ✓2)
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Classical confidence intervals for the mean of the  
Poisson distribution (2)

14

Using the the following relation between the Poisson distribution and the χ2 
distribution

nobsX

n=0

⌫n

n!
e�⌫ =

Z 1

2⌫
f�2(z ; ndf = 2(nobs + 1)) dz

= 1� F�2(2⌫; 2(nobs + 1)))

we obtain
F�2 : CFD of the �2 distribution

[identical to Bayesian upper limits (b = 0)]

✓1 =
1

2
F�1
�2 [↵1; 2nobs]

✓2 =
1

2
F�1
�2 [1� ↵2; 2(nobs + 1)]
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Classical confidence intervals for the mean of the  
Poisson distribution (3)

15

Statistical Methods, Lecture 11, January 7, 2013         26

Confidence interval for mean of Poisson distr

An important case: n
obs

 = 0

Calculate an upper limit at confidence level (1-β) = 95%

Useful table:

 = ∑
n=0

0
b

n
e
−b

n !
= e

−b  b = − log

b = − log0.05 = 2.996 ≈ 3

↵1 ↵1 ↵1 ↵2 ↵2 ↵2

✓1 ✓2

cf. slide 6 (Bayesian 
upper limits, b = 0)



Statistical Methods in Particle Physics WS 2020/21 | K. Reygers | 8. Confidence Limits and Intervals

Classical Gaussian upper limits with physical limit

16

Suppose the estimator of a 
parameter θ follows a Gaussian with 
known standard deviation σ = 1:

g(✓̂; ✓) =
1p
2⇡

exp
⇣
�(✓̂ � ✓)2/2

⌘

Physically allowed region: 
An example would be the 
measurement of the neutrino mass: 
m ≥ 0

Let's construct the 95% CL upper 
limit confidence belt (1.64σ)

✓̂ = 2 sup = 3.64 @ 95%CL
2− 1− 0 1 2 3 4 5

θ

0
0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

tru
e

θ

But what if we measured –2?: ✓̂ = �2 sup = �0.36 @ 95%CL

A negative upper limit? Has anything gone wrong? 

✓ � 0
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Classical Gaussian Upper Limits with Physical Limit

17

✓̂ = �2 sup = �0.36 @ 95%CL

We stipulated θ ≥ 0, i.e. the confidence interval is an empty set …

If we measured –1.63 the confidence interval would be [0, 0.01]. Does this 
really mean that in this case there is a 95% chance that the true value of θ is 
between 0 and 0.01?
No, it just means that we have observed a downward fluctuation 
‣ Suppose the true value is zero (θ = 0) → acceptance region @ 95% CL is [–∞, 1.64] 
‣ We expect a negative result in 50% of the cases 
‣ We expect a measurement less than –1.64 in 5% of the cases 
‣ We expect a measurement less than –2 in 2.3% of the cases

Sometimes a negative result is shifted to zero, i.e., 0 + 1.64 σ is reported as 
upper limit.  
That's not helpful. Always report the observed value even if it is in the 
unphysical regime. Otherwise the result cannot be combined with other results 
in meta analyses.
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Interpretation of Frequentist Confidence Intervals

18

So has anything gone wrong with the construction of the confidence 
interval?

■ Even though one should not, there is a tendency to interpret frequentist 
confidence intervals as Bayesian objects. That is, if one constructs the 
confidence interval in our example one tends to think that the true value lies 
in this interval with 95% probability 

■ But that's not right. We have to think in terms of repeated experiments. The 
obtained interval covers the true value in 95% of the experiments. 

■ This does not mean that the interval obtained in a single experiment 
contains the true value with 95% probability.

Actually no, nothing has gone wrong.
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The "flip-flop" problem

19

Let us suppose that physicist X takes the following attitude in an 
experiment designed to measure a small quantity:

■ If the result x is less then 3σ, I will state an upper limit  
■ If the result is greater than 3σ, I will state a central confidence interval from 

the standard tables 

Feldman, Cousins, physics/9711021v2

→ So what is reported in this case is decided after the measurement

Let's take a look at the confidence band

[Variables in the paper by Feldman and Cousins:                      . Confidence band for 
90% CL. Otherwise same situation: Gaussian sampling distribution with σ = 1 and 
physical regime μ ≥ 0. In the following we'll use x and μ.]

x ⌘ ✓̂, µ ⌘ ✓
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The "flip-flop" problem: Confidence band

20

Feldman, Cousins, 
physics/9711021v2

0 + 1.28σ 
upper limit for 
negative x)

0

1

2

3

4

5

6

-2 -1 0 1 2 3 4
Measured Mean x

M
ea

n 
µ

x + 1.28σ upper limit 
for positive x < 3σ)

lower and upper limit 
for positive x > 3σ)
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The "flip-flop" problem: Coverage

21

Feldman, Cousins, 
physics/9711021v2

0
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M
ea
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undercoverage

The coverage of the intervals 
is wrong 
‣ Small μ: overcoverage 
‣ Example: μ = 2 

acceptance region is 
x ∈ [2 – 1.28, 2 + 1.64] 
→ coverage is only 85%  

‣ More general: 
for 1.36 < μ < 4.28 the 
chance of finding a measured 
value x in acceptance region is 
only 85%, not the desired 90%

This is a serious problem of 
the flip-flopping approach
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Problems with classical confidence intervals

22

■ in some situations the confidence interval can be an empty set 
■ they do not elegantly handle unphysical cases 
■ they do not continuously vary between  
a) giving upper limits in case of a very small signal and 
b) giving upper and lower limits in case of a more significant signal

Feldman & Cousins proposed a solution in their paper 
→ Feldman-Cousins confidence intervals
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Feldman-Cousins ordering principle for the construction 
of confidence intervals

23

The Neyman construction does not specify how, for a fixed true value μ, 
to define the interval that covers a fraction 1 – α (e.g. 95%) of the 
observed outcomes x.

x

�

�0

�1

�2

f(x|�)

x
Feldman & Cousins introduced an ordering principle based on the likelihood 
ratio:

R =
P(x |µ)

P(x |µbest)

μbest is the best fit obtained from data (maximum likelihood), taking the 
physically allowed region into account.

Order procedure for fixed μ: add values of x to the interval from highest R to 
lower R until the desired value 1 – α is reached.
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Application of Feldman-Cousins to Gaussian upper 
limits with physical limit (1)

24

g(x ;µ) =
1p
2⇡

exp
�
�(x � µ)2/2

�Sampling distribution in our example 
with physical limit μ ≥ 0 (σx ≡ 1):

µbest =

(
0, x < 0

x , x � 0

In this case the best estimate is given by

So R is given by

R =
P(x |µ)

P(x |µbest)
=

8
>>>><

>>>>:

exp
�
� 1

2 (x � µ)2
�

exp
�
� 1

2x
2
� , x < 0

exp
�
� 1

2 (x � µ)2
�

1
, x � 0

In practice, for each μ find interval limits x1 and x2 by solving numerically:

R(x1) = R(x2) and

Z x2

x1

g(x |µ) dx = 1� ↵



Statistical Methods in Particle Physics WS 2020/21 | K. Reygers | 8. Confidence Limits and Intervals

Application of Feldman-Cousins to Gaussian upper 
limits with physical limit (2)

25
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Some nice features:
■ Confidence interval is never 

empty 
■ Smooth transition from giving 

upper limit to two-sided 
interval 

■ Tells you when to quote 
upper limit and when to quote 
an interval 

■ Correct coverage

90% CL confidence belt
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Feldman-Cousins confidence intervals for the mean of 
the Poisson Distribution (1)

26

Let's go back to the counting experiment with signal s and known average 
number of background counts b:

P(n|s) = (s + b)n

n!
e�(s+b)

Classical method sometimes gives negative upper limit when nobs < b.

This problem is addressed by the Feldman-Cousins method.

The paper contains look-up tables for upper limits and confidence intervals.
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Feldman-Cousins confidence intervals for the 
mean of the Poisson Distribution (2)

27

TABLE IV. 90% C.L. intervals for the Poisson signal mean µ, for total events observed n0, for

known mean background b ranging from 0 to 5.

n0\b 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 5.0
0 0.00, 2.44 0.00, 1.94 0.00, 1.61 0.00, 1.33 0.00, 1.26 0.00, 1.18 0.00, 1.08 0.00, 1.06 0.00, 1.01 0.00, 0.98

1 0.11, 4.36 0.00, 3.86 0.00, 3.36 0.00, 2.91 0.00, 2.53 0.00, 2.19 0.00, 1.88 0.00, 1.59 0.00, 1.39 0.00, 1.22
2 0.53, 5.91 0.03, 5.41 0.00, 4.91 0.00, 4.41 0.00, 3.91 0.00, 3.45 0.00, 3.04 0.00, 2.67 0.00, 2.33 0.00, 1.73
3 1.10, 7.42 0.60, 6.92 0.10, 6.42 0.00, 5.92 0.00, 5.42 0.00, 4.92 0.00, 4.42 0.00, 3.95 0.00, 3.53 0.00, 2.78
4 1.47, 8.60 1.17, 8.10 0.74, 7.60 0.24, 7.10 0.00, 6.60 0.00, 6.10 0.00, 5.60 0.00, 5.10 0.00, 4.60 0.00, 3.60
5 1.84, 9.99 1.53, 9.49 1.25, 8.99 0.93, 8.49 0.43, 7.99 0.00, 7.49 0.00, 6.99 0.00, 6.49 0.00, 5.99 0.00, 4.99
6 2.21,11.47 1.90,10.97 1.61,10.47 1.33, 9.97 1.08, 9.47 0.65, 8.97 0.15, 8.47 0.00, 7.97 0.00, 7.47 0.00, 6.47
7 3.56,12.53 3.06,12.03 2.56,11.53 2.09,11.03 1.59,10.53 1.18,10.03 0.89, 9.53 0.39, 9.03 0.00, 8.53 0.00, 7.53
8 3.96,13.99 3.46,13.49 2.96,12.99 2.51,12.49 2.14,11.99 1.81,11.49 1.51,10.99 1.06,10.49 0.66, 9.99 0.00, 8.99
9 4.36,15.30 3.86,14.80 3.36,14.30 2.91,13.80 2.53,13.30 2.19,12.80 1.88,12.30 1.59,11.80 1.33,11.30 0.43,10.30

10 5.50,16.50 5.00,16.00 4.50,15.50 4.00,15.00 3.50,14.50 3.04,14.00 2.63,13.50 2.27,13.00 1.94,12.50 1.19,11.50
11 5.91,17.81 5.41,17.31 4.91,16.81 4.41,16.31 3.91,15.81 3.45,15.31 3.04,14.81 2.67,14.31 2.33,13.81 1.73,12.81
12 7.01,19.00 6.51,18.50 6.01,18.00 5.51,17.50 5.01,17.00 4.51,16.50 4.01,16.00 3.54,15.50 3.12,15.00 2.38,14.00
13 7.42,20.05 6.92,19.55 6.42,19.05 5.92,18.55 5.42,18.05 4.92,17.55 4.42,17.05 3.95,16.55 3.53,16.05 2.78,15.05
14 8.50,21.50 8.00,21.00 7.50,20.50 7.00,20.00 6.50,19.50 6.00,19.00 5.50,18.50 5.00,18.00 4.50,17.50 3.59,16.50
15 9.48,22.52 8.98,22.02 8.48,21.52 7.98,21.02 7.48,20.52 6.98,20.02 6.48,19.52 5.98,19.02 5.48,18.52 4.48,17.52
16 9.99,23.99 9.49,23.49 8.99,22.99 8.49,22.49 7.99,21.99 7.49,21.49 6.99,20.99 6.49,20.49 5.99,19.99 4.99,18.99
17 11.04,25.02 10.54,24.52 10.04,24.02 9.54,23.52 9.04,23.02 8.54,22.52 8.04,22.02 7.54,21.52 7.04,21.02 6.04,20.02
18 11.47,26.16 10.97,25.66 10.47,25.16 9.97,24.66 9.47,24.16 8.97,23.66 8.47,23.16 7.97,22.66 7.47,22.16 6.47,21.16
19 12.51,27.51 12.01,27.01 11.51,26.51 11.01,26.01 10.51,25.51 10.01,25.01 9.51,24.51 9.01,24.01 8.51,23.51 7.51,22.51
20 13.55,28.52 13.05,28.02 12.55,27.52 12.05,27.02 11.55,26.52 11.05,26.02 10.55,25.52 10.05,25.02 9.55,24.52 8.55,23.52

TABLE V. 90% C.L. intervals for the Poisson signal mean µ, for total events observed n0, for
known mean background b ranging from 6 to 15.

n0\b 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0
0 0.00, 0.97 0.00, 0.95 0.00, 0.94 0.00, 0.94 0.00, 0.93 0.00, 0.93 0.00, 0.92 0.00, 0.92 0.00, 0.92 0.00, 0.92

1 0.00, 1.14 0.00, 1.10 0.00, 1.07 0.00, 1.05 0.00, 1.03 0.00, 1.01 0.00, 1.00 0.00, 0.99 0.00, 0.99 0.00, 0.98

2 0.00, 1.57 0.00, 1.38 0.00, 1.27 0.00, 1.21 0.00, 1.15 0.00, 1.11 0.00, 1.09 0.00, 1.08 0.00, 1.06 0.00, 1.05

3 0.00, 2.14 0.00, 1.75 0.00, 1.49 0.00, 1.37 0.00, 1.29 0.00, 1.24 0.00, 1.21 0.00, 1.18 0.00, 1.15 0.00, 1.14

4 0.00, 2.83 0.00, 2.56 0.00, 1.98 0.00, 1.82 0.00, 1.57 0.00, 1.45 0.00, 1.37 0.00, 1.31 0.00, 1.27 0.00, 1.24

5 0.00, 4.07 0.00, 3.28 0.00, 2.60 0.00, 2.38 0.00, 1.85 0.00, 1.70 0.00, 1.58 0.00, 1.48 0.00, 1.39 0.00, 1.32

6 0.00, 5.47 0.00, 4.54 0.00, 3.73 0.00, 3.02 0.00, 2.40 0.00, 2.21 0.00, 1.86 0.00, 1.67 0.00, 1.55 0.00, 1.47

7 0.00, 6.53 0.00, 5.53 0.00, 4.58 0.00, 3.77 0.00, 3.26 0.00, 2.81 0.00, 2.23 0.00, 2.07 0.00, 1.86 0.00, 1.69
8 0.00, 7.99 0.00, 6.99 0.00, 5.99 0.00, 5.05 0.00, 4.22 0.00, 3.49 0.00, 2.83 0.00, 2.62 0.00, 2.11 0.00, 1.95
9 0.00, 9.30 0.00, 8.30 0.00, 7.30 0.00, 6.30 0.00, 5.30 0.00, 4.30 0.00, 3.93 0.00, 3.25 0.00, 2.64 0.00, 2.45

10 0.22,10.50 0.00, 9.50 0.00, 8.50 0.00, 7.50 0.00, 6.50 0.00, 5.56 0.00, 4.71 0.00, 3.95 0.00, 3.27 0.00, 3.00
11 1.01,11.81 0.02,10.81 0.00, 9.81 0.00, 8.81 0.00, 7.81 0.00, 6.81 0.00, 5.81 0.00, 4.81 0.00, 4.39 0.00, 3.69
12 1.57,13.00 0.83,12.00 0.00,11.00 0.00,10.00 0.00, 9.00 0.00, 8.00 0.00, 7.00 0.00, 6.05 0.00, 5.19 0.00, 4.42
13 2.14,14.05 1.50,13.05 0.65,12.05 0.00,11.05 0.00,10.05 0.00, 9.05 0.00, 8.05 0.00, 7.05 0.00, 6.08 0.00, 5.22
14 2.83,15.50 2.13,14.50 1.39,13.50 0.47,12.50 0.00,11.50 0.00,10.50 0.00, 9.50 0.00, 8.50 0.00, 7.50 0.00, 6.55
15 3.48,16.52 2.56,15.52 1.98,14.52 1.26,13.52 0.30,12.52 0.00,11.52 0.00,10.52 0.00, 9.52 0.00, 8.52 0.00, 7.52
16 4.07,17.99 3.28,16.99 2.60,15.99 1.82,14.99 1.13,13.99 0.14,12.99 0.00,11.99 0.00,10.99 0.00, 9.99 0.00, 8.99
17 5.04,19.02 4.11,18.02 3.32,17.02 2.38,16.02 1.81,15.02 0.98,14.02 0.00,13.02 0.00,12.02 0.00,11.02 0.00,10.02
18 5.47,20.16 4.54,19.16 3.73,18.16 3.02,17.16 2.40,16.16 1.70,15.16 0.82,14.16 0.00,13.16 0.00,12.16 0.00,11.16
19 6.51,21.51 5.51,20.51 4.58,19.51 3.77,18.51 3.05,17.51 2.21,16.51 1.58,15.51 0.67,14.51 0.00,13.51 0.00,12.51
20 7.55,22.52 6.55,21.52 5.55,20.52 4.55,19.52 3.55,18.52 2.81,17.52 2.23,16.52 1.48,15.52 0.53,14.52 0.00,13.52
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Feldman, Cousins, physics/9711021v2
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Feldman-Cousins method: Discussion

+State-of-the art for frequentist confidence intervals 
+Avoids flip-flop problem, correct coverage 
+Handles interval estimates at physical boundaries

28

– Construction of F-C confidence intervals is complicated, usually has to be 
done numerically 

– Systematic uncertainties not easily included 
– Counter-intuitive result in case of counting experiments with different 

background (see next slide)

Drawbacks:

Nice features:
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Feldman-Cousins method: The paradox of fewer than 
expected background events

29

Consider two counting experiments 
‣ Experiment A: expects background b = 0 ("carefully designed experiment") 
‣ Experiment B: expects background b = 5

Suppose now both experiments measure n = 0 counts.  
Feldman-Cousins upper limits at 90% CL:  
‣ Experiment A: sup = 2.44 
‣ Experiment B: sup = 0.98

Weird: The FC method says that the experiment B in which a larger 
background is expected gives the better (more stringent) upper limit.

Experiment B must have observed a downward fluctuation of the 
background. How can a fluctuation result in a better upper limit?
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Suggestion in the Feldman-Cousins paper

30

"Our suggestion for doing this is that in cases in which the measurement is 
less than the estimated background, the experiment report both the upper 
limit and the “sensitivity” of the experiment, where the “sensitivity” is defined 
as the average upper limit that would be obtained by an ensemble of 
experiments with the expected background and no true signal. […] 
Thus, an experiment that measures 2 events and has an expected 
background of 3.5 events would report a 90% C.L. upper limit of 2.7 events 
(from Tab. IV), but a sensitivity of 4.6 events (from Tab. XII)."

Feldman, Cousins, physics/9711021v2
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CLs method: Motivation
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Consider an experiment with low sensitivity  
("background dominated experiment"). 
‣ By construction, one rejects a true hypothesis with a certain probability (e.g. 5%) 
‣ Problem: exclusion of parameter values to which one has no sensitivity  
‣ Example Higgs search: mH = 1000 TeV rejected with a chance of 5% 
‣ "Spurious exclusion"

This problem was addressed for the LEP Higgs searches in the late 1990'ies 
and led to the CLs method 
‣ Explicitly consider experimental sensitivity in limit setting  
‣ Reduce spurious exclusion by a particular choice of the critical region 
‣ Frequentist-motivated approach, but NOT frequentist (“modified frequentist method”)  
‣ Name a bit misleading, as the CLs exclusion region is not a confidence interval  
‣ Overcoverage by construction: conscious choice to give up frequentist coverage to 

take sensitivity into account 
‣ "Despite its shaky foundations in statistical theory, it has been producing sensible 

results for over a decade" (http://cds.cern.ch/record/2203243)

A. Read, J. Phys. G 28, 2693 (2002), T. Junk, NIM A, 434, 435 (1999)

http://cds.cern.ch/record/2203243
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CLs procedure (1)

32

Test statistic:

G. Cowan  Statistical Data Analysis / Stat 4 68 

The CLs procedure 

f (Q|b)     

f (Q| s+b)     

ps+b pb 

In the usual formulation of CLs, one tests both the µ = 0 (b) and 
µ > 0 (µs+b) hypotheses with the same statistic Q = �2ln Ls+b/Lb: 

Q = �2 ln
L(x |s + b)

L(x |b)

G. Cowan, https://www.pp.rhul.ac.uk/~cowan/stat_course.html

background-likesignal-like
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CLs procedure (2)
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Low sensitivity: the distributions under s and s+b are very close

G. Cowan  Statistical Data Analysis / Stat 4 69 

The CLs procedure (2) 
As before, “low sensitivity” means the distributions of Q under  
b and s+b are very close: 

f (Q|b)     

f (Q|s+b)     

ps+b pb 

G. Cowan, https://www.pp.rhul.ac.uk/~cowan/stat_course.html
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CLs Procedure (3)
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Standard p-value test:

Reject s+b hypothesis if

G. Cowan  Statistical Data Analysis / Stat 4 70 

The CLs solution (A. Read et al.) is to base the test not on 
the usual p-value (CLs+b), but rather to divide this by CLb  
(~ one minus the p-value of the b-only hypothesis), i.e., 

Define: 

Reject s+b  
hypothesis if: Increases “effective” p-value  when the two 

distributions become close (prevents  
exclusion if sensitivity is low). 

f (Q|b)     f (Q|s+b)     

CLs+b  
= ps+b 

1�CLb 
 = pb 

The CLs procedure (3) 

ps+b  ↵

Increases “effective” p-value when the two distributions become close (prevents 
exclusion if sensitivity is low)

Reject s+b hypothesis if

CLs method:

more stringent than standard 
p-value test as 1 – pb ≤ 1

G. Cowan, https://www.pp.rhul.ac.uk/~cowan/stat_course.html

CLs :=
ps+b

1� pb
⌘ CLs+b

CLb
 ↵
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Upper Limits on μ = σ/σSM in Higgs searches

35

G. Cowan, https://www.pp.rhul.ac.uk/~cowan/stat_course.html

Signal for Higgs hypothesis: s(mH) = Lint · �SM

Signal strength μ: 

Carry out CLs procedure for all values 
of μ = σ/σSM. Reject μ if 

n = µ · s(mH) + b, µ =
Lint · �(mH)

Lint · �SM(mH)
=

�(mH)

�SM(mH)

This defines upper limit μup at 95% 
CL (smallest value of μ that can be 
rejected by the CLs criterion)

At a given value of mH, we have an 
observed value of μup, and we can 
also find the distribution f(μup|0)

G. Cowan  Statistical Data Analysis / Stat 4 71 

Setting upper limits on µ = σ/σSM 
Carry out the CLs procedure for the parameter µ = σ/σSM,  
resulting in an upper limit µup. 

In, e.g., a Higgs search, this is done for each value of mH.   

At a given value of mH, we have an observed value of µup, and 
we can also find the distribution f(µup|0): 

±1σ (green) and ±2σ (yellow) 
bands from toy MC; 

Vertical lines from asymptotic 
formulae. 

f(μup|0)

green: 
±1σ

yellow: 
±2σ

background 
only hypothesis

μ = 1: SM w/ Higgs, μ = 0: SM w/o Higgs (background only model)

CLs :=
pµ

1� pb
 0.05
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Upper limits on μ = σ/σSM in Higgs searches
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Figure 7: Combined search results: (a) The observed (solid) 95% CL
limits on the signal strength as a function of mH and the expec-
tation (dashed) under the background-only hypothesis. The dark
and light shaded bands show the ±1σ and ±2σ uncertainties on the
background-only expectation. (b) The observed (solid) local p0 as a
function of mH and the expectation (dashed) for a SM Higgs boson
signal hypothesis (µ = 1) at the given mass. (c) The best-fit signal
strength µ̂ as a function of mH . The band indicates the approximate
68% CL interval around the fitted value.

are excluded at 99% CL, 113–114, 117–121 and 132–
527GeV, while the expected exclusion range at 99%CL
is 113–532GeV.

9.2. Observation of an excess of events

An excess of events is observed nearmH=126GeV in
the H→ ZZ(∗)→ 4" and H→ γγ channels, both of which
provide fully reconstructed candidates with high reso-
lution in invariant mass, as shown in Figures 8(a) and
8(b). These excesses are confirmed by the highly sen-
sitive but low-resolution H→WW (∗)→ "ν"ν channel, as
shown in Fig. 8(c).
The observed local p0 values from the combination

of channels, using the asymptotic approximation, are
shown as a function of mH in Fig. 7(b) for the full mass
range and in Fig. 9 for the low mass range.
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Figure 8: The observed local p0 as a function of the hypothesised
Higgs boson mass for the (a) H→ZZ(∗)→ 4", (b) H→ γγ and (c)
H→WW(∗)→ "ν"ν channels. The dashed curves show the expected
local p0 under the hypothesis of a SMHiggs boson signal at that mass.
Results are shown separately for the

√
s = 7TeV data (dark, blue), the√

s = 8TeV data (light, red), and their combination (black).

The largest local significance for the combination of
the 7 and 8 TeV data is found for a SM Higgs boson
mass hypothesis of mH=126.5GeV, where it reaches
6.0σ, with an expected value in the presence of a SM
Higgs boson signal at that mass of 4.9σ (see also Ta-
ble 7). For the 2012 data alone, the maximum lo-
cal significance for the H→ ZZ(∗)→ 4", H→ γγ and
H→WW (∗)→ eνµν channels combined is 4.9σ, and oc-
curs at mH = 126.5GeV (3.8σ expected).
The significance of the excess is mildly sensitive to

uncertainties in the energy resolutions and energy scale
systematic uncertainties for photons and electrons; the
effect of the muon energy scale systematic uncertain-
ties is negligible. The presence of these uncertainties,
evaluated as described in Ref. [138], reduces the local
significance to 5.9σ.
The global significance of a local 5.9σ excess any-

where in the mass range 110–600GeV is estimated to
be approximately 5.1σ, increasing to 5.3σ in the range
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Figure 7: Combined search results: (a) The observed (solid) 95% CL
limits on the signal strength as a function of mH and the expec-
tation (dashed) under the background-only hypothesis. The dark
and light shaded bands show the ±1σ and ±2σ uncertainties on the
background-only expectation. (b) The observed (solid) local p0 as a
function of mH and the expectation (dashed) for a SM Higgs boson
signal hypothesis (µ = 1) at the given mass. (c) The best-fit signal
strength µ̂ as a function of mH . The band indicates the approximate
68% CL interval around the fitted value.

are excluded at 99% CL, 113–114, 117–121 and 132–
527GeV, while the expected exclusion range at 99%CL
is 113–532GeV.

9.2. Observation of an excess of events

An excess of events is observed nearmH=126GeV in
the H→ ZZ(∗)→ 4" and H→ γγ channels, both of which
provide fully reconstructed candidates with high reso-
lution in invariant mass, as shown in Figures 8(a) and
8(b). These excesses are confirmed by the highly sen-
sitive but low-resolution H→WW (∗)→ "ν"ν channel, as
shown in Fig. 8(c).
The observed local p0 values from the combination

of channels, using the asymptotic approximation, are
shown as a function of mH in Fig. 7(b) for the full mass
range and in Fig. 9 for the low mass range.
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Figure 8: The observed local p0 as a function of the hypothesised
Higgs boson mass for the (a) H→ZZ(∗)→ 4", (b) H→ γγ and (c)
H→WW(∗)→ "ν"ν channels. The dashed curves show the expected
local p0 under the hypothesis of a SMHiggs boson signal at that mass.
Results are shown separately for the

√
s = 7TeV data (dark, blue), the√

s = 8TeV data (light, red), and their combination (black).

The largest local significance for the combination of
the 7 and 8 TeV data is found for a SM Higgs boson
mass hypothesis of mH=126.5GeV, where it reaches
6.0σ, with an expected value in the presence of a SM
Higgs boson signal at that mass of 4.9σ (see also Ta-
ble 7). For the 2012 data alone, the maximum lo-
cal significance for the H→ ZZ(∗)→ 4", H→ γγ and
H→WW (∗)→ eνµν channels combined is 4.9σ, and oc-
curs at mH = 126.5GeV (3.8σ expected).
The significance of the excess is mildly sensitive to

uncertainties in the energy resolutions and energy scale
systematic uncertainties for photons and electrons; the
effect of the muon energy scale systematic uncertain-
ties is negligible. The presence of these uncertainties,
evaluated as described in Ref. [138], reduces the local
significance to 5.9σ.
The global significance of a local 5.9σ excess any-

where in the mass range 110–600GeV is estimated to
be approximately 5.1σ, increasing to 5.3σ in the range
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ATLAS, Phys.Lett. B716 (2012) 1-29 (arXiv:1207.7214)

95% CL limit on μ  <  1  ⇒  Standard model with mH rejected

Consistency within 2σ everywhere 
except for mH = 125 GeV
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Higgs discovery (this time from ATLAS paper)
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local p-value
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Figure 9: The observed (solid) local p0 as a function of mH in the
low mass range. The dashed curve shows the expected local p0 under
the hypothesis of a SM Higgs boson signal at that mass with its ±1σ
band. The horizontal dashed lines indicate the p-values corresponding
to significances of 1 to 6 σ.

110–150GeV, which is approximately the mass range
not excluded at the 99% CL by the LHC combined SM
Higgs boson search [139] and the indirect constraints
from the global fit to precision electroweak measure-
ments [12].

9.3. Characterising the excess
The mass of the observed new particle is esti-

mated using the profile likelihood ratio λ(mH) for
H→ZZ(∗)→ 4# and H→ γγ, the two channels with the
highest mass resolution. The signal strength is al-
lowed to vary independently in the two channels, al-
though the result is essentially unchanged when re-
stricted to the SM hypothesis µ = 1. The leading
sources of systematic uncertainty come from the elec-
tron and photon energy scales and resolutions. The re-
sulting estimate for the mass of the observed particle is
126.0 ± 0.4 (stat) ± 0.4 (sys) GeV.
The best-fit signal strength µ̂ is shown in Fig. 7(c) as

a function of mH . The observed excess corresponds to
µ̂ = 1.4 ± 0.3 for mH = 126GeV, which is consistent
with the SM Higgs boson hypothesis µ = 1. A sum-
mary of the individual and combined best-fit values of
the strength parameter for a SM Higgs boson mass hy-
pothesis of 126GeV is shown in Fig. 10, while more
information about the three main channels is provided
in Table 7.
In order to test which values of the strength and

mass of a signal hypothesis are simultaneously consis-
tent with the data, the profile likelihood ratio λ(µ,mH) is
used. In the presence of a strong signal, it will produce
closed contours around the best-fit point (µ̂, m̂H), while

)µSignal strength (
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γγ →H 
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Figure 10: Measurements of the signal strength parameter µ for
mH=126GeV for the individual channels and their combination.

in the absence of a signal the contours will be upper
limits on µ for all values of mH .
Asymptotically, the test statistic −2 lnλ(µ,mH) is dis-

tributed as a χ2 distribution with two degrees of free-
dom. The resulting 68% and 95% CL contours for the
H→ γγ and H→WW (∗)→ #ν#ν channels are shown in
Fig. 11, where the asymptotic approximations have been
validated with ensembles of pseudo-experiments. Sim-
ilar contours for the H→ ZZ(∗)→ 4# channel are also
shown in Fig. 11, although they are only approximate
confidence intervals due to the smaller number of can-
didates in this channel. These contours in the (µ,mH)
plane take into account uncertainties in the energy scale
and resolution.
The probability for a single Higgs boson-like particle

to produce resonant mass peaks in the H→ ZZ(∗)→ 4#
and H→ γγ channels separated by more than the ob-
served mass difference, allowing the signal strengths to
vary independently, is about 8%.
The contributions from the different production

modes in the H→ γγ channel have been studied in order
to assess any tension between the data and the ratios of
the production cross sections predicted in the Standard
Model. A new signal strength parameter µi is introduced
for each production mode, defined by µi = σi/σi,SM. In
order to determine the values of (µi, µ j) that are simul-
taneously consistent with the data, the profile likelihood
ratio λ(µi, µ j) is used with the measured mass treated as
a nuisance parameter.
Since there are four Higgs boson productionmodes at

the LHC, two-dimensional contours require either some
µi to be fixed, or multiple µi to be related in some way.
Here, µggF and µtt̄H have been grouped together as they
scale with the tt̄H coupling in the SM, and are denoted
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Figure 9: The observed (solid) local p0 as a function of mH in the
low mass range. The dashed curve shows the expected local p0 under
the hypothesis of a SM Higgs boson signal at that mass with its ±1σ
band. The horizontal dashed lines indicate the p-values corresponding
to significances of 1 to 6 σ.

110–150GeV, which is approximately the mass range
not excluded at the 99% CL by the LHC combined SM
Higgs boson search [139] and the indirect constraints
from the global fit to precision electroweak measure-
ments [12].

9.3. Characterising the excess
The mass of the observed new particle is esti-

mated using the profile likelihood ratio λ(mH) for
H→ZZ(∗)→ 4# and H→ γγ, the two channels with the
highest mass resolution. The signal strength is al-
lowed to vary independently in the two channels, al-
though the result is essentially unchanged when re-
stricted to the SM hypothesis µ = 1. The leading
sources of systematic uncertainty come from the elec-
tron and photon energy scales and resolutions. The re-
sulting estimate for the mass of the observed particle is
126.0 ± 0.4 (stat) ± 0.4 (sys) GeV.
The best-fit signal strength µ̂ is shown in Fig. 7(c) as

a function of mH . The observed excess corresponds to
µ̂ = 1.4 ± 0.3 for mH = 126GeV, which is consistent
with the SM Higgs boson hypothesis µ = 1. A sum-
mary of the individual and combined best-fit values of
the strength parameter for a SM Higgs boson mass hy-
pothesis of 126GeV is shown in Fig. 10, while more
information about the three main channels is provided
in Table 7.
In order to test which values of the strength and

mass of a signal hypothesis are simultaneously consis-
tent with the data, the profile likelihood ratio λ(µ,mH) is
used. In the presence of a strong signal, it will produce
closed contours around the best-fit point (µ̂, m̂H), while
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Figure 10: Measurements of the signal strength parameter µ for
mH=126GeV for the individual channels and their combination.

in the absence of a signal the contours will be upper
limits on µ for all values of mH .
Asymptotically, the test statistic −2 lnλ(µ,mH) is dis-

tributed as a χ2 distribution with two degrees of free-
dom. The resulting 68% and 95% CL contours for the
H→ γγ and H→WW (∗)→ #ν#ν channels are shown in
Fig. 11, where the asymptotic approximations have been
validated with ensembles of pseudo-experiments. Sim-
ilar contours for the H→ ZZ(∗)→ 4# channel are also
shown in Fig. 11, although they are only approximate
confidence intervals due to the smaller number of can-
didates in this channel. These contours in the (µ,mH)
plane take into account uncertainties in the energy scale
and resolution.
The probability for a single Higgs boson-like particle

to produce resonant mass peaks in the H→ ZZ(∗)→ 4#
and H→ γγ channels separated by more than the ob-
served mass difference, allowing the signal strengths to
vary independently, is about 8%.
The contributions from the different production

modes in the H→ γγ channel have been studied in order
to assess any tension between the data and the ratios of
the production cross sections predicted in the Standard
Model. A new signal strength parameter µi is introduced
for each production mode, defined by µi = σi/σi,SM. In
order to determine the values of (µi, µ j) that are simul-
taneously consistent with the data, the profile likelihood
ratio λ(µi, µ j) is used with the measured mass treated as
a nuisance parameter.
Since there are four Higgs boson productionmodes at

the LHC, two-dimensional contours require either some
µi to be fixed, or multiple µi to be related in some way.
Here, µggF and µtt̄H have been grouped together as they
scale with the tt̄H coupling in the SM, and are denoted
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ATLAS, Phys.Lett. B716 (2012) 1-29 (arXiv:1207.7214)

Reject also background only hypothesis at mH = 125 GeV 
and check consistency with μ = 1   →    discovery!!!
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CERN Seminar on 4. July 2012
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“I think we have it!” 
(Rolf Heuer,  
CERN director general in 2012


