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Hypotheses and tests
Hypothesis test 
‣ Statement about the validity of a model 
‣ Tells you which of two competing models is more consistent with the data 

Simple hypothesis: a hypothesis with no free parameters 
‣ Examples: the detected particle is a pion; data follow Poissonian with mean 5 

Composite hypothesis: contains unspecified parameter(s) 
‣ Example: data follow Poissonian with mean > 5 

Null hypothesis H0 and alternative hypothesis H1  
‣ H0 often the background-only hypothesis  

(e.g. the Standard Model in searches for new physics) 
‣ H1 often signal or signal + background hypothesis 

Question: Can null hypothesis be rejected by the data?

2
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Test statistic
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Test statistic : 
a (usually scalar) variable which is a function of the data alone that 
is used to test hypotheses

t( ⃗x )

Examples:  
t = Χ2min of a least-squares fit 

ALICE TRD: likelihood ratio for electrons 

and pions:  

Output of a boosted decision tree or 
neural network

t =
∏6

i=1 Li(qi |e)

∏6
i=1 Li(qi |π)

: measured features/data⃗x = (x1, . . . , xn)

q1

q2

q3

q4

q5

q6

electron? pion?

signal in  
detector i (= 1,…,6)
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Critical region

4

The probability for H0 to be 
rejected while H0 is true:

124 7 Hypothesis Tests

t

f(t)
signal

background

tcut

Fig. 7.1 Probability distribution functions for a discriminating variable t.x/ D x which has two
different PDFs for the signal (red) and background (yellow) hypotheses under test

One simple example is to use a single variable x which has discriminating power
between two hypotheses, say signal = “muon” versus background = “pion”, as
shown in Fig. 7.1. A good “separation” of the two cases can be achieved if the
PDFs of x under the hypotheses H1 = signal and H0 = background are appreciably
different.

On the basis of the observed value Ox of the discriminating variable x, a simple
test statistics can be defined as the measured value itself:

Ot D t.Ox/ D Ox : (7.1)

A selection requirement (in physics jargon sometimes called cut) can be defined
by identifying a particle as a muon if Ot ! tcut or as a pion if Ot > tcut, where the value
tcut is chosen a priori.

Not all real muons will be correctly identified as a muon according to this
criterion, as well as not all real pions will be correctly identified as pions. The
expected fraction of selected signal particles (muons) is usually called signal
selection efficiency and the expected fraction of selected background particles
(pions) is called misidentification probability.

Misidentified particles constitute a background to positively identified signal
particles. Applying the required selection (cut), in this case t ! tcut, on a data
sample made of different detected particles, each providing a measurements of
x, the selected data sample will be enriched of signal, reducing the fraction of
background in the selected data sample with respect to the original unselected
sample. The sample will be actually enriched if the selection efficiency is larger
than the misidentification probability, which is the case considering the shapes of
the PDFs in Fig. 7.1 and the chosen selection cut.

critical region 
(reject H0)

f (t|H0)

f (t|H1)

α:  
"size" or "significance level" of 
the test 
1– β:  
"power of the test”, 
prob. to reject H0 if H1 is true

Probability to reject H1  
even though it is true:

test statistic
Z 1

tcut

f (t|H0) dt = ↵

Z tcut

�1
f (t|H1) dt = �

β α

accept H0
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Type I and type II errors

5

Type I and type II errors and their probabilities:

Type I error: 
Null hypothesis is rejected while it is actually true

Type II error: 
Test fails to reject null hypothesis while it is actually false 

H0 is true H0 is false (i.e., H1 is true)

H0 is rejected Type I error (↵) Correct decision (1� �)

H0 is not rejected Correct decision (1� ↵) Type II error (�)
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Neyman–Pearson lemma

To get the highest power (i.e. smallest possible value of β) of a test of H0 with 
respect to the alternative H1 for a given significance level, the critical region W 
should be chosen such that:

6

Neyman-Pearson lemma holds for simple hypotheses and states:

and

c is a constant chosen to give a test of the desired significance level.

Equivalent formulation: optimal scalar test statistic is the likelihood ratio

t(~x) :=
f (~x |H1)

f (~x |H0)
> c inside W

t(~x) =
f (~x |H1)

f (~x |H0)

t(~x)  c outside W
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Practical considerations

Problem: often one does not have explicit formulas for f(x|H0) and f(x|H1) 
One rather has Monte Carlo models for signal and background processes 
which allow one to generate instances of the data. 
In this case one can use multi-variate classifiers to separate different types of 
events 
‣ Fisher discriminants  
‣ Neural networks  
‣ Support vector machines 
‣ decision trees  
‣ … 

7
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Test of significance

Often one wants to quantify the level of agreement between the data and a 
hypothesis without explicit reference to alternative hypotheses  

Define test statistic t that reflects level of agreement with the data 

Determine distribution f(t|H0) under hypothesis H0 

p-value (here large values of t indicate poor agreement with H0)

8

■ p-value should not be confused with significance level 
‣ significance level is a pre-specified constant 
‣ p-value is a function of the data, and is therefore itself a random variable  

■ p-value is not the probability for the hypothesis; in frequentist statistics, this 
is not defined 

p-value =

Z 1

tobs

f (t|H0) dt
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Simple example:  
Counting experiment (Poisson statistics)

9

Expected background events: 
νb = 1.3
Expected signal events: 
νs = 2
Expected signal + bckgr. events: 
νs+b = 3.3

Test statistic t =  
number of observed events

Critical region tc ≧ 4 
‣ significance of the test α = 0.043 
‣ power of the test 1 – β = 0.42 Suppose we observe n = 5 events 

‣ Under H0, this correspond to a 
p-value = 0.01

H0: only background,  
H1: signal + background
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Goodness-of-fit for least squares fits (1)
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�2
min =

nX

i=1

0

@yi � f (xi ;
b~✓)

�i

1

A
2

The minimum  of a least-squares fit is a measure of the level of 
agreement between the model and the data:

χ2( ̂⃗θ )

Large χ2min: the model can can be rejected.

If the model is correct, then χ2min for repeated experiments follows a 
distribution: 

χ2

f (t; ndf) =
1

2ndf/2�
�
ndf
2

� tndf/2�1e�t/2, t = �2
min

with ndf = n �m = number of data points� number of fit parameters

ndf = "number of degrees of freedom"



Statistical Methods in Particle Physics WS 2020/21 | K. Reygers | 7. Hypothesis Testing and Goodness-of-fit

Goodness-of-fit for least squares fits (2)
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Expectation value of the χ2 distribution is ndf 

→ χ2 ≈ ndf indicates a good fit 

Consistency of a model with the data is quantified with the p-value:

p-value =

Z 1

�2
min

f (t; ndf) dt

The p-value is the probability to get a χ2min as high as the observed one, or 
higher, if the model is correct.

The p-value is not the probability that the model is correct.
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p-value for the straight line fit example

12

χ2min = 2.29557, ndf = 3:

p-value = 0.51337

observed χ2min

expected distribution 
if model is correct
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Constant model (y = θ0) rejected by small p-value
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7y χ2min = 2.29557, ndf = 3:

p-value = 0.51337

root [1] TMath::Prob(chi2, n_dof)

χ2min = 18.3964, ndf = 4:
p-value = 0.001032

θ0 = 2.86  ±  0.18

Statistical uncertainty of the fit 
parameter does not tell us 
whether model is correct!

from scipy import stats 
pvalue = 1 - stats.chi2.cdf(chi2, n_dof)
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p-value for different χ2min and ndf
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Confidence Intervalls for χ2min / ndf as a fct. of ndf
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Goodness-of-fit for unbinned ML fits (1)
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In case of an unbinned ML fit one can put data and model prediction into a 
histogram and perform a χ2 test.

Consider the ratio

For the multinomial ("M", ntot fixed) and Poisson distributed data ("P") one 
obtains 

�M =
kY

i=1

✓
⌫i
ni

◆ni

, �P = entot�⌫tot

kY

i=1

✓
⌫i
ni

◆ni

k: number of bins of the histogram

We then consider

� =
L(~n|~⌫)
L(~n|~n) , ~⌫ = ~⌫(~✓), ~✓ = (✓1, ..., ✓m)

L: likelihood

�2 := �2 ln�
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Goodness-of-fit for unbinned ML fits (2)

17

For multinomially distributed data

�2
M := �2 ln�M = 2

kX

i=1

ni ln
ni
⌫̂i

follows a χ2 distribution for k – m – 1 degrees of freedom in the large sample 
limit for if the model is correct.

�2
P := �2 ln�P = 2

kX

i=1

✓
ni ln

ni
⌫̂i

+ ⌫̂i � ni

◆
In case of Poisson distributed data

follows a χ2 distribution for k – m degrees of freedom in the large sample limit 
if the model is correct.

S. Baker, R. D.Cousins 
Clarification of the use of CHI-square and likelihood functions in fits to histograms, NIM 221 (1984) 437

https://doi.org/10.1016/0167-5087(84)90016-4
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Goodness-of-fit ML Test Using Lmax
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For ML fits the value of the likelihood function at the maximum  
Lmax(xIθ0) ≡ Lmax,obs is sometimes used as a Goodness-of-Fit test 
‣ Generate pseudo-data based on best-fit parameters 
‣ Repeat fit with pseudo data → Lmax distribution  
‣ From the Lmax distribution one can determine how likely it is to find a value Lmax,obs 

or smaller 

This method is generally discouraged 
‣ Biased and not invariant with respect to change of variables 
‣ From J. Heinrich, PHYSTAT2003, arXiv:physics/0310167 

"The method is fatally flawed in the unbinned case. Don’t use it. Complain when 
you see it used."

This is briefly discussed in the books by G. Cowan and F. James.
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Wilks' theorem
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Let null hypothesis H0 be a special case of the hypothesis H1 
("nested hypotheses")

Example: 
  H0 : f(m) = a0 + a1m

H1 : f(m) = a0 + a1m + a2m2 + a3m3

Wilks’ theorem:  
If H0 is correct then  follows  distribution with  = #added parameters 
in the large sample limit.

−Δχ̃2 χ2 ndof

Δχ̃2 := − 2 ln ( L(H1)
L(H0) )

In the above example: ndof = 2

Samuel S. Wilks, The Large-Sample Distribution of the Likelihood Ratio for Testing Composite Hypotheses 
Ann. Math. Statist., Volume 9, Number 1 (1938), 60-62.

Define:

https://projecteuclid.org/euclid.aoms/1177732360
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Significance of a peak

20

  H0 : f(m) = a0 + a1m
H1 : f(m) = a0 + a1m + a2N(m; μ, σ)

,  fixed in  
→ one additional parameter
μ = 3.1 σ = 0.03 H1H0

H1

 should follow a  distribution 
with  if H0 ist true
−Δχ̃2 χ2

ndof = 1

p-value = 2.15·10–6

→ H0 can be safely rejected

��̃2 := �2 ln

✓
L(H1)

L(H0)

◆
= �22.5
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p-values and Higgs measurement: 
Expected local p-values for a Higgs of a given mass

For each assumed Higgs mass (→ local p-value) 
‣ Calculate expected signal for Standard Model Higgs boson 
‣ Determine p-value for H0 that only SM background processes contribute 
‣ Pure calculation/simulation, no data involved

21
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 bb→H

Expected p-values
Combined

γγ→H
 ZZ→H
 WW→H

ττ→H
 bb→H

CMS -1 = 8 TeV, L = 5.3 fbs-1 = 7 TeV, L = 5.1 fbs

CMS, arXiv:1207.7235
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p-values and Higgs measurement: 
Observed local p-values

22

CMS, arXiv:1207.7235
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γγ →H 
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 WW→H 
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Combined  obs.
Exp. for SM H

γγ →H 
 ZZ→H 
 WW→H 
ττ →H 

 bb→H 

CMS -1 = 8 TeV, L = 5.3 fbs  -1 = 7 TeV, L = 5.1 fbs

"An excess of events is observed above the expected background, with a local 
significance of 5.0 standard deviations, at a mass near 125 GeV, signaling the 
production of a new particle. The expected significance for a standard model 
Higgs boson of that mass is 5.8 standard deviations."
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Look-elsewhere effect 
CMS Higgs paper 
‣ The probability for a background fluctuation to be at least as large as the 

observed maximum excess is termed the local p-value, and that for an excess 
anywhere in a specified mass range the global p-value. 

‣ Local p-value corresponds to 5σ 
‣ Global p-value for mass range 110–145 GeV corresponds to 4.5σ 

In general: 
‣ If one is performing multiple tests then obviously a p-value of 1/n is likely to 

occur after n tests 
‣ Solution: "trials penalty" or "trials factors", i.e. make threshold a function of n 

(more stringent threshold for larger n)  

23

A Swedish study in 1992 tried to determine whether or not power lines caused some kind of poor health 
effects. The researchers surveyed everyone living within 300 meters of high-voltage power lines over a 25-year 
period and looked for statistically significant increases in rates of over 800 ailments. The study found that the 
incidence of childhood leukemia was four times higher among those that lived closest to the power lines, and it 
spurred calls to action by the Swedish government. The problem with the conclusion, however, was that they 
failed to compensate for the look-elsewhere effect; in any collection of 800 random samples, it is likely that at 
least one will be at least 3 standard deviations above the expected value, by chance alone. Subsequent 
studies failed to show any links between power lines and childhood leukemia, neither in causation nor even in 
correlation.

https://en.wikipedia.org/wiki/Look-elsewhere_effect
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p-value hacking

24

https://xkcd.com/882/
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Digression: p-value debate

Null hypothesis ("no effect") rejected and results deemed statistically significant 
if p-value < 0.05 
Relatively weak statistical standard, but often not realized as such 
Chance for false positive outcome 1/20 
‣ Might result in too many false positive results in the literature 
‣ Social and biomedical sciences in the focus of the discussion 

Problem exacerbated by p-value hacking 
‣ Data gathered by researches without first creating a hypothesis 
‣ Search for patterns in the data that can be reported as statistically significant 

Probably contributes to reproducibility crisis in science 
Proposed solution: lower threshold to p-value < 0.005 
‣ https://psyarxiv.com/mky9j (published in Nature Human Behavior, https://

www.nature.com/articles/s41562-017-0189-z)

25

https://www.nature.com/news/big-names-in-statistics-want-to-shake-up-much-maligned-p-value-1.22375

https://psyarxiv.com/mky9j
https://www.nature.com/articles/s41562-017-0189-z
https://www.nature.com/articles/s41562-017-0189-z
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Why 5σ for discovery in particle physics?

History: there are many cases of 3σ and 4σ effects that have disappeared with 
more data  
The Look-Elsewhere Effect 
Systematics: 
‣ Usually more difficult to estimate than statistical uncertainties 
‣ "Safety margin" 

Subconscious Bayes factor: 
‣ Physicists subconsciously tend to assess the Bayesian probabilities p(H0|data) 

and p(H1|data) 
‣ If H1 involves something very unexpected (e.g., neutrinos travel faster than the 

speed of light) then prior probability for null hypothesis H0 is much larger than for 
H1. 

‣ "Extraordinary claims require extraordinary evidence"

26

5σ ⇔ p-value = 2.87 × 10–7 (one-tailed test)

Louis Lyons, Statistical Issues in Searches for New Physics, arXiv:1409.1903

Last point ⇒ unreasonable to have a single criterion (5σ) for all experiments
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Kolmogorov–Smirnov test (1)
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KS test is an unbinned goodness-of-fit test

Compare cumulative distribution function 

F (x) =

Z x

�1
f (x 0) dx 0

with the so-called Empirical Distribution 
Function (EDF)

S(x) =
number of observations with xi < x

total number of observations

The test statistic is the maximum 
difference between the two functions:

D = sup|F (x)� S(x)|

Q: Do data points come from a given 
distribution?

One can also test whether two one-dimensional sets of points 
are compatible with coming from the same parent distribution.

F(x) S(x)
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Kolmogorov–Smirnov Test (2)

28

10.3 Goodness-of-Fit Tests 265

Fig. 10.10. P-value as a function of the Kolmogorov test statistic D∗.

The Kolmogorov–Smirnov test emphasizes more the center of the distribution
than the tails because there the distribution function is tied to the values zero and
one and thus is little sensitive to deviations at the borders. Since it is based on
the distribution function, deviations are integrated over a certain range. Therefore
it is not very sensitive to deviations which are localized in a narrow region. In Fig.
10.8 the left hand and the right hand histograms have the same excess of entries in
the region left of the center. The Kolmogorov–Smirnov test produces in both cases
approximately the same value of the test statistic, even though we would think that
the distribution of the right hand histogram is harder to explain by a statistical
fluctuation of a uniform distribution. This shows again, that the power of a test
depends strongly on the alternatives to H0. The deviations of the left hand histogram
are well detected by the Kolmogorov–Smirnov test, those of the right hand histogram
much better by the Anderson–Darling test which we will present below.

There exist other EDF tests [57], which in most situations are more effective than
the simple Kolmogorov–Smirnov test.

10.3.6 Tests of the Kolmogorov–Smirnov – and Cramer–von Mises
Families

In the Kuiper test one uses as the test statistic the sum V = D+ +D− of the two
deviations of the empirical distribution function S from F . This quantity is designed
for distributions “on the circle”. This are distributions where the beginning and the
end of the distributed quantity are arbitrary, like the distribution of the azimuthal
angle which can be presented with equal justification in all intervals [ϕ0,ϕ0 + 2π]
with arbitrary ϕ0.

The tests of the Cramer–von Mises family are based on the quadratic difference
between F and S. The simple Cramer–von Mises test employs the test statistic

Expected distribution of D known for given N → p-value
Bohm, Zech, 
http://www-library.desy.de/preparch/books/vstatmp_engl.pdf

D⇤ =
p
ND,

N = number of data points

from scipy import stats 
D, p_value =  
stats.kstest(x, stats.norm.cdf)

Kolmogorov–Smirnov test: only for 1d data

Example: 
Test whether data xi come 
from standard normal 
distribution N(0,1):
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Two-Sample χ2 Test

29

Test hypothesis that two binned data sets come from the same underlying 
distribution.

Number of entries in bin i: ni for measurement 1, mi for measurement 2

Two histograms with k bins

�2 =
kX

i=1

(ni �mi )2

�2
ni + �2

mi
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Run test (Wald–Wolfowitz test)

30

Drawback of the χ2 test: insensitive to the sign of the deviation

++++−−−+++−−++++++−−−− N = N+ + N– = 22 bins, 6 runs

µ = 1 +
2 N+ N�

N
, �2 =

2 N+ N� (2 N+ N� � N)

N2 (N � 1)
=

(µ� 1)(µ� 2)

N � 1

For more than about 20 bins the Gaussian approximation holds and the 
significance of the deviation of an observed number r of runs from the 
expected value in units of the standard deviation is:

Z =
r � µ

�

Run test is complementary to the χ2 square test (can be done in addition)

Consider N bins, N = N+ + N– 
N+: number of positive deviations, N–: number of negative deviations
run = consecutive bins where the data show deviations in the same direction

Mean and variance for the number of runs for the null hypothesis that each 
element in the sequence is independently drawn from the same distribution 
(no assumption about prob. for "+" and “–"):
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Bayesian hypothesis testing
In Bayesian language, all problems are hypothesis tests!  
‣ Posterior probability for a hypothesis P(H|data) or a parameter P(θ|data)

31

■ Parameter estimation amounts to assigning a probability to the proposition 
that the parameter lies in the interval [θ1, θ2] 
‣ can reject hypothesis/parameter if posterior prob. is sufficiently small 

■ Example: LIGO PRL on detection of gravitational waves

P(H|D) =
P(D|H) · P(H)

P(D)

■ Requires one to explicitly specify alternative hypotheses:

P(D) = P(D|H1) + P(D|H2) + P(D|H3) + ...
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Profile likelihood ratio as test statistics

32

Let q be a test statistic and h(q | θ, ν) its distribution. The p-value 
depends on the nuisance parameter ν:

Independence of the nuisance parameter is achieved approximately by 
using the profile likelihood ratio as test statistic:

This is motivated by the fact that  approaches the  
distribution (with ndof = number of parameters of interest) for a large 
data sample (→ Wilks' theorem).

−2 ln λp(θ) χ2

p✓(⌫) =

1Z

qobs

h(q|✓, ⌫) dq

�p(✓) =
L(✓, bb⌫(✓))
L(b✓, b⌫)


