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Least squares from ML (1)

Consider n measured values y1(x1), ya(x2), >
.., Yn(xn) assumed to be independent

Gaussian random variables with known

variances:
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Assume we have a function f with
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Likelihood function:

1 y;—f(x;;g) i
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Least squares from ML (2)

Log-likelihood function:
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i — f(xi; 0 . -
(y (x )) + terms not depending on 6
i=1

So maximizing the likelihood is equivalent to minimizing

X2(67) = Z of least squares, goes back to
i—1 Gauss and Legendre.

n (yl_ ~ F(x;: 0) ) 2 Minimizing X2is called the method

Oj

In other words, for Gaussian uncertainties the method of least
squares coincides with the maximum likelihood method.

x>
iNnimization: — =0, =1,....m
Minimization 00 J — Number of parameters

The x2 minimization is often done numerically, e.g., using the MINUIT code

https://en.wikipedia.org/wiki/MINUIT
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Generalized least squares for correlated y;

Suppose the y; have a covariance matrix V' and follow a multi-variate Gaussian:

L 1 L, . o Ti,—1/» -
gy i, V) = a2z P —5 (V=) VY — i)

The generalized least-squares method then corresponds to minimizing:

P(0) = (7 - F(Z0)TVi - f(%:0))

\—>

We can write this also as

2 (0) = Z(y, f(xi;:0)) (V™ i(y; — £ 0))
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Variance of the least squares estimator

Using
X2(§) = —2In L(#) + const.

we can use the result for the variance of the ML estimators and obtain

- -1

92X2(0)
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VIO ~ 2 e (VU0)); =

Or determine 10 uncertainties from the contour where
(0') = X2 + 1

For z:0 uncertainties the condition is
X(0') = Xoin + 2°
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Linear least squares

Consider n data points y; whose uncertainties and correlations are
described by a covariance matrix V. The y; are measured at points x..

We would like to fit a linear combination of m functions aj(x) to the data:

examples:

S n data points y; _ 2
f(x;0) = Z 0;aj(x) P ¢ f(x) = 0o + hx + O2x

m parameters 6, f(x) = 6y + 61 cos(x)

The linear least squares problem can be solved in closed form:

Define n x m matrix A: A;; = aj(x;)  "design matrix"

Minimize =G -A)TVHy-A0), V=01 Yn)
pest fit parameters: covariance matrix of the parameters:
§=(ATV AP ATV Yy U=(ATV1A)"!
Sym?nretric

mXx m matrix

Statistical Methods in Particle Physics WS 2020/21 | K. Reygers | 6. Method of Least Squares

6



Linear least squares: Derivation of the formula
0= -AN)TV Iy —A)=yVv iy —2yTVIAG+0TATV 1A

Set derivatives w.r.t. 8; to zero:

V2 =-2(ATV7ly — ATV~140) =0
N M
V(E'MX)=M'3  VEMR) =M™+ Mx " E™ oMz
Solution: 0=(ATVIA) ATV Iy =1y
Covariance matrix U of the parameters: Here we use

/ (X)) =vyTxT,
[(AT V—lA)—l]T _ (AT V—lA)—l

U=LVL"
= (ATviAtATv v taAaT v A
- (AT V—lA)—l
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[INon-linear least squares,
L evenberg-Marquardt algorithm,

Non-linear least squares Quasi-Newton method,
BFEGS method]

Use numerical minimization programs like MINUIT if the model is not linear in
the parameters.

MINUIT’s MIGRAD algorithm relies on gradients, it is based on the Davidon—
Fletcher—Powell algorithm, a quasi-Newton method

Often used: Levenberg—Marquardt algorithm (see e.g. scipy.optimize.least_squares)

Choice of initial values of the fit parameters important to converge to the
correct solution.

Often a numerical minimization program is also used in the linear case for
convenience.

"Minuit2 has good performance compared

to other minimisers, and it Is one of the
l I I I 1 I I few codes out there which compute error
estimates for your parameters.”
iminuit is a Jupyter-friendly Python frontend to the MINUIT2 C++ library.

https://iminuit.readthedocs.io/en/stable/
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https://en.wikipedia.org/wiki/Non-linear_least_squares
https://en.wikipedia.org/wiki/Levenberg%E2%80%93Marquardt_algorithm
https://en.wikipedia.org/wiki/Quasi-Newton_method
https://en.wikipedia.org/wiki/Broyden%E2%80%93Fletcher%E2%80%93Goldfarb%E2%80%93Shanno_algorithm

—xample: Straight line fit: y = 60 + 61-x (1)

The conditions dx2/dBo and dx2/dB+ give two linear equations
with two variables which is easy to solve.

Here we use the general solution for linear least squares fits:

L=(ATVlA)tATY ! §=Ly

T ]_ ]. ]. —’_ 90 1 ]'/O-%
A= (Xl X> ... Xn) V= ((91 4 -

ATV_1:<1/U% 1/05 .. 1/0,%)

x1/0% xo/05 ... X,/0%

_— 1/62 1/02 .. 1/52 q 2\ iz il
ATva = ( ) (Z,-:;jz >,

x1/0% x2/05 ... X072
\1 Xn/
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—xample: Straight line fit: y = 60 + 61 -x (2)

shorthand notation
for the sum

\
Ty -1 -1 _ - [x]  —I[x] where [z] — 4
AVEA = Wbl - Wi <—[><1 [11) here 2]

The 2 x 2 matrix is easy to invert:

This gives:
L=(ATvtA)tATv !
1 ([X] —[X]>.<1/01 1/02 .. 1/0n>

T = XX \ =[x 1] x1/0% x/0% ... xa]O?
- 1 o R e P
TR -\ 12 L+ 1]
We finally obtain:
7 XPI] = [X][xy] R 3107 el 1] 2% 1 I——Y
= 00T~ = e = | T
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X y oy
1 1.7 0.5
2 2.3 0.3
3 3.5 0.4
2 3.3 0.4
5 £,5 0.6

-xample: Straight line fit: y = 60 + 61 - x (3)

Fit result =35
s DIyl = Xyl
1 v

g, — X+ byl _ o 613945

[ = [X]1X]

Covariance matrix of (Bo, 61):
U=(A"v1a)!

[ 0211186  —0.0646035
~ \—0.0646035  0.0234105
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Straight line fit: Comparison to iminuit

°1  y =60y + xb4

!

1o ellipse

20 ellipse

0.2 1

0.0 ! ! T T T T T T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
6o

[basic chi? fit iminuit.ipynb]

FCN = 2.296 Ncalls = 30 (30 total)
EDM = 3.9e-23 (Goal: 0.0002) up=10
Valid Min. Valid Param. Above EDM Reached call limit

Hesse failed Has cov. Accurate Pos. def. Forced

Name Value Hesse Error Minos Error- Minos Error+
0 thetal 1.2 0.5
1 thetal 0.61 0.15

for p in m.parameters:
print(f"{p} = {m.values([pl:.6F}" \
" +/- {m.errors[p]:.6f}")

theta® = 1.162066 +/- 0.459550
thetal = 0.613945 +/- 0.153005

# covariance matrix
print(m.np_covariance())

[[ ©.21118628 -0.06460344]
[-0.06460344 0.02341046]]

Statistical Methods in Particle Physics WS 2020/21 | K. Reygers | 6. Method of Least Squares 12


https://nbviewer.jupyter.org/urls/www.physi.uni-heidelberg.de/~reygers/lectures/2020/smipp/basic_chi2_fit_iminuit.ipynb

Propagation of fit parameter uncertainties

A . 244 1
y = 0o + 01 = (%@) = (X>
86,
; A A
2 =T,/ 0o COV[H(), 91] 1
=J'UJ= (1 PN
Oy ( X) <COV[90,91] O'% > <X

- (1 X) op +XCon[9AO,§1] c
COV[@o, (91] -+ XO'%

= 02x2 + 2cov[fy, b1]x + o3

Note: 2
correlation vanishes if you choose 1-

y =0+ 0,(x — (x)) 0

™ 41 10 error bands

X
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[ east-squares fits to histograms

Consider histogram with k bins and n; counts in bin /. If n; is not too small one
can use the Gaussian approximation of the Poisson distribution and apply the
least-squares method:

Pearson's x2: Y2(6) = Z (n V.(Vé’()g))z
Neyman's x2: X2(*) _ Z (ni — Vi(g))2

Problems arise in bins with few entries (typically less than 5), in particular in
Neyman's x-.

Bins with zero entries are problematic, typically omitted from the fit
— |eads to biased fit results
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Summary: Maximum Likelihood and x2 Method

Maximum likelihood method:

u@:Ham@

dinl
00,

0, i1=1,... m ~ o

0%In L
819,'8(9]' 5”

covariance matrix of the estimated parameters 6;

/\

H — (hij)1 U = (u,-j), Ujj = COV[é,’, QJ]

Ul6] = —H™*, hy =

Least-squares method:
No correlations btw. the y;

7 7 ~ (Vi — p(xi; 0))?
2(0) = —21In L(6 tant = i = plx
x“(6) n L(0) + constan ; U,'2

With correlations btw. the y;

2(0) = (7 — @0)" Vi — i), V=_(v) v;i=covly,yl

covariance matrix of the 6;

-=0, i=1..m ~ 0 U] = 2H™, h; =
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Discussion of fit methods [Wouter Verkerke, link]

Unbinned maximum likelihood fit (the best)

+ Don't need to bin data (no loss of information)
+ Works with multi-dimensional data

+ No Gaussian assumption

— No direct goodness of fit estimate

— Can be computationally expensive for large n
— Can't plot directly with data

Least-squares fit (the easiest)

+ fast, robust, easy

+ goodness of fit

+ can plot with data

+ works fine at high statistics

— data should be Gaussian

— misses information with feature size < bin size

Binned maximum likelihood fit in between
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https://www.physik.hu-berlin.de/de/gk1504/block-courses/autumn-2010/program_and_talks/Verkerke_part3/

