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Least squares from ML (1)

2

Consider n measured values y1(x1), y2(x2), 
… , yn(xn) assumed to be independent 
Gaussian random variables with known 
variances:

V [yi ] = �2
i

Assume we have a function f with 

E [yi ] = f (xi ; ~✓)

We want to estimate ~✓

Likelihood function:

L(~✓) =
nY

i=1

1p
2⇡�i

exp
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4�1
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yi � f (xi ; ~✓)

�i
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Least squares from ML (2)

3

Log-likelihood function:

ln L(~✓) = �1

2

nX

i=1

 
yi � f (xi ; ~✓)

�i

!2

+ terms not depending on ~✓

So maximizing the likelihood is equivalent to minimizing

In other words, for Gaussian uncertainties the method of least 
squares coincides with the maximum likelihood method.

The χ2 minimization is often done numerically, e.g., using the MINUIT code 
https://en.wikipedia.org/wiki/MINUIT

�2(~✓) =
nX

i=1

 
yi � f (xi ; ~✓)

�i

!2 Minimizing χ2 is called the method 
of least squares, goes back to 
Gauss and Legendre. 

Minimization:
@�2

@✓j
= 0, j = 1, ...,m

Number of parameters
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Generalized least squares for correlated yi

4

Suppose the yi have a covariance matrix V and follow a multi-variate Gaussian:

The generalized least-squares method then corresponds to minimizing:

We can write this also as

g(~y ; ~µ,V ) =
1

(2⇡)n/2|V |1/2
exp


�1

2
(~y � ~µ)TV�1(~y � ~µ)

�

�2(~✓) = (~y � ~f (~x ; ~✓))TV�1(~y � ~f (~x ; ~✓))

~f (~x ; ~✓) = (f (x1; ~✓), ..., f (xn; ~✓))

�2(~✓) =
X

i , j

(yi � f (xi ; ~✓))
T (V�1)ij(yj � f (xj ; ~✓))
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Variance of the least squares estimator

5

Using 

�2(~✓) = �2 ln L(✓) + const.

we can use the result for the variance of the ML estimators and obtain 

Or determine 1σ uncertainties from the contour where

For z⋅σ uncertainties the condition is 

�2(~✓0) = �2
min + 1

�2(~✓0) = �2
min + z2

i.e.V [
b~✓] ⇡ 2

"
@2�2(~✓)

@2~✓

�����
~✓=

b~✓

#�1

(V�1[
b~✓])ij =

1

2

@2�2(~x ; ~✓)

@✓i@✓j

�����
~✓=

b~✓
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Linear least squares
Consider n data points yi whose uncertainties and correlations are 
described by a covariance matrix V. The yi are measured at points xi. 

6

We would like to fit a linear combination of m functions aj(x) to the data: 

f (x ; ~✓) =
mX

j=1

✓jaj(x)
n data points yi

m parameters ✓j

examples:

The linear least squares problem can be solved in closed form:

Define n × m matrix A:  Ai ,j = aj(xi ) "design matrix"

Minimize

U = (ATV�1A)�1

best fit parameters: covariance matrix of the parameters:

f (x) = ✓0 + ✓1x + ✓2x
2

f (x) = ✓0 + ✓1 cos(x)

�2 = (~y � A~✓)TV�1(~y � A~✓), ~y = (y1, ..., yn)

b~✓ = (ATV�1A)�1

| {z }
symmetric
m⇥m matrix

ATV�1~y
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Linear least squares: Derivation of the formula

7

Set derivatives w.r.t. θi to zero:

~r(~xTM~x) = (MT +M)~x
M symm.

= 2M~x~r(~aTM~x) = MT~a

r�2 = �2(ATV�1~y � ATV�1A~✓) = 0

Solution: b~✓ = (ATV�1A)�1 ATV�1~y ⌘ L~y

Covariance matrix U of the parameters:
(XY )T = Y TXT,

[(ATV�1A)�1]T = (ATV�1A)�1

Here we use

U = LVLT

= (ATV�1A)�1 ATV�1VV�1A(ATV�1A)�1

= (ATV�1A)�1

�2(~✓) = (~y � A~✓)TV�1(~y � A~✓) = ~yV�1~y � 2~yTV�1A~✓ + ~✓TATV�1A~✓
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Non-linear least squares
Use numerical minimization programs like MINUIT if the model is not linear in 
the parameters. 

MINUIT’s MIGRAD algorithm relies on gradients, it is based on the Davidon–
Fletcher–Powell algorithm, a quasi-Newton method 

Often used: Levenberg–Marquardt algorithm (see e.g. scipy.optimize.least_squares) 

Choice of initial values of the fit parameters important to converge to the 
correct solution. 

Often a numerical minimization program is also used in the linear case for 
convenience. 

8

https://iminuit.readthedocs.io/en/stable/

"Minuit2 has good performance compared 
to other minimisers, and it is one of the 
few codes out there which compute error 
estimates for your parameters."

[Non-linear least squares, 
Levenberg–Marquardt algorithm, 
Quasi-Newton method, 
BFGS method]

https://en.wikipedia.org/wiki/Non-linear_least_squares
https://en.wikipedia.org/wiki/Levenberg%E2%80%93Marquardt_algorithm
https://en.wikipedia.org/wiki/Quasi-Newton_method
https://en.wikipedia.org/wiki/Broyden%E2%80%93Fletcher%E2%80%93Goldfarb%E2%80%93Shanno_algorithm
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Example: Straight line fit: y = θ0 + θ1·x  (1)

9

The conditions dχ2/dθ0 and dχ2/dθ1 give two linear equations 
with two variables which is easy to solve.

Here we use the general solution for linear least squares fits:

L = (ATV�1A)�1 ATV�1 b~✓ = L~y

AT =

✓
1 1 ... 1
x1 x2 ... xn

◆
~✓ =

✓
✓0
✓1

◆
V�1 =

0

BBB@

1/�2
1

1/�2
2

. . .
1/�2

n

1

CCCA

ATV�1A =

✓
1/�2

1 1/�2
2 ... 1/�2

n

x1/�2
1 x2/�2

2 ... xn/�2
n

◆
·

0

BBB@

1 x1
1 x2
...

...
1 xn

1

CCCA
=

 P
i

1
�2
i

P
i

xi
�2
iP

i
xi
�2
i

P
i
x2
i

�2
i

!

ATV�1 =

✓
1/�2

1 1/�2
2 ... 1/�2

n

x1/�2
1 x2/�2

2 ... xn/�2
n

◆
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Example: Straight line fit: y = θ0 + θ1·x  (2)

10

The 2 × 2 matrix is easy to invert: shorthand notation 
for the sum

This gives:

We finally obtain:

✓̂0 =
[x2][y ]� [x ][xy ]

[1][x2]� [x ][x ]
✓̂1 =

�[x ][y ] + [1][xy ]

[1][x2]� [x ][x ]

L = (ATV�1A)�1ATV�1

=
1

[1][x2]� [x ][x ]

✓
[x2] �[x ]
�[x ] [1]

◆
·
✓
1/�2

1 1/�2
2 ... 1/�2

n

x1/�2
1 x2/�2

2 ... xn/�2
n

◆

=
1

[1][x2]� [x ][x ]

 
[x2] 1

�2
1
� [x ] x1

�2
1

... [x2] 1
�2
n
� [x ] xn�2

n

�[x ] 1
�2
1
+ [1] x1

�2
1

... �[x ] 1
�2
n
+ [1] xn�2

n

!

(ATV�1A)�1 =
1

[1][x2]� [x ][x ]

✓
[x2] �[x ]
�[x ] [1]

◆
where [z ] :=

X

i

zi
�2
i

[xy ] :=
X

i

xiyi
�2
i
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Example: Straight line fit: y = θ0 + θ1·x  (3)

11
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y = ✓0 + x✓1

Covariance matrix of (θ0, θ1):

Fit result:

x y σy
1 1.7 0.5
2 2.3 0.3
3 3.5 0.4
4 3.3 0.4
5 4.3 0.6

U = (ATV�1A)�1

=

✓
0.211186 �0.0646035

�0.0646035 0.0234105

◆

✓̂0 =
[x2][y ]� [x ][xy ]

[1][x2]� [x ][x ]
= 1.16207

✓̂1 =
�[x ][y ] + [1][xy ]

[1][x2]� [x ][x ]
= 0.613945

[z ] :=
X

i

z

�2
i
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Straight line fit: Comparison to iminuit

12

y = ✓0 + x✓1

1σ ellipse

2σ ellipse

[basic_chi2_fit_iminuit.ipynb]

https://nbviewer.jupyter.org/urls/www.physi.uni-heidelberg.de/~reygers/lectures/2020/smipp/basic_chi2_fit_iminuit.ipynb
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Propagation of fit parameter uncertainties
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y = ✓̂0 + ✓̂1x

± 1σ error bands
Note: 
correlation vanishes if you choose 
y = θ0 + θ1(x − ⟨x⟩)

~J =

 
@y
@✓̂0
@y
@✓̂1

!
=

✓
1
x

◆

�2
y = ~J TU~J =

�
1 x

�✓ �2
0 cov[✓̂0, ✓̂1]

cov[✓̂0, ✓̂1] �2
1

◆✓
1
x

◆

=
�
1 x

�✓�2
0 + x cov[✓̂0, ✓̂1]
cov[✓̂0, ✓̂1] + x�2

1

◆

= �2
1x

2 + 2cov[✓̂0, ✓̂1]x + �2
0
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Least-squares fits to histograms
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Consider histogram with k bins and ni counts in bin i. If ni is not too small one 
can use the Gaussian approximation of the Poisson distribution and apply the 
least-squares method:

�2(~✓) =
kX

i=1

(ni � ⌫i (~✓))2

⌫i (~✓)
Pearson's χ2:

Neyman's χ2: �2(~✓) =
kX

i=1

(ni � ⌫i (~✓))2

ni

Problems arise in bins with few entries (typically less than 5), in particular in 
Neyman's χ2. 

Bins with zero entries are problematic, typically omitted from the fit 
→ leads to biased fit results
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Summary: Maximum Likelihood and χ2 Method
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L(~✓) =
nY

i=1

f (xi ; ~✓)

�2(~✓) = (~y � ~µ(✓))TV�1(~y � ~µ(✓)), V = (vij), vij = cov[yi , yj ]

�2(~✓) = �2 ln L(~✓) + constant =
nX

i=1

(yi � µ(xi ; ~✓))2

�2
i

U[
b~✓] = 2H�1, hij =

@2�2

@✓i@✓j

����b~✓

Maximum likelihood method:

covariance matrix of the estimated parameters θi

Least-squares method:

@ ln L

@✓i
= 0, i = 1, ...,m  b~✓

No correlations btw. the yi;

With correlations btw. the yi;

U[
b~✓] = �H

�1, hij =
@2 ln L

@✓i@✓j

����b~✓
, H = (hij), U = (uij), uij = cov[✓̂i , ✓̂j ]

covariance matrix of the θi

@�2

@✓i
= 0, i = 1, ...,m  b~✓
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Discussion of fit methods
Unbinned maximum likelihood fit (the best) 

+ Don't need to bin data (no loss of information) 
+ Works with multi-dimensional data 
+ No Gaussian assumption 
– No direct goodness of fit estimate 
– Can be computationally expensive for large n 
– Can't plot directly with data 

Least-squares fit (the easiest) 
+ fast, robust, easy 
+ goodness of fit 
+ can plot with data 
+ works fine at high statistics 
– data should be Gaussian 
– misses information with feature size < bin size 

16

[Wouter Verkerke, link]

Binned maximum likelihood fit in between

https://www.physik.hu-berlin.de/de/gk1504/block-courses/autumn-2010/program_and_talks/Verkerke_part3/

