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Estimator

2

Suppose we have a measurement of n independent values 

which follow the same underlying distribution f(x; θ),  
e.g., f(x; θ) = 1/θ exp(–x/θ).

~x = (x1, x2, ..., xn)

An estimator is a function of the data which provides a numerical estimate of 
the parameter θ:

✓̂(~x)

θ often is not only one parameter but a vector of parameters.

i.i.d. random variables = independent, identically distributed
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Properties of estimators

3

G. Cowan  Statistical Data Analysis / Stat 3 20 

Properties of estimators 
If we were to repeat the entire measurement, the estimates 
from each would follow a pdf: 

biased large 
variance 

best 

We want small (or zero) bias (systematic error): 

→  average of repeated measurements should tend to true value. 

And we want a small variance (statistical error): 
→  small bias & variance are in general conflicting criteria 

Consistency 
An estimator is consistent if it 
converges to the true value

lim
n!1

~̂✓ = ~✓

Bias 
Difference btw. expectation value 
of estimator and true value

~b := E [~̂✓]� ~✓

Efficiency 
An estimator is efficient if its 
variance V[θ] is small 
efficient ⇔ Equal-sign in 
Cramér–Rao inequality holds  

Example: Estimators for the lifetime of a particle

http://www.terascale.de/e149980/index_eng.html

Estimator Consistent? Unbiased? E�cient?

⌧̂ = t1+t2+...+tn
n yes yes yes

⌧̂ = t1+t2+...+tn
n�1 yes no no

⌧̂ = t1 no yes no

http://www.pp.rhul.ac.uk/~cowan/stat_course.html
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Unbiased estimators for mean and variance
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Estimator for the mean: µ̂ =
1

n

nX

i=1

xi

Unbiased estimator for the 
variance:

s2 := �̂2 =
1

n � 1

nX

i=1

(xi � x̄)2

Consider n independent and identically distributed measurements xi drawn 
from a distribution with mean μ and standard deviation σ:

V[µ̂] = V[
1

n

X

i

xi ] =
1

n2
V[
X

i

xi ] =
1

n
V[x ] =

�2

n
, i.e., �µ̂ =

�p
n

E[µ̂] =
1

n
E[
X

i

xi ] =
1

n

X

i

E[xi ] = µ →  estimator is unbiased
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Unbiased estimator of the variance: Derivation (1)

5

Consider n independent and identically distributed random variables xi:

We'll use:

�2 = E [x2i ]� µ2  E [x2i ] = µ2 + �2

nX

i=1

(xi � x̄)2 =
nX

i=1

x2i � 2xi x̄ + x̄2 =

 
nX

i=1

x2i

!
� nx̄2

E [
nX

i=1

(xi � x̄)2] = E [
nX

i=1

x2i ]� E [nx̄2] = n(µ2 + �2)� �2 � nµ2 = (n � 1)�2

Now we calculate the expectation value of                         : 
Pn

i=1(xi � x̄)2

µ := E [xi ], �2 := V [xi ], x̄ :=
1

n

nX

i=1

xi

V [x̄ ] =
1

n2
V [

nX

i=1

xi ] =
1

n
V [xi ] =

�2

n
!
= E [x̄2]� µ2  E [x̄2] =

�2

n
+ µ2
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Unbiased estimator of the variance: Derivation (2)

6

This means that 

s2 :=
1

n � 1

nX

i=1

(xi � x̄)2

is an unbiased estimator of the variance, i.e.,                  .E [s2] = �2

Multiplying the sample variance by n/(n–1) is known as Bessel's correction.

Note that s is not an unbiased estimator of the standard deviation:
https://en.wikipedia.org/wiki/Unbiased_estimation_of_standard_deviation

Unbiased estimator for the standard deviation for the normal distribution ( ):E[ ̂σ] = σ
Rule of thumb:

�̂ ⇡

vuut 1

n � 1.5

nX

i=1

(xi � x)2�̂ = c4(n)
p
s2, c4(n) =

r
2

n � 1

�( n2 )

�( n�1
2 )

= 1� 1

4n
� 7

32n2
+ ...,

https://en.wikipedia.org/wiki/Unbiased_estimation_of_standard_deviation
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Likelihood function and maximum likelihood
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Suppose we have a measurement of n independent values 

We consider the measured values as fixed and the parameters as variables.

~x = (x1, x2, ..., xn)

f (x ; ~✓), ~✓ = (✓1, ✓2, ..., ✓m)

The joint pdf for the observed values  is given by:⃗x

L(~x ; ~✓) =
nY

i=1

f (xi ; ~✓) "likelihood function"

Principle of maximum likelihood 
The best estimate of the parameters  is that value which maximizes the 
likelihood function 

⃗θ

drawn from the distribution 
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Likelihood function is not a probability density function

The integral of  with respect to the parameter is not necessarily 
equal to unity (  might not be integrable at all). 
 
This is why  is not a probability density function. 

L( ⃗x , ⃗θ )
L( ⃗x , ⃗θ )

L( ⃗x , ⃗θ )

8

Example: exponential decay, one measurement at t = 1h.

L(⌧) =
1

⌧
e�t/⌧ ⇡ 1

⌧
as ⌧ ! 1,

Z 1

0
L(⌧) d⌧ not defined

Note: With Jeffreys' prior 1/τ the posterior L(τ) π(τ) is normalizable.
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Maximum likelihood example 1: Exponential Decay
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Consider exponential pdf: f (t; ⌧) =
1

⌧
e�t/⌧

Independent measurements drawn from this distribution: t1, t2, ..., tn

Likelihood function: L(⌧) =
nY

i=1

1

⌧
e�ti/⌧

L(τ) is maximum when ln L(τ) is maximum:

@ ln L(⌧)

@⌧
= 0  

nX

i=1

✓
�1

⌧
+

ti
⌧ 2

◆
= 0  ⌧̂ =

1

n

nX

i=1

ti

Find maximum:

ln L(⌧) =
nX

i=1

ln f (ti ; ⌧) =
nX

i=1

✓
ln

1

⌧
� ti

⌧

◆
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Maximum likelihood example 2: Gaussian (I)
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Consider x1, x2, …, xn drawn from Gaussian(μ, σ2)

Log-likelihood function:

ln L(µ,�2) =
nX

i=1

ln f (xi ;µ,�
2) =

nX

i=1

✓
ln

1p
2⇡

� ln� � (xi � µ) 2

2�2

◆

Derivatives w.r.t. μ and σ2: 

@ ln L(µ,�2)

@µ
=

nX

i=1

xi � µ

�2

@ ln L(µ,�2)

@�2
=

nX

i=1

✓
(xi � µ) 2

2�4
� 1

2�2

◆

f (x ;µ,�2) =
1p
2⇡�

e�
(x�µ)2

2�2
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Maximum likelihood example 2: Gaussian (II)
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Setting the derivatives w.r.t. μ and σ2 to zero and solving the equations: 

µ̂ =
1

n

nX

i=1

xi , c�2 =
1

n

nX

i=1

(xi � µ̂)2

We find that the ML estimator for σ2 is biased!
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Maximum likelihood uncertainty
Consider maximum likelihood estimate of a parameter θ. Methods to estimate 
Uncertainty of θ: 

1.  from Monte Carlo 
Generate pseudo-data by sampling the assumed distribution using the ML 
estimate  as parameter 

2. Use minimum variance bound 
 
 

3.  method:

σ ̂θ

̂θ

Δ ln L = − 1/2

12

ln L(✓̂ ± �) = ln L(✓̂)� 1

2

For a Gaussian likelihood function all methods agree. 
Method 3 usually gives asymmetric uncertainties (which are messy).

�✓̂ =
1q

� @2

@2✓ ln L(✓)
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Likelihood function and minimum variance bound
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Let's first consider a likelihood function with only one parameter:

Let           be an unbiased estimator of the parameter ✓̂(~x) ✓

It can be shown that the variance (of any unbiased estimator) satisfies:

V [✓̂] � 1

E
h
�@2 ln L

@2✓

i

For a biased estimator this becomes

V [✓̂] �
�
1 + @b

@✓

�2

E
h
�@2 ln L

@2✓

i

This bound is called Rao-Cramér-Frechet minimum variance bound (MVB)

L(~x ; ✓) = L(x1, x2, ..., xn; ✓) =
nY

i=1

f (xi ; ✓)
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MVB example: Exponential decay

14

@ ln L(⌧)

@⌧
= 0  

nX

i=1

✓
�1

⌧
+

ti
⌧ 2

◆
= 0  ⌧̂ =

1

n

nX

i=1

ti

Reminder:

@2 ln L(⌧)

@2⌧
=

nX

i=1

✓
1

⌧ 2
� 2

ti
⌧ 3

◆
=

n

⌧ 2
� 2

⌧ 3

nX

i=1

ti =
n

⌧ 2

✓
1� 2⌧̂

⌧

◆

V [⌧̂ ] � 1

E
⇥
� n

⌧ 2

�
1� 2⌧̂

⌧

�⇤ =
1

� n
⌧ 2

⇣
1� 2E [⌧̂ ]

⌧

⌘ =
⌧ 2

n

Minimum variance bound (MVB):
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Uncertainty of the ML estimator:  
Approximating the minimum variance bound

15

In many cases it is impractical to calculate the MVB analytically. Instead, 
one uses the following approximation which is good for large n:

E


�@2 ln L

@2✓

�
⇡ �@2 ln L

@2✓

����
✓=✓̂

The variance of the ML estimator is given by: 

V [✓̂] = � 1
@2 ln L
@2✓

���
✓=✓̂

Example: Exponential decay

@2 ln L(⌧)

@2⌧
=

nX

i=1

✓
1

⌧ 2
� 2

ti
⌧ 3

◆
=

n

⌧ 2
� 2

⌧ 3

nX

i=1

ti =
n

⌧ 2

✓
1� 2⌧̂

⌧

◆

V [⌧̂ ] = �
✓
@2 ln L

@2✓

◆�1

⌧=⌧̂

=
⌧̂ 2

n
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Asymptotic normality of the likelihood function
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1.0 1.5 2.0 2.5 3.0
�

-16.5

-16.0

-15.5

-15.0

ln L(�)

1.0 1.5 2.0 2.5 3.0
�-863.0

-862.5

-862.0

-861.5

-861.0

ln L(�)
10 data points 500 data points

quadratic approximation 
of ln L(τ) is not very good

quadratic approximation 
of ln L(τ) is excellent

Quadratic 
approximation 
of ln L(τ)

Data points sampled from f (t; ⌧) =
1

⌧
e�t/⌧  with ⌧ = 2

For any probability function   the likelihood function L approaches a 
Gaussian for large n, i.e., for a large number of events, and the variance of 
the ML estimator reaches the minimum variance bound.

f(x; θ)
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Uncertainty of the ML estimator:  
 methodΔ ln L = − 1/2

17

ln L(✓) = ln L(✓̂) +


@ ln L

@✓

�

✓=✓̂

(✓ � ✓̂)

| {z }
=0

+
1

2!


@2 ln L

@2✓

�

✓=✓̂

(✓ � ✓̂)2 + ...

ln L(✓) ⇡ ln Lmax �
(✓ � ✓̂)2

2c�2
✓̂

ln L(✓̂ ± �̂✓̂) ⇡ ln Lmax �
1

2

Taylor expansion of ln L around the maximum:

If L(θ) is approximately Gaussian (ln L(θ) then is a approximately a parabola):

One can then estimate the uncertainties from the points where ln L has 
dropped by 1/2 from its maximum:

� 1

�2

[from MVB, 
or from assuming 
Gaussian shape]

good approximation in 
the large sample limit
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Illustration of the  methodΔ ln L = − 1/2

18

L is Gaussian    ⟷    ln L is a parabola

C. Pruneau, Data Analysis Techniques for the Physical Scientist
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Properties of the ML estimator
The ML estimator is consistent,  
i.e., it approaches the true value in the limit of infinite measurements (n → ∞) 

ML estimator efficient for large n (you get the smallest possible variance) 

For finite n the ML estimator is in general biased 

ML efficiency theorem: 
the ML estimator will be unbiased and efficient if an unbiased efficient 
estimator exists  

The ML Estimator is invariant under parameter transformation: 

ML does not provide a goodness-of-fit measure.

19

 = g(✓) )  ̂ = g(✓̂)
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Averaging measurements with Gaussian uncertainties

20

f (x ;µ,�2
i ) =

1p
2⇡�i

e
� (x�µ)2

2�2
i ln L(µ) =

nX

i=1

✓
ln

1p
2⇡

� ln�i �
(xi � µ) 2

2�2
i

◆
pdf for measurement (same mean, different σ):

Weighted average = ML estimate

@ ln L(µ)

@µ

����
µ=µ̂

=
nX

i=1

xi � µ̂

�2
i

!
= 0 ) µ̂ =

Pn
i=1

xi
�2
iPn

i=1
1
�2
i

Uncertainty? In this case L is Gaussian and we can write it as

L(µ) / e
� (µ�µ̂)2

2�2
µ̂ with �2

µ̂ =
1P
i

1
�2
i

We obtain the formula for the weighted average:

µ̂ =

Pn
i=1

xi
�2
iPn

i=1
1
�2
i

± 1qPn
i=1

1
�2
i
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Minimum variance bound for m parameters

21

V [✓̂j ] � (I (~✓)�1)jj

f (x ; ~✓), ~✓ = (✓1, ✓2, ..., ✓m)

Cramér-Rao-Frechet bound for an unbiased estimator then states that  
is a positive-semidefinite matrix.

V − I−1

Fisher information matrix  (m × m matrix):I( ⃗θ )

Ijk [~✓] = �E


@2

@✓j@✓k
ln L(x , ~✓)

�

Covariance matrix of the parameters: Vij := cov[✓i , ✓j ]

In particular one obtained for the variance:
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Variance of the ML estimator for m parameters

22

For any probability function            the likelihood function L approaches a 
multi-variate Gaussian for large n

f (x ; ~✓)

Covariance matrix of the estimated parameters:

Standard deviation of a single parameters:

The variance of the ML estimator then reaches the MVB:

V [
b~✓] ! I (~✓)�1

L(~✓) / e�
1
2 (
~✓�b~✓)T V�1[

b~✓] (~✓�b~✓)

V [
b~✓] ⇡

"
�@2 ln L(~x ; ~✓)

@2~✓

�����
~✓=

b~✓

#�1

�̂✓̂j
=

q
(V [

b~✓])jj

or equivalently:
(V�1[

b~✓])ij = � @2 ln L(~x ; ~✓)

@✓i@✓j

�����
~✓=

b~✓
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Example: Two-parameter ML fit (from Cowan's book)

23

f (x ; a, b) =
1 + ax + bx2

2 + 2b/3
Scattering angle distribution, x = cos θ:

Normalization:
Z xmax

xmin

f (x ; a, b) dx = 1

Example: a = 0.5, b = 0.5; xmin = �0.95, xmax = 0.95, 1000MC events

Numerical minimization with MINUIT: 

Uncertainties and covariance from 
inverse of Hessian matrix H:

â = 0.53± 0.08

b̂ = 0.51± 0.16

cov[â, b̂] = 0.006

⇢ = 0.48

histogram only 
for visual representation, 
full data set used in fit

bV = �H
�1, (H)ij =

@2 ln L

@✓i@✓j

����
~✓=~̂✓

[link to jupyter notebook]

https://nbviewer.jupyter.org/urls/www.physi.uni-heidelberg.de/~reygers/lectures/2020/smipp/ml_fit_example_iminuit.ipynb
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Example: Two-parameter ML fit (iminuit)

24

iminuit uses introspection 
to detect the parameter 
names of your function
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Example: Two-Parameter ML Fit (iminuit)

25

https://nbviewer.jupyter.org/github/scikit-hep/iminuit/blob/master/tutorial/basic_tutorial.ipynb
https://iminuit.readthedocs.io/en/stable/

https://nbviewer.jupyter.org/github/scikit-hep/iminuit/blob/master/tutorial/basic_tutorial.ipynb
https://iminuit.readthedocs.io/en/stable/
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Example: Two-Parameter ML Fit (iminuit)

26
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Extended maximum likelihood method (1)

27

Standard ML fit: information is in the shape of the distribution of the data xi.

Sometimes the number of observed events contains information 
about the parameters of interest, e.g., when we measure a rate.

Z
f (x , ~✓) dx = 1

Normal ML method:

Extended ML method:

Z
q(x , ~✓) dx = ⌫(~✓) = predicted number of events

Extended ML fit: normalization becomes a fit parameter
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Extended maximum likelihood method (2)

28

Z
f (x , ~✓) dx = 1

L(~✓) =
⌫ne�⌫

n!

nY

i=1

f (xi ; ~✓) where ⌫ ⌘ ⌫(~✓)

ln L(~✓) = � ln(n!)� ⌫(~✓) +
nX

i=1

ln[f (xi ; ~✓)⌫(~✓)]

� ln L̃(~✓) = ⌫(~✓)�
nX

i=1

ln[f (xi ; ~✓)⌫(~✓)]

Likelihood function:

Normalized pdf:

Log-Likelihood function:

ln(n!) does not depend on the parameters. So we need to minimize:

prediction for total 
number of events
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Application of the extended ML method: 
Linear combination of signal and background PDF (1)

29

Normalized pdf:

Two-component fit  
(signal + linear background)

Unbinned ML fit works fine also in 
case of low statistics

f (x ; r , ~✓) = r fs(x , ~✓) + (1� r) fb(x , ~✓)

� ln L̃(~✓) = s + b � n ln(s + b)�
nX

i=1

ln[f (xi ; ~✓)]

⌫(s, b) = s + b, r =
s

s + b

histogram only 
for visual 
representation 
(unbinned fit) Parameters: 

- signal counts s 
- background counts b 
- linear background (slope, intercept) 
- Gaussian peak: μ, σ

negative log-likelihood:
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Application of the extended ML method: 
Linear combination of signal and background PDF (2)

30

We could have just fitted the normalized pdf:

Discussion:

Good estimate of the number of signal events:

However,           is not a good estimate of the variation of the number of 
signal events (ignores fluctuations of n)
[C. Blocker, Maximum Likelihood Primer]

f (x ; rs , ~✓) = r fs(x , ~✓) + (1� r) fb(x , ~✓)

nsignal = r n

�r n

(Trivial) example (L. Lyons): 
96 protons and 4 heavy nuclei 
have been measured in a cosmic 
ray experiment

protons heavy nuclei 
nucleiML estimate 96 ± 2 4 ± 2  

Extended ML estimate 96 ± 10  4 ± 2  

http://web.ipac.caltech.edu/staff/fmasci/home/astro_refs/Likelihood_primer.pdf
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Maximum likelihood fits with binned data (1)

31

Common practice: data put into a histogram: ~n = (n1, ..., nk), ntot =
kX

i=1

ni

Model prediction for the expected counts in bin i for fixed ntot:

⌫i (~✓) = (⌫1, ..., ⌫k)

If ntot is fixed the probability to get a certain     is given by the 
multinomial distribution.

Multinomial distribution (generalization of binomial distribution):
→ k different possible outcomes, probability for outcome i is pi,  

kX

i=1

pi = 1

f (~n; ntot,~p) =
ntot!

n1! · ... · nk !
pn11 · ... · pnkk ~p = (p1, ..., pk)

~n

⌫i (~✓) = ntot

Z

bin i
f (x ; ~✓) dx
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Maximum likelihood fits with binned Data (2)

32

⌫i (~✓) = (⌫1, ..., ⌫k)

With pi = νi/ntot we write the likelihood of a certain n1, …, nk outcome as:

L(~✓) =
ntot!

n1! · ... · nk !

✓
⌫1
ntot

◆n1

· ... ·
✓

⌫k
ntot

◆nk

Log-likelihood function:

ln L(~✓) =
kX

i=1

ni ln ⌫i (~✓) + C

Limit of zero bin width → usual unbinned maximum likelihood method
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Maximum likelihood fits with binned Data (3)

33

Extended log-likelihood fit for binned data:

⌫tot =
kX

i=1

⌫i , ntot =
kX

i=1

nintot fluctuates, predicted average: νtot

Likelihood function:

L(~✓) =
⌫ntottot

ntot!
e�⌫tot

ntot!

n1! · ... · nk !

✓
⌫1
⌫tot

◆n1

· ... ·
✓

⌫k
⌫tot

◆nk

=
kY

i=1

⌫nii
ni !

e�⌫i

Function that needs to be maximized (dropping terms that do not 
depend on the parameters):

⌫i (~✓) = (⌫1, ..., ⌫k)ln L(~✓) =
kX

i=1

ni ln ⌫i � ⌫i = �⌫tot +
kX

i=1

ni ln ⌫i ,
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Relation to Bayesian parameter estimation

34

p(~✓;~x) =
L(~x ; ~✓)⇡(~✓)

R
L(~x ; ~✓)⇡(~✓) d~✓

Bayesian posterior distribution:

Posterior distribution contains all information about the estimated parameters.

Often the mode (most probable value) of the posterior distribution is reported 
→ Coincides with ML estimate for a flat prior distribution

Marginalization in case one is interested in only one parameter of the Bayesian 
posterior distribution:

p(✓j ;~x) =

Z
p(~✓;~x) d~✓k 6=j =

R
L(~x ; ~✓)⇡(~✓) d~✓k 6=jR
L(~x ; ~✓)⇡(~✓) d~✓
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Uncertainty in the probability function for the data described by 
nuisance parameter :ν

If available, can include information on  from additional measurements :ν yi

Eliminate the nuisance parameter by using the profile likelihood:

: value of  which maximizes  for a given  ν L(θ, ν) θ

Lp(✓) = L(✓, bb⌫(✓))

bb⌫(✓)

L(✓, ⌫) =
Y

i ,j

p(xi , yj |✓, ⌫)

L(✓, ⌫) =
Y

i

p(xi |✓, ⌫)


