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Monte Carlo method

= Any method which solves a problem by generating suitable random
numlbers

= Useful for obtaining numerical solutions to problems which are too
complicated to solve analytically

= The most common application of the Monte Carlo method is Monte

Carlo integration

= Pioneers https://en.wikipedia.org

» Enrico Fermi
» Stanislaw Ulam
» John von Neumann

» Nicholas Metropolis

A

Enrico Fermi Stanislaw Ulam J. von Neumann N. Metropolis

http://mathworld.wolfram.com/MonteCarloMethod.html
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Monte Carlo method: Examples

[from Bohm, Zech: Introduction to Statistics and Data Analysis for Physicists]

n = 3000, == 3.1133

= Area of a circle 1.0 1= -
= \Volume of the intersection of a cone and atorus ¢!
» Hard to solve analytically I
» Easy to solve by scattering points
homogeneously inside a cuboid containing the 0.4 127l
Intersect o
o . . . o 0.2 1 .
= Efficiency of particle detection with a scintillator v
» Produced photons are reflected at the surfaces %%0 02 o4 o6 o8 10
and sometime absorbed
» Almost impossible to calculate analytically for
different parameters like incident angle, particle
energy, ...
» Monte Carlo simulation is the only sensible
approach
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http://www-library.desy.de/preparch/books/vstatmp_engl.pdf

Pseudo-random numbers

= Principle: Use insignificant digits of an
operation to generate next number

» choose large integers Aandm, A <m

» choose integer no < m (“seed”)

» uniformly distributed random numbers r;:

ni 1 = Anj mod m

r,=n;/m, r €]0,1]

“Multiplicative linear congruential algorithm®

(period at maximum m — 1)

» Mersenne twister
» Invented 1997 by M. Matsomoto

and T. Nishimura

» Sequence repeats after 219937

calls, I.e., never ...

= Quality checks

» Frequency of occurrence
» Plot correlations between

consecutive random numbers
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Bohm, Zech:

0.5 1.0
random number

http://www-library.desy.de/preparch/books/vstatmp_engl.pdf
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Box-Muller algorithm for creating Gaussian
distributed random numbers

1. Generate two uniformly distributed random numbers us and uz In
the range [0, 1]

2. Set

¢ = 2T, r:\/—2lnu2

3. Then
z1=rcos¢ and 2z =rsing

are two independent rv’s following a standard normal distribution

Why?
_ £ ]. r2 1 Z% +Z22
ur(r) = e 2 dp=—e 2Zrdrdp=—e "2 dz;dzn
I27T I I27T I
@ — dp . ‘ duy ’ _ e—é r 2d standard normal 2d standard normal
dr dUz dr distribution in polar distribution in cartesian
coordinates coordinates
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Random Numbers from C

nverse transform methoo

Consider a distribution f from which
we want to draw random numbers.
Let u(r) be the uniform distribution
in [0, 1]

/X f(x")dx" = 7)u(r’)dr’ = r(x)

With F(x) = cumulative distr.:
F(x)=r

We get the random number x from
the inverse of the cumulative
distribution:;

x(r) = F~(r)

IStributions:
Bohm, Zech:
http://www-library.desy.de/preparch/books/vstatmp_engl.pdf
f(x)
i a)
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o
€ 10f
e distribution function
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Cross check:
dp dp dr dF(x) (x)
pe— — — X (]
dx dr dx dx
"~
=1
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—xample |

Linear function: f(x) = 2x, 0<x<1

F(x)=x* — x=+/r

Exponential: f(x) =~ve 7, x>0
In(1 — r)
8

Fix)=1—e"7" — x=

One can store F(x) as a histogram if there is no analytical solution, cf. root's
GetRandom( ) function:

root [@] TF1 f("f", "x*3/(exp(x)-1)", 0., 15.);
root [1] cout << f.GetRandom() << endl;
13.9571
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Inverse transform method using histograms in Python

def get random(f, xmin, xmax, n samples):

"""Generate n samples random numbers within range [xmin, Xmax]
from arbitrary continuous function f
using inverse transform sampling

i

# number of points for which we evaluate F(x)
nbins = 10000

indefinite integral F(x), normalize to unity at xmax
= np.linspace (xmin, xmax, hbins+1)

= 1ntegrate.cumtrapz (f(x), x, 1nitial=0)

= F / F[-1]

X 3

# interpolate F*"{-1} and evaluate it for

# uniformly distributed rv's in [0,1]

inv F = interpolate.interpld(F, x, kind="quadratic")
r = np.random.rand(n samples)

return inv F (r)

[random numbers from distribution.ipynb]
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https://nbviewer.jupyter.org/urls/www.physi.uni-heidelberg.de/~reygers/lectures/2020/smipp/random_numbers_from_distribution.ipynb

—xample ll: Uniform points on a sphere

dp dp dp

d_Q_sianHdgb:COHStEk W:ksinezf(@g(e)
Distributions for 6 and ¢:
f((b)E%zconst:%, 0<¢ <27
g(@)zi—g:%sine, 0<fh<n

Calculating the inverse of the cumulative distribution we obtain:

¢:27TI’1

0 = arccos(1l — 2nr,) las G(0) = %(1 — cos 0)]

Upshot: ¢ and cos 8 need to be distributed uniformly
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Random numbers from distributions:
Acceptance-rejection method

0 AlgOrl’[h m accept reject

» Generate random number x
uniformly between a and b

» Generate second random y
number uniformly between O
and A

» Accept x if y < f(x)
» Repeat many times

= [he efficiency of this algorithm
can be quite small

= Improvement possible by NN
choosing a majorant, i.e., a woopt w9
function which encloses g(x) fiE A
and whose integral is known AR 0N
("mportance sampling” P

i
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Random numbers from multivariate Gaussian (1)

Random number from multivariate normal distribution f(x; 1, V):

1. Calculate the Cholesky decomposition V = AA T

2. Draw 2y, 29, ..., Z, from the standard normal distribution
N(Oal) and let Z — (Zla Z29 R Zn)

3. Output X = & +AZ

Cholesky decomposition:

A symmetric positive-definite matrix V can be written as
V=AA"

where A is a real lower triangular matrix with positive diagonal entries.
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Random numbers from multivariate Gaussian (2)

[random numbers mv normal distr.ipynb]

# example: 2d normal distribution

mu = np.array([0., 0.]) # mean
cov = np.array([[1, 0.8], [0.8 , 1]]) # cov. matrix
# Cholesky decomposition, A = lower triangular matrix

A = np.linalg.cholesky (cov)

# number of random vectors

n = 1000
# random numbers following standard normal distr.
# Ndim rows, N columns (here Ndim = 2) 4
Z = np.random.normal (size=(2, n)) 3
2_
# matrix with Ndim rows (here Ndim = 2): L
# [[mul, mul, ...], [mu2, mu2, ...]J]] .
mean = np.repeat (mu, n).reshape(Z2,n) .
# matrix of random vectors ]
# vector 1: (rand[1l][1], rand[2][1]) -
rand = mean + np.dot (A, z) - )
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https://nbviewer.jupyter.org/urls/www.physi.uni-heidelberg.de/~reygers/lectures/2020/smipp/random_numbers_mv_normal_distr.ipynb

Weighting method

Sometimes it is not practical to generate Typical pr spectrum, e.g., of a J/{ meson
random numbers from a distribution f(x)

100 -

» for instance, because in the range of interest it
varies by several orders of magnitude

-
o
R

» take pr spectra as an example: would take long
to get sufficient statistics at high pr

dN/dpr (arbitrary units)

'—\
o
N

In this case the weighting method may N
be useful 00 25 5.0 7;T((150.e0V/22).5 15.0 17.5 20.0

1. Generate uniformly distriouted random numbers X; in interval of

X

interest [ X, i1 Xmax)

1n°
2. Assign a weight w; = f(x;) to event i

3. Fill histogram, e.g. for those events that pass certain cuts, with
weight w;, i.e., histogram counter is incremented by w;, not by 1

More general: define a distribution /(x) which is easy to sample but not

necessarily uniform, draw x; from A, and set w; = f(x;)/h(x;).
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Monte Carlo Integration

Naive Monte Carlo integration:
X uniformly distributed

. o random numbers
uniform distribution

b , ,neb o \
/ f(x)dx = (b— a)/ f(x)u(x)dx = (b— a){f(x)) =~ (b— a) - - Z f(x;)
. . | i=1 |
— | 227

Typical deviation from the true value of the integral (standard deviation)

b— a
Vn

olf]

n2

viij= P2y rea = P o o ol =
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Monte Carlo Integration: Multidimensional integrals

Trapezoidal rule in one dimension A

» accuracy improves as 1/n2 with the
number of points

» Much better than 1//n scaling of the
MC methods

Monte Carlo integration in d dimensions:

/:/f(?)dz, Q C R, vz/dz oo X
Q Q

https://en.wikipedia.org/wiki/Trapezoidal_rule

> X

A 1 A olf
~|=V- Z oll] = VL <+« same as in 1d case
n & VN
Trapezoidal rule in d dimension: For multidimensional
» accuracy improves as 1/n2d with the integrals MG integration
number of points outperforms other numerical
» for d > 4 the dependence on n is better for integration methods

MC integration
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Metropolis-Hastings algorithm (1)

Bayesian inference often involves marginalization of a high-dimensional
posterior distribution:

P(6|data) — /P(eo,el, . 0,|data) d6;...do,

Typically, the integral cannot be solved in closed form. Moreover, repeated one-
dimensional integration becomes inefficient (“curse of dimensionality”).

l|dea: sample distribution many times and consider only parameter of interest.
Method: Markov Chain Monte Carlo (MCMC)
MCMC has revolutionized Bayesian analysis.

A sequence of random numbers is a Markov chain if the probability of the next
number only depends on the previous one:

f(Xne1|Xn, Xn—1, ..., X0) = F(Xna1|Xn)
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Metropolis-Hastings algorithm (2)

Goal: sample from a distribution f(x") known up to a normalization constant.

Take initial X, with f(x'y) > 0 and repeat the following steps many times:

1. Generate candidate "y according to proposal distribution g(7y"| X'}

2. Generate uniformly distributed random number 7 in [0, 1] and set

. v, ffr<a(x,y)

Y+l = ) — .
X, Otherwise

where

a(x, }7>)=Inin{1 J(y)g(x y)}

) g(V 1 X)

a(x’,y) is called the acceptance probability.
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Metropolis-Hastings algorithm (3)

= The algorithm generates a correlated sequence of points (not suited for
many applications, but okay for marginalization)

= [f a finite initial sequence of points is discarded, the remaining points can be
shown to follow f(x)

= Not easy to figure out when the sequence has started to converge to f(X')

= The proposal function g( y> | x’) can be almost anything. Often, a multi-
dimensional Gaussian is used.

= Often the proposal function is symmetric, i.e., g(V | X) = g(x | ). Then
the acceptance probability reduces to

> > . f(7)}
b — 19 —_—
a(x, V) mln{ )

and a step to a higher f(7y) is always taken.

= Original Metropolis algorithm suggested symmetric proposal functions,
Hastings modified original rules by using non-symmetric functions.
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Metropolis-Hastings algorithm: Visualization

Random walk Metropolis-Hastings Open Controls

steptoa -

0.’.. A .o . e ™
'+ .1 new point et
- = . * . » & T L as = .
o " * 4 . .
. . . sl ¢
. _ - ..
'.' . '..3‘{ o. “ .
= cas?® ".,.
L :.-ﬁ( Sikel e
Py s T ‘. *8 o ¥
- '. .':...o. - .: .Yt
“o" o". -$.‘t..\ :u
® sy e o . oq_'
-~ . ’o‘ - »0'.
Q’l‘.u‘,fn ..rs’;’.‘
o0 LY -" . .’H O.
\ o g efe 4. -, L™
b LI .{' ‘.
.' -‘.2.. e &
‘o.'_;.. "”o. %
'. .'o 5 :...: J. n
o P id
oi !
ol
.o .‘ ‘-.' - «
o R
& - ; C. .a‘..: :
o. '-"..:.. :..."‘ -
- '\".':'; "-;.‘.""'0.) )
0, =P8 gt &
MITRE 0, o8 0¢
2 ‘e » '.'0 s
J'~ -...' '.:‘o\' f &
..’u.‘. f'.\ .'a
. f:':—.. e /
' T LA
"

https://chi-feng.github.io/mcmc-demo
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https://chi-feng.github.io/mcmc-demo/

Monte Carlo simulation |
—vent generators (Pythia, Sherpa, .. .)

Examples: Pythia

» Simulation of pp and ete-
collision on quark and gluon level

» Hard and soft interactions, parton
showers, fragmentation and
particle decay

» Many applications

- Test underlying physics, e.g.,
perturbative QCD £

- Calculate QCD background
processes, e.g., in Higgs
searches

- Calculation of detector
efficiencies
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Pythia

OQutput:
Four-vectors of of produced particles

Event listing (summary)

I particle/jet KS KF orig p_x pP_y p_z E m
1 (w A 12 2 O 0.000 0.000 10.000 10.000 0.006
2 (ubar) v 11 -2 O 0.000 0.000 -10.000 10.000 0.006
3 (string) 11 92 1 0.000 0.000 0.000 20.000 20.000
4  (rho+) 11 213 3 0.098 -0.154 2.710 2.856 0.885
5 (rho-) 11 -213 3 -0.227 0.145 6.538 6.590 0.781
6 pi+ 1 211 3 0.126 -0.266 0.097 0.339 0.140
7 (Sigmal) 11 3212 3 -0.254 0.034 -1.397 1.855 1.193
8 (Kx+) 11 323 3 -0.124 0.709 -2.753 2.968 0.846
9 p - 1 -2212 3 0.395 -0.614 -3.806 3.988 0.938
10 pi- 1 -211 3 -0.013 0.146 -1.389 1.403 0.140
11 pi+ 1 211 4 0.109 -0.456 2.164 2.218 0.140
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Monte Carlo simulation |l
Detector simulation with GEANT

http://www.uni-muenster.de/Physik.KP/santo/thesis/diplom/kees

http://geant4.cern.ch/

Calculation of detector response,

/. .photons (blue)
reconstruction eﬁiciencies, R

Example:
electromagnetic shower

L

......
’ p
4“'"

.............
......
..........

INcident ele;:tron
(red)

leadglass calorimeter
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Monte Carlo simulation [lI:
Treatment planning in radiation therapy

~ 16 Gy

Codes
» GEANT 4
» FLUKA

4

Intensity-Controlled Rasterscan Technique, Haberer et al., GSI, NIM A,1993
Source: GS
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