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Ways to quote uncertainties

t = (34.54+0.7) 1073 s

t =34.510"3s+2%

z=10.3757

me = (0.510999 06 & 0.000 000 15) MeV /c?

me = 0.510999 06 (15) MeV /c?
me = 9.109389 7102 kg + 0.3 ppm

An uncertainty o represents some kind of probabillity distribution
(often a Gaussian, if not stated otherwise)

If no further information is given the interval x + ¢ corresponds to a
a probability of 68% ("10 errors")
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Statistical and systematic uncertainties

» quoting stat. and syst. uncertainty
separately gives us an idea whether
x = 2.34 4+ 0.05 (stat.) £ 0.03 (syst.) taking more data would be helpful

» Systematic unc. usually less well known

» important when combining experiments
Statistical or random uncertainties
» Uncertainties that can be reliably estimated by repeating measurements

» They follow a known distribution like a Poisson rate or are determined empirically from
the distribution of an unbiased, sufficiently large sample.

» Relative uncertainty reduces as 1/\/N where N is the sample size

Systematic uncertainties
» Cannot be calculated solely from sampling fluctuations
» In most cases don't reduce as 1/{/N (but often also become smaller with larger N)
» Difficult to determine, in general less well known than the statistical uncertainty
» Systematic uncertainties # mistakes
(a bug in your computer code is not a systematic uncertainty)
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Statistical uncertainties: Examples

Radioactive decays (— Poisson distribution)
» You measure N = 150 decays.
» The result is reports as N + JN = 150 + 12

Efficiency of a detector (— Binomial distribution)

» From No = 60 particles which traverse a detector, 45 are measured
r £ = N/No = 0.75

1— 0.75-0.25
oy = Noe(l—¢) ~ 05_\/5( 8):\/ = 0.06

60
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3.1 Error Propagation
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Linear error propagation: Sometimes applicable ...

y= f(x)
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Function sufficiently linear within +0: linear error propagation applicable
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Linear error propagation: Sometimes not applicable ...

y dz
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In this situation linear error propagation is not applicable
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Linear error propagation

Consider a measurement of values x;and their covariances:
X = (X1, X2, ..., Xp) Vii = cov|x;, xj]

Let y be a function of the xi;  y = f(X)

What is the variance of y?

Approach: Taylor expansion of y around 7 where p;i = E[xi]

\

In practice we estimate i
by measured value X;

Vly]l = o = Ely®] — ElyJ’
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Linear error propagation formula

0
Taylor expansion: y(X) =~ y(@) + Z [ 8){} (xi — i)
i=1 Hd X=p
Ely] is easy: Ely] =~ y(ii) as E[x;—ui] =0

n 6 n
+E (Z{aﬂ (X,—u;)> >
\i=1 i X= j=1
N |9y Oy
= y*(f) + Z L%‘ 8x} Y
ij=1 P Ax=
— [ 9y Jy
. 2 _ .
Thus: c= [8x- ax-L Y
ij=1 P A X=p
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Matrix notation

Let vector A be givenby A = ﬁy, e, A = (Q)

0x;
n
Oy Oy
Then: o2 = E Vi = ATVA
y j
- 8X,' aXJ > =
iJj= =
Exampl y=22 a=( 1
xXam : — — 2
AMpie X2 —X1/X;
1 2 1
> X1 o3 cov|[xi, xo] o
o, = === 2 X
X2 X5 cov|xi, x2] I X3
2
1 X1 2L — A cov|xq, xo] 1 X2 X1
— <_, B 1X2 X5 - _20-% -+ _]Z-l.o-g — 2_3COV[X]_, X2]
X2 X5 o Cov[x1, xo| — 2303 X5 X5 X5
0. o2 o3 cov[xi,x] 07 0?2 o3 010
2 7 32 X2 X1 X T2 X2 X2 X7 X
1 5 1X2 y 1 2 1X2

Statistical Methods in Particle Physics WS 2020/21 | K. Reygers | 3. Experimental uncertainties 11



Linear error proportion:

__ 2
y=ax — g,
2

o

__ D Y
y =X — >

Sanity checks:

Average of fully correlated 1
measurements: 2

Difference of fully correlated

measurements:
AN

—Xxamples
= 3’02 i.e. 0, = |alo
, 02 . Oy Ox
=n"— l.e. — = |n|—
X y X
0)2, = 0% + 05 + 2cov[xy, xo]
0)2, = 0% + 05 — 2cov[xy, xo]
0)2, B ki | o5 . 2cov[x1,x2]
v2 o2 T2
X1 X5 X1 X2

(x1+x2), or=0=0, p=1

y=x1—Xp, 01=02=0, p=1

0)2,:202—202:0

O'y:O'
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Concrete example: Momentum resolution in tracking

Charged particle moving in constant
magnetic field:

pr/GeV =0.3 x B/Tesla x R/m
Measurements of space points yields

Gaussian uncertainty for sagitta s
which is related to pr as

[2 [2

R=—, = 0.38—

8s PT 8s
Momentum resolution: - >
PT S

Important features:

» Relative momentum uncertainty
proportional to momentum

» Relative uncertainty prop. to uncertainty
of coordinate measurement
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Example:
ATLAS nominal resolution

2
(U"T> = 0.001% + (0.0005p7)"
PT I | |

track uncertainty

multiple scattering
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_Inear error propagation for uncorrelated
measurements

Special case: the x; are uncorrelated, i.e., Vi = §;07:

These formulas are exact only for linear functions.

Approximation breaks down if function is nonlinear over a region comparable

IN size to the a..
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—xample of Gaussian error propagation:

NN
Volume of a cylinder D
R
N

[gaussian error propagation.ipynb]

from sympy import *
from IPython.display import display, Latex

def gaussian error propagation(f, vars): [wikipedial
i
f: formula (sympy expression)
vars: 1ist of independent variables and corresponding uncertainties
[(x1, sigma x1), (x2, sigma x2), ...]
rrrun
sum = sympify("0") # empty sympy expression
for (x, sigma) in vars:
sum += diff (f, x)**2 * sigma**2
return sqgrt(simplify(sum))

Show usage for a simple example: Volume of a cylinder with radius r and height A:

r, h, sigma r, sigma h = symbols('r, h, sigma r, sigma h', positive=True)
V = pil * r**2 * h # volume of a cylinder

sigma V = gaussian error propagation(V, [(r, sigma r), (h, sigma h)])
display (Latex (f"SV = {latex(V)}, \, \sigma V = {latex(sigma V) }S$S"))

V = rnhr?, oy = ﬂr\/4h20r2 + 1202
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https://nbviewer.jupyter.org/urls/www.physi.uni-heidelberg.de/~reygers/lectures/2020/smipp/Gaussian_error_propagation.ipynb
https://nbviewer.jupyter.org/urls/www.physi.uni-heidelberg.de/~reygers/lectures/2020/smipp/gaussian_error_propagation.ipynb
https://en.wikipedia.org/wiki/Cylinder

—xample of Gaussian error propagation:

Volume of a cylinder (now for correlated r and h)

def gaussian error propagation corr(f, x, V):
f: function f = f(x[0], x[1], ...)
x: list of variables
V: covariance matrix (python 2d 1ist)
sum = sympify ("0") # empty sympy expression
for i in range(len(x)):
for j in range(len(x)):
sum += diff(f, x[i]) * diff(f, x[3]) * VI[i][7]
return sqgrt (simplify (sum))

Show usage for a simple example: Volume of a cylinder with radius r and height A:

r, h, sigma r, sigma h = symbols('r, h, sigma r, sigma h', positive=True)
rho = Symbol ("rho", real=True) # correlation coefficient
V =pi * r**2 * h # volume of a cylinder

vars = [r, h]

cov matrix = [[sigma r**2, rho * sigma r * sigma h],
[rho * sigma r * sigma h, sigma h**2]]

Matrix (cov _matrix)

[ o7 pahor]

2
pPOLO o,

sigma V = gaussian error propagation corr(V, vars, cov _matrix)
display (Latex (f"SV = {latex(V)}, \, \sigma V = {latex(sigma V)}S"))

r=3cm, o.=0.1cm

h=5cm,0, =0.1cm
V=rr*h=141.4cm’

Uncertainty of the
cylinder volume V/
depends on the
correlation coefficient p:

p ov
-1 6.6 cm3
0 9.8 cm3
1 12.3 cm3

[gaussian error propagation correlated variables.ipynb]

V = nhr?, oy = yzr\/4h203 + 4hrpoyo, + rza,zl
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https://nbviewer.jupyter.org/urls/www.physi.uni-heidelberg.de/~reygers/lectures/2020/smipp/Gaussian_error_propagation.ipynb
https://nbviewer.jupyter.org/urls/www.physi.uni-heidelberg.de/~reygers/lectures/2020/smipp/gaussian_error_propagation_correlated_variables.ipynb

Linear error propagation:
Generalization from R7—R to Rn—Rm

Generalization: Consider set of m functions:

Y(X) = (y1(X), y2(X), ..., ym(X))

Then:

"L [0y O
covlyi, yi] = U = ) { a{(k (9));/} Vij
i OXjlz=p

ij=1

In matrix notation:

U=AVAT A= [(9y,}
OXj | -
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iINdependent measurements

Consider the average of n independent observation x;:

Expectation values and variance of the measurements:
Ex;]| = u; Vx| = o?

Standard deviation of the mean:

- ]- k 2 1 2 0}

Standard deviation of the mean decreases as 1/{n
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—xXample: Photon energy measurements

The energy resolution of a y-ray detector used to investigate a decaying
nuclear isotope is 50 keV.

» If only one photon is detected the energy of the decay is known to 50 keV
» 100 collected decays: energy of the decay known to 5 keV

» Toreach 1 keV one needs to observe 2500 decays
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Averaging uncorrelated measurements

Consider two uncorrelated measurements: X1 L 01, X @£ 07

Linear combination:

2 2 2 2 2
y = WiX1 + WaXp 0, = Wj01 + Wy05

Now choose the weights such that 62 is minimal

Y
(under the condition w1 + wa = 1):
0 1/0?
=0 — P = l
(9W,J v 1/02 +1/03

And for the uncertainty of y we obtain (linear error propagation):

1 1 | 1
"o T T2 T
oy o 05

In general, for n uncorrelated measurements:

S

n
1/02 1 1
Yy = Wi Xj, Wi = , — )
2 ST 7
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—xample: Averaging uncorrelated measurements

pr1 of a particle in three subsystems of the ATLAS detector:

TRT<

scrd

rR=1082mm \

R=122.5mm
Pixels { R = 88.5 mm
R=50.5mm

R=0mmf

20 GeV 21 GeV 22 GeV
_ 4GeV? 1 GeV? 16 GeV?2
PT = — 1 1
4 GeV? 1 GeV?2 16 GeV?2
= 20.86 GeV

detector pr (GeV)
pixel detector 202
TRT semiconductor tracker 2111
transition radiation 29 + 4
tracker

Weighted average:
(20.86 T 0.87) GeV

N T S S e
OPr T |24GeV2 | 1GeV2 | 16 GeV?2
= 0.87 GeV
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Weighted average from Bayesian approach

Consider two measurements x; and x» with Gaussian uncertainties o1 and o5. In a
Bayesian approach the probability distribution for the true value u is given by

p(1) o< L(x1, xo|p)m(pe)

Assuming a flat prior m(x) = 1 and independence of the two measurements one
obtains

p(p) o< Lixa|p)L(x2|p)
= G(x1; 1, 01)G(x2; 1, 02)

 exp [_} ((M —2Xl)2 G —2><2)2>]

2 01 05

The product of the two Gaussians gives a Gaussian with mean

1/0?
1/0% 4+ 1/03

[ = WiX1 + Woxp Where w; =

and standard deviation

1 1 1
— ==+t — same result as before
o o1y 05
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Asymmetric Errors R. Barlow, arXiv:physics/0406120

Sometimes measurements are quoted with asymmetric errors:  X;

— 0 —

+0i +
How to combine such measurements”?

There is no statistical justification for adding the positive and negative
uncertainties in quadrature separately:

_ _ 2 —— 2 2 2
y=) X Oy = Ui = ) O
i

I I -

Gaussian likelihood in case of symmetric uncertainties for observation X % o:

L(%; x) o exp {—% x ;2&)2}

If no further information is provided in case of asymmetric uncertainties,
Barlow proposes to use the following likelihood:

Based on this one can come up

(% 1 (x — X)? with a procedure for combining
(% x) oc exp 2 \o_o, + (04 —0_)(x — X) measurements with asymmetric
errors, see Barlow’s paper
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https://arxiv.org/abs/physics/0406120

Monte Carlo error propagation

Example: ElllllllllIlllllllll]llltnhilesllllllldG,ﬂﬁlllIIIIIIE
Ratio of two Gaussi ™ E s
a I(.) OT tWO aUSSIan 600 /ndf 6735 ¢ 62 =
distributed quantities 500 £ Mon Lot osmesrar
400 ;_ Sigroa 0.2544 4+ 0.22645-02;
x=541 300 £ 3
200 F E
y = b+1 100 F ‘i
0 E W I I BT
0 2.5 3 3.5 4 4.5

Approach: draw values for x
and y many times and fil S ——
histogram with ratios ;; oo
10 & Cons:'ant 7065 4 9.852
' = Ivean 1.011 + 0.3303E-02 3
Standard linear error Prop.. ; Sigroa 02564k 02264802
R=1+0.28 10 ¢ E
Mean and rms of histogram: I ]
1 PO R U T T W T T T T W1 A T W W A O o 1 Y IH L |HH ||T|| ” E

R — 105+ 033 0 05 1 15 2 25 3 35 4 45

Xfy

Rule of thumb: ratio of two Gaussians will be approximately Gaussian if fractional uncertainty is
dominated by numerator, and denominator cannot be small compared to numerator
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3.2 Systematic Uncertainties
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Systematic uncertainties: Examples

Calibration uncertainties of the measurement apparatus

» E.g., energy scale uncertainty of a calorimeter
Uncertainty of the detector resolution

Detector acceptance
Limited knowledge about background processes
Uncertainties of auxiliary quantities

» E.g. reference branching ratios uses as input
» Uncertainty of theoretical quantities

The uncertainty in the estimation of such a systematic effect is called a
systematic uncertainty.
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How to deal with systematic uncertainties”?

Top-Down Approach
» Think about all possible sources of potential systematics
» Can/should be done at the planning stage of an experiment

» Requires experience

Bottom-Up Approach
» Try to find systematic uncertainties not considered in top-down approach
» Internal cross checks
» Compare independent analyses if possible

» see next slides
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| | R. Barlow
Sanity / Consistency checks “Systematic Errors, Fact anc

Fiction,” hep-ex/0207026

Look for systematic effects by repeating the analysis with changes which
should make no difference:

Data subsets

Magnet up/down

Different selection cuts

Different histogram bin sizes and fit ranges
Different Event Generator for efficiency calculation

| ook for iImpossibilities

If a check passes the test:
move on and do not add the discrepancy to the systematic uncertainty

If a check fails: try to identify the reason. Only as very last resort, add
contribution to total systematic uncertainty. This might underestimate the real

uncertainty.
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Handling discrete systematic uncertainties
Example: choice of model used to determine a correction R

With 1 preferred model and one other, quote R, = |R; — R, |

Ri+ Ry IR — R

With 2 models of equal status, quote

1 n
n equal models, quote R =+ R, — R)? R?
q q \/n_IZ( ) \/n—l(

=1

Ri+R, |R —R]
Two extreme models, quote T
2 V12
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Speed of Light vs. Year of Publication

300050

300000 i SER— S— -

c (km/sec)

20005() _ ____________________________ _____________________________ _____________________________ ________

299900 |- S— S .

20085() _ - ............................ ............................. ............................. e

299800

..............................................................................................................................................

299750

] | ] ] | ] ] | ] | ] ]
1880 1900 1920

| | | ]
1940 1960
Year

Klein JR, Roodman A. 2005.
Annu. Rev. Nucl. Part. Sci. 55:141-63
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3- D) Klein JR, Roodman, A. 2005,
1aS ¢ Annu. Rev. Nucl. Part. Sci. 55:141-63

—Xperimenter’s

Do researches unconsciously work toward a certain value?

@ EI ““.I | | | | | | | | Eu (-\]:)\ 1116 :_I 1 | | I | | | | | | | | | | | l__
© 1200 1 = : { :
= — i > 1115.8 —
.4: B ‘\‘ ] & D]
S 1100H © . : E
FER: I : : E
£ 1000} f : - g E
= - RN i - .
D o N A Rt - < - .
= 9002, §""56~~..§ PQy-O-n 00 1115 :_" B
- . 1114.8 -
800 [~ | ~ - ]

) | L L L L L L | 4 11146 T T T T

1960 1980 2000 1970 1980 1990

Year Year

Possible bias:

the investigator searches for the source or sources of such errors, and continues to
search until he gets a result close to the accepted value.

Then he/she stops!
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Blind an alyses Klein JR, Roodman, A. 2005,

Annu. Rev. Nucl. Part. Sci. 55:141-63

Avoid experimenter’s bias by hiding certain aspects of the data.

Things that can be hidden in the analysis:

= [he signal events, when the signal occurs in a well-defined region of the
experiment’s phase space.

= [he result, when the numerical answer can be separated from all other
aspects of the analysis.

= [he number of events Iin the data set, when the answer relies directly upon
their count.

= A fraction of the entire data set.

Example: GERDA experiment

] wio PSD Qx5 [ ]
W wPSD blinded window

» search for neutrinoless double
beta decay

counts/keV

» Signal: sharp peak

lllllllllllllll

» Background model fixed prior to

C . . : . energy (kev)
unblinding of signal region — no evidence for a signal
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Combination of systematic uncertainties

Systematic uncertainties are usually given as standard deviations (x = 0Ox),
corresponding to a 68% probability.

Other meaning (e.g. maximum extent uncertainty) this should e explicitly
stated.

In Most cases one tries to find independent sources of systematic
uncertainties. These independent uncertainties are therefore added in
quadrature:

2 _ 2 2 2
Otot — 01 T 05 + ... +0,

Often a few source dominate the systematic uncertainty
— No need to work to hard on correctly estimating the small uncertainties

Statistical Methods in Particle Physics WS 2020/21 | K. Reygers | 3. Experimental uncertainties 33



Systematic uncertainties:
Covariance matrix approach (l)

Consider two measurement x1 and x2 with with individual random uncertainties
o1 r and o2, and a common systematic uncertainty Os:

(Ax; ) =0, (Axs) =0,

Xi :Xrue+AXir+AXs
t | (Bxi,)?) =02, ((Ax)?) = o2

Variance: VI[x?] = (x7) — (x;)?
— <(Xtrue + AXi,r =+ AXS)2> — <Xtrue =+ AXi,r =+ AXS>2
= ((Axj, + Ax)?)
oi, +o;
Covariance: COV[X1, X2] — <X1X2> — <X1><X2>
— 0-2
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Systematic uncertainties:
Covariance matrix approach (ll)

Covariance matrix for x1 and xo:

2 2 2
\/ = (O-l,r _|2_ Os 5 O¢ 2)
o 0%, + O

S
This also works when the uncertainties are quoted as relative uncertainties:

O'% ;T €2X12 €2 X1 X0
O — &X D V — ) 2 2 9
E°X1X2 05, TE°X]
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—xample:
Transverse momentum spectrum of the Higgs boson

CMS 19.4 fb™' (8 TeV) Correlation matrix of the pr bins:
;‘ 11 | L LI LI | LI | 11 | LI | LI | 11 | LI I_
() —+— Data | 1
% - Statistical uncertainty - —_— CMS 19.4 1o (8 TeV) -
;;;_ Systematic uncertainty : %_) %E 0.4 0.8 _g
-8' 0.8 % B Model dependence — (-2- = ) %
;.‘—3 Z 2 %/ 9gH (POWHEGV2+JHUGen) + XH | o g: 0.6 Ct)
o Z § SN\ ggH (HRes) + XH i g -0.2 04 @)
0.6 Al 7] XH = VBF + VH ] % — '
1 E,: 0.3 0.2
] @
] I 0
o L
: g" . -0.2 _02
| 5 0.4
_ )
] et -0.6
m— g 02 03 02 -0 -0.8
I : I 7‘ : = | | | | | | | | | | | | | | | | | | |
>(-If; 3 ;— % _; [0,15] [15,45] [45,85] [85,125] [125,165] [165,~] 1
&of ANE P [GeV]
419 1k %1 \N---% §%§_
I \: _ Vi, _ - (s
&% 20 40 60 80 100 120 140 160 180 200 Pij = " — covallalice matlix
H 0i0;
p; [GeV]

arXiv:1606.01522v1
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Weighted average of correlated data points

Consider n data points yi with covariance matrix V: ¥ = (y1, Y2, -1 ¥n)
One can calculate a weighted average A by minimizing
YA =F-N"VI{y-

\)
SN =0 00
One obtains (here without calculation):

SR > &1 |
— iYi i — n _
Variance results from error propagation: » BLUE combination may be
n biased if uncertainties not known
2 _ =Thv/= or are estimated from measured
oy =w Vw = Z w; Vijwj values

ij=1
L | , , » Improvement: iterative approach
Minimizing the x? gives the best linear unbiased (rescaling uncertainties based on

estimate (BLUE) — linear unbiased estimator previous iteration)

with the lowest variance
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Special case:
Welighted average of two correlated measurements

Consider two measurements with covariance matrix V' (o = correlation coeft.):

neoy  v=( 1 o
PO102 O'%

Applying the formulas from the previous slide:

1 L L
V= 1— p2 (i Uif) A=wyr + (1 —w)y
0102 05
_ 03— po107 VIA = 2 — (1 - p?)otos
W= 2 _ 5 (Al =0" == 2 _ 5
01+ 05 — 2p0102 01+ 05— 2p0102
equivalently:
1 1 1 1 2

- |
il | _
02 1—p? |07 05 0102
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Sayesian approach to systematic uncertainties

"Bayesians lose no sleep over systematics” (lecture S. Oser)

Quantity of interest: @, prior knowledge: 7(6)
Likelihood depends parameter v ("nuisance parameter”)

We simply treat @ and v as an unknown parameters:

P(60, v|data) oc L(datald, v)m(0, v)
As we are only interested in @, we marginalize by integrating over v:
P(0) = /P(@,u) dv

Prior knowledge on v often is the result of a calibration measurement.
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