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Precision and accuracy
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Ways to quote uncertainties
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An uncertainty σ represents some kind of probability distribution 
(often a Gaussian, if not stated otherwise)

If no further information is given the interval x ± σ corresponds to a  
a probability of 68% ("1σ errors")
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Statistical and systematic uncertainties
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Statistical or random uncertainties 
‣ Uncertainties that can be reliably estimated by repeating measurements 
‣ They follow a known distribution like a Poisson rate or are determined empirically from 

the distribution of an unbiased, sufficiently large sample.  
‣ Relative uncertainty reduces as 1/√N where N is the sample size

Systematic uncertainties 
‣ Cannot be calculated solely from sampling fluctuations  
‣ In most cases don't reduce as 1/√N (but often also become smaller with larger N) 
‣ Difficult to determine, in general less well known than the statistical uncertainty 
‣ Systematic uncertainties ≠ mistakes  

(a bug in your computer code is not a systematic uncertainty)

x = 2.34± 0.05 (stat.)± 0.03 (syst.)

‣ quoting stat. and syst. uncertainty 
separately gives us an idea whether 
taking more data would be helpful 

‣ Systematic unc. usually less well known 
‣ important when combining experiments 
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Statistical uncertainties: Examples
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Radioactive decays (→ Poisson distribution) 
‣ You measure N = 150 decays.  
‣ The result is reports as N ± √N ≈ 150 ± 12 

Efficiency of a detector (→ Binomial distribution) 
‣ From N0 = 60 particles which traverse a detector, 45 are measured  

‣  " = N/N0 = 0.75

�2
N = N0"(1� ")  �" =

s
"(1� ")

N0
=

r
0.75 · 0.25

60
= 0.06
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3.1 Error Propagation
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Linear error propagation: Sometimes applicable …
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Function sufficiently linear within ±σ: linear error propagation applicable 
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Linear error propagation: Sometimes not applicable …
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In this situation linear error propagation is not applicable 

more realistic
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Linear error propagation

9

Consider a measurement of values xi and their covariances:

~x = (x1, x2, ..., xn) Vij = cov[xi , xj ]

Let y be a function of the xi: y = f (~x)

What is the variance of y?

Approach: Taylor expansion of y around      where ~µ µi = E [xi ]

In practice we estimate μi 
by measured value xi

V [y ] ⌘ �2
y = E [y2]� E [y ]2
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Linear error propagation formula
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y(~x) ⇡ y(~µ) +
nX

i=1


@y

@xi

�

~x=~µ

(xi � µi )Taylor expansion:

E[y] is easy: E [y ] ⇡ y(~µ) as E [xi � µi ] = 0

E [y2(~x)] ⇡ y2(~µ) + 2y(~µ)
nX

i=1


@y

@xi

�

~x=~µ

E [xi � µi ]

+ E

2

4
 

nX

i=1


@y

@xi

�

~x=~µ

(xi � µi )

!0

@
nX

j=1


@y

@xj

�

~x=~µ

(xj � µj)

1

A

3

5

= y2(~µ) +
nX

i ,j=1


@y

@xi

@y

@xj

�

~x=~µ

Vij

E[y2]:

Thus: �2
y =

nX

i ,j=1


@y

@xi

@y

@xj

�

~x=~µ

Vij
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Matrix notation
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Let vector A be given by ~A = ~ry , i.e., Aj =

✓
@y

@xj

◆

~x=~µ

Then:

y =
x1
x2

, A =

✓
1/x2

�x1/x22

◆
Example:

�2
y =

✓
1

x2
,� x1

x22

◆✓
�2
1 cov[x1, x2]

cov[x1, x2] �2
2

◆ 1
x2

� x1
x2
2

!

=

✓
1

x2
,� x1

x22

◆ �2
1

x2
� x1

x2
2
cov[x1, x2]

1
x2
cov[x1, x2]� x1

x2
2
�2
2

!
=

1

x22
�2
1 +

x21
x42

�2
2 � 2

x1
x32

cov[x1, x2]

!
�2
y

y2
=

�2
1

x21
+

�2
2

x22
� 2

cov[x1, x2]

x1x2
=

�2
y

y2
=

�2
1

x21
+

�2
2

x22
� 2

⇢�1�2

x1x2

�2
y =

nX

i ,j=1


@y

@xi

@y

@xj

�

~x=~µ

Vij = ATV A
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Linear error proportion: Examples
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y = x1 + x2 ! �2
y = �2

1 + �2
2 + 2cov[x1, x2]

y = x1x2 !
�2
y

y2
=

�2
1

x21
+

�2
2

x22
+ 2

cov[x1, x2]

x1x2

y = xn !
�2
y

y2
= n2

�2
x

x2
i.e.

�y

y
= |n|�x

x

y = ax ! �2
y = a2�2

x i.e. �y = |a|�x

Sanity checks:
Average of fully correlated  
measurements:

y =
1

2
(x1 + x2) , �1 = �2 ⌘ �, ⇢ = 1  �y = �

Difference of fully correlated  
measurements:

y = x1 � x2, �1 = �2 ⌘ �, ⇢ = 1

 �2
y = 2�2 � 2�2 = 0

y = x1 � x2 ! �2
y = �2

1 + �2
2 � 2cov[x1, x2]



Statistical Methods in Particle Physics WS 2020/21 | K. Reygers | 3. Experimental uncertainties

Concrete example: Momentum resolution in tracking
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20 

Momentum resolution 

L 

generally in experiment measure pt 

multiple scattering 
term conts. in pt 

track uncertainty ≈ pt 

Charged particle moving in constant 
magnetic field:

pT/GeV = 0.3⇥ B/Tesla⇥ R/m

Measurements of space points yields 
Gaussian uncertainty for sagitta s  
which is related to pT as

R =
L2

8s
, pT = 0.3B

L2

8s

Momentum resolution:

Important features: 
‣ Relative momentum uncertainty 

proportional to momentum 
‣ Relative uncertainty prop. to uncertainty 

of coordinate measurement

✓
�pT

pT

◆2

= 0.0012 + (0.0005pT )
2

Example: 
ATLAS nominal resolution

track uncertaintymultiple scattering

�pT

pT
=

�s

s
=

8pT
0.3BL2

�s
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Linear error propagation for uncorrelated 
measurements
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Special case: the xi are uncorrelated, i.e.,                  : Vij = �ij�
2
i

�2
y =

nX

i=1


@y

@xi

�2

~x=~µ

�2
i

These formulas are exact only for linear functions.  
Approximation breaks down if function is nonlinear over a region comparable 
in size to the σi.
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Example of Gaussian error propagation: 
Volume of a cylinder

15

 

Ga\ssian Error Propagation ^ith S`mP`
Klaus Reygers, 2020

IQ�[1]: fUom�V\mp\�impoUW�*�
fUom�IP\Whon.diVpla\�impoUW�dLVSOa\,�LaWe[�

IQ�[2]: def�JaXVVLaQ_eUURU_SURSaJaWLRQ(I,�YaUV):�
����"""�
����f:�formula�﴾s\mp\�expression﴿�
����vars:�list�of�independent�variables�and�corresponding�uncertainties��
����[﴾x1,�sigma_x1﴿,�﴾x2,�sigma_x2﴿,�...]�
����"""�
����VXP�=�V\PSLI\("0")�#�empt\�s\mp\�expression�
����foU�([,�VLJPa)�in�YaUV:�
��������VXP�+=�dLII(I,�[)**2�*�VLJPa**2��
����UeWXUn�VTUW(VLPSOLI\(VXP))�

Show usage for a simple example: Volume of a cylinder with radius  and height :

IQ�[3]: U,�K,�VLJPa_U,�VLJPa_K�=�V\PbROV('U,�K,�VLJPa_U,�VLJPa_K',�SRVLWLYe=TUXe)�
V�=�SL�*�U**2�*�K�#�volume�of�a�c\linder�

IQ�[4]: VLJPa_V�=�JaXVVLaQ_eUURU_SURSaJaWLRQ(V,�[(U,�VLJPa_U),�(K,�VLJPa_K)])�
dLVSOa\(LaWe[(I"$V�=�^OaWe[(V)`,�\,�\VLJPa_V�=�^OaWe[(VLJPa_V)`$"))�

Plug in some numbers and print the calculated volume with its uncertaity:

IQ�[5]: U_PeaV�=�3�#�cm�
VLJPa_U_PeaV�=�0.1�#�cm�
K_PeaV�=�5�#�cm�
VLJPa_K_PeaV�=�0.1�#�cm�

IQ�[6]: ceQWUaO_YaOXe�=�V.VXbV([(U,U_PeaV),�(K,�K_PeaV)]).eYaOI()�
VLJPa�=�VLJPa_V.VXbV([(U,�U_PeaV),�(VLJPa_U,�VLJPa_U_PeaV),�(K,�K_PeaV),�(VLJPa_K,�VLJPa_K_PeaV)]).eYaO
I()�
dLVSOa\(LaWe[(I"$$V�=�(^ceQWUaO_YaOXe:0.1I`�\SP�^VLJPa:.1I`)�\,�\PaWKUP^^cP``^3$$"))�

[gaussian_error_propagation.ipynb]

[wikipedia]

https://nbviewer.jupyter.org/urls/www.physi.uni-heidelberg.de/~reygers/lectures/2020/smipp/Gaussian_error_propagation.ipynb
https://nbviewer.jupyter.org/urls/www.physi.uni-heidelberg.de/~reygers/lectures/2020/smipp/gaussian_error_propagation.ipynb
https://en.wikipedia.org/wiki/Cylinder
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Example of Gaussian error propagation: 
Volume of a cylinder (now for correlated r and h)
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r = 3 cm, σr = 0.1 cm
h = 5 cm, σh = 0.1 cm
V = πr2h = 141.4 cm3

ρ σV

–1 6.6 cm3

0 9.8 cm3

1 12.3 cm3 

Uncertainty of the 
cylinder volume V 
depends on the 
correlation coefficient ρ:

Ga\ZZiaU EYYVY PYVWaga[iVU fVY CVYYela[ed VaYiableZ ^i[h S`TP`
Klaus Reygers, 2020

IQ�[2]: fUom�V\mS\�imSoUW�*�
fUom�IP\Whon.diVSla\�imSoUW�GLVSOD\,�LDWH[�

IQ�[3]: def�JDXVVLDQBHUURUBSURSDJDWLRQBFRUU(I,�[,�V):�
����"""�
����f:�function�f�=�f﴾[[0],�[[1],�...﴿�
����[:�list�of�Yariables�
����V:�coYariance�matri[�﴾p\thon�2d�list﴿�
����"""�
����VXP�=�V\PSLI\("0")�#�empt\�s\mp\�e[pression�
����foU�L�in�UDQJH(OHQ([)):�
��������foU�M�in�UDQJH(OHQ([)):�
������������VXP�+=�GLII(I,�[[L])�*�GLII(I,�[[M])�*�V[L][M]��
����UeWXUn�VTUW(VLPSOLI\(VXP))�

Show usage for a simple example: Volume of a cylinder with radius  and height :

IQ�[4]: U,�K,�VLJPDBU,�VLJPDBK�=�V\PEROV('U,�K,�VLJPDBU,�VLJPDBK',�SRVLWLYH=TUXe)�
UKR�=�S\PERO("UKR",�UHDO=TUXe)�#�correlation�coefficient�
V�=�SL�*�U**2�*�K�#�Yolume�of�a�c\linder�

IQ�[5]: YDUV�=�[U,�K]�
FRYBPDWUL[�=�[[VLJPDBU**2,�UKR�*�VLJPDBU�*�VLJPDBK],��
��������������[UKR�*�VLJPDBU�*�VLJPDBK,�VLJPDBK**2]]�
MDWUL[(FRYBPDWUL[)�

IQ�[6]: VLJPDBV�=�JDXVVLDQBHUURUBSURSDJDWLRQBFRUU(V,�YDUV,�FRYBPDWUL[)�
GLVSOD\(LDWH[(I"$V�=�^ODWH[(V)`,�\,�\VLJPDBV�=�^ODWH[(VLJPDBV)`$"))�

Plug in some numbers and print the calculated volume with its uncertaity:

IQ�[7]: UBPHDV�=�3�#�cm�
VLJPDBUBPHDV�=�0.1�#�cm�
KBPHDV�=�5�#�cm�
VLJPDBKBPHDV�=�0.1�#�cm�

IQ�[8]: FHQWUDOBYDOXH�=�V.VXEV([(U,UBPHDV),�(K,�KBPHDV)]).HYDOI()�
VLJPD�=�VLJPDBV.VXEV([(U,�UBPHDV),�(VLJPDBU,�VLJPDBUBPHDV),�(K,�KBPHDV),�(VLJPDBK,�VLJPDBKBPHDV)]).HYDO
I()�
�
foU�UKRBYDOXH�in�[­1,�0,�1]:�
����VLJPD�=�VLJPDBV.VXEV([(U,�UBPHDV),�(VLJPDBU,�VLJPDBUBPHDV),�(K,�KBPHDV),�(VLJPDBK,�VLJPDBKBPHDV),�(
UKR,�UKRBYDOXH)]).HYDOI()�
����GLVSOD\(LDWH[(I"$$�\\UKR�=�^UKRBYDOXH`:�V�=�(^FHQWUDOBYDOXH:0.1I`�\SP�^VLJPD:.1I`)�\,�\PDWKUP^^FP``
^3$$"))�

IQ�[�]: ��

OXW[5]:

[gaussian_error_propagation_correlated_variables.ipynb]

https://nbviewer.jupyter.org/urls/www.physi.uni-heidelberg.de/~reygers/lectures/2020/smipp/Gaussian_error_propagation.ipynb
https://nbviewer.jupyter.org/urls/www.physi.uni-heidelberg.de/~reygers/lectures/2020/smipp/gaussian_error_propagation_correlated_variables.ipynb
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Linear error propagation:  
Generalization from ℝn→ℝ to ℝn→ℝm
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Generalization: Consider set of m functions:

~y(~x) = (y1(~x), y2(~x), ..., ym(~x))

cov[yk , yl ] ⌘ Ukl ⇡
nX

i ,j=1


@yk
@xi

@yl
@xj

�

~x=~µ

Vij

Then:

In matrix notation:

U = AV AT Aij =


@yi
@xj

�

~x=~µ
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Reduction of the standard deviation for repeated 
independent measurements
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Consider the average of n independent observation xi:

x̄ =
1

n

nX

i=1

xi

Expectation values and variance of the measurements:

E [xi ] = µi V [xi ] = �2

Standard deviation of the mean:

V [x̄ ] =
1

n2

nX

i=1

�2
i =

1

n
�2 ! �x̄ =

�p
n

Standard deviation of the mean decreases as 1/√n
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Example: Photon energy measurements
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The energy resolution of a γ-ray detector used to investigate a decaying 
nuclear isotope is 50 keV. 
‣ If only one photon is detected the energy of the decay is known to 50 keV 
‣ 100 collected decays: energy of the decay known to 5 keV 
‣ To reach 1 keV one needs to observe 2500 decays
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Averaging uncorrelated measurements
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Consider two uncorrelated measurements:

Linear combination:

x1 ± �1, x2 ± �2

Now choose the weights such that  is minimal  
(under the condition w1 + w2 = 1):

σ2
y

y = w1x1 + w2x2 �2
y = w2

1�
2
1 + w2

2�
2
2

And for the uncertainty of y we obtain (linear error propagation):
1

�2
y
=

1

�2
1

+
1

�2
2

In general, for n uncorrelated measurements:

y =
nX

i=1

wixi , wi =
1/�2

iPn
j=1 1/�

2
j

,
1

�2
y
=

nX

j=1

1

�2
j

@

@wi
�2
y = 0 ! wi =

1/�2
i

1/�2
1 + 1/�2

2
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Example: Averaging uncorrelated measurements
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pT of a particle in three subsystems of the ATLAS detector:

detector pT (GeV)

pixel detector 20 ± 2

semiconductor tracker 21 ± 1

transition radiation 
tracker 22 ± 4

�pT =


1

4GeV2
+

1

1GeV2
+

1

16GeV2

��1/2

= 0.87GeV

pT =
20 GeV
4 GeV2 +

21 GeV
1 GeV2 +

22 GeV
16 GeV2

1
4 GeV2 +

1
1 GeV2 +

1
16 GeV2

= 20.86GeV

Weighted average:

(20.86± 0.87) GeV
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Weighted average from Bayesian approach
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→ same result as before

Consider two measurements x1 and x2 with Gaussian uncertainties �1 and �2. In a
Bayesian approach the probability distribution for the true value µ is given by

p(µ) / L(x1, x2|µ)⇡(µ)

Assuming a flat prior ⇡(µ) ⌘ 1 and independence of the two measurements one
obtains

p(µ) / L(x1|µ)L(x2|µ)
= G (x1;µ,�1)G (x2;µ,�2)

/ exp


�1

2

✓
(µ� x1)2

�2
1

+
(µ� x2)2

�2
2

◆�

The product of the two Gaussians gives a Gaussian with mean

µ = w1x1 + w2x2 where wi =
1/�2

i

1/�2
1 + 1/�2

2

and standard deviation
1

�2
=

1

�2
1

+
1

�2
2
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Asymmetric Errors
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Sometimes measurements are quoted with asymmetric errors:

How to combine such measurements? 

There is no statistical justification for adding the positive and negative 
uncertainties in quadrature separately:

y =
X

i

xi , �2
y ,+ =

X

i

�2
i ,+, �2

y ,� =
X

i

�2
i ,�

If no further information is provided in case of asymmetric uncertainties, 
Barlow proposes to use the following likelihood:

Gaussian likelihood in case of symmetric uncertainties for observation : ̂x ± σ

L(x̂ ; x) / exp


�1

2

(x � x̂)2

�2

�

L(x̂ ; x) / exp


�1

2

✓
(x � x̂)2

���+ + (�+ � ��)(x � x̂)

◆� Based on this one can come up 
with a procedure for combining 
measurements with asymmetric 
errors, see Barlow’s paper

R. Barlow, arXiv:physics/0406120

xi
+�i ,+
��i ,�

https://arxiv.org/abs/physics/0406120
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Monte Carlo error propagation
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Example:  
Ratio of two Gaussian 
distributed quantities

Physics 509 25

Ratio of two Gaussians IV
x = 5 ± 1 and y = 5 ± 1

Error propagation:
R = 1 ± 0.28

Mean and RMS of R:
1.05 ± 0.33

Gaussian fit to peak:
1.01 ± 0.25

More non-Gaussian than first case, 
much better than second.

Rule of thumb: ratio of two 
Gaussians will be approximately 
Gaussian if fractional uncertainty 
is dominated by numerator, and 
denominator cannot be small 
compared to numerator.

x = 5± 1

y = 5± 1

Approach: draw values for x 
and y many times and fill 
histogram with ratios

Standard linear error prop.:
R = 1± 0.28

Mean and rms of histogram:
R = 1.05± 0.33

Rule of thumb: ratio of two Gaussians will be approximately Gaussian if fractional uncertainty is 
dominated by numerator, and denominator cannot be small compared to numerator 
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3.2 Systematic Uncertainties
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Systematic uncertainties: Examples

Calibration uncertainties of the measurement apparatus 
‣ E.g., energy scale uncertainty of a calorimeter 

Uncertainty of the detector resolution 
Detector acceptance 
Limited knowledge about background processes 
Uncertainties of auxiliary quantities 
‣ E.g. reference branching ratios uses as input 
‣ Uncertainty of theoretical quantities 

…

26

The uncertainty in the estimation of such a systematic effect is called a 
systematic uncertainty.  
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How to deal with systematic uncertainties?

27

Top-Down Approach 
‣ Think about all possible sources of potential systematics 
‣ Can/should be done at the planning stage of an experiment 
‣ Requires experience

Bottom-Up Approach 
‣ Try to find systematic uncertainties not considered in top-down approach 
‣ Internal cross checks 
‣ Compare independent analyses if possible 
‣ see next slides 



Statistical Methods in Particle Physics WS 2020/21 | K. Reygers | 3. Experimental uncertainties

Sanity / Consistency checks

Look for systematic effects by repeating the analysis with changes which 
should make no difference:

28

Data subsets 
Magnet up/down 
Different selection cuts 
Different histogram bin sizes and fit ranges 
Different Event Generator for efficiency calculation 
Look for impossibilities 

R. Barlow

If a check passes the test:  
move on and do not add the discrepancy to the systematic uncertainty 

If a check fails: try to identify the reason. Only as very last resort, add 
contribution to total systematic uncertainty. This might underestimate the real 
uncertainty.

“Systematic Errors, Fact and  
Fiction,” hep-ex/0207026 
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Handling discrete systematic uncertainties

Example: choice of model used to determine a correction R

29

With 1 preferred model and one other, quote R1 ± |R1 − R2 |

With 2 models of equal status, quote  
R1 + R2

2
± |R1 − R2 |

2

n equal models, quote  R̄ ± 1
n − 1

n

∑
i=1

(Ri − R)2 =
n

n − 1
(R2 − R2)

Two extreme models, quote  
R1 + R2

2
± |R1 − R2 |

12
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Speed of Light vs. Year of Publication

30
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Experimenter’s Bias?

31

the investigator searches for the source or sources of such errors, and continues to 
search until he gets a result close to the accepted value.  

Then he/she stops!

Klein JR, Roodman, A. 2005,  
Annu. Rev. Nucl. Part. Sci. 55:141–63

Possible bias:

Do researches unconsciously work toward a certain value?
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Blind analyses

■ The signal events, when the signal occurs in a well-defined region of the  
experiment’s phase space.  

■ The result, when the numerical answer can be separated from all other 
aspects of the analysis.  

■ The number of events in the data set, when the answer relies directly upon 
their count.  

■ A fraction of the entire data set. 

32

Avoid experimenter’s bias by hiding certain aspects of the data.
Things that can be hidden in the analysis:

Unblinded spectrum

Cts in Qββ±5 keV golden silver BEGe total
expected, w/o PSD 3.3 0.8 1.0 5.1
observed, w/o PSD 5 1 1 7
expected, w PSD 2.0 0.4 0.1 2.5
observed, w PSD 2 1 0 3

Spectrum agrees with flat background expectation, no hint for gamma-line at Qββ !

W. Maneschg (MPI-K) GERDA: Results Phase I - Outlook Phase II Mainz, March 25, 2014 12 / 1

Example: GERDA experiment 
‣ search for neutrinoless double 

beta decay 
‣ Signal: sharp peak  
‣ Background model fixed prior to 

unblinding of signal region
energy (kev)→ no evidence for a signal

Klein JR, Roodman, A. 2005,  
Annu. Rev. Nucl. Part. Sci. 55:141–63
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Combination of systematic uncertainties
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In most cases one tries to find independent sources of systematic 
uncertainties. These independent uncertainties are therefore added in 
quadrature: 

�2
tot = �2

1 + �2
2 + ... + �2

n

Often a few source dominate the systematic uncertainty 
→ No need to work to hard on correctly estimating the small uncertainties 

Systematic uncertainties are usually given as standard deviations (x ± σx), 
corresponding to a 68% probability.

Other meaning (e.g. maximum extent uncertainty) this should be explicitly 
stated.
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Systematic uncertainties:  
Covariance matrix approach (I)

34

Consider two measurement x1 and x2 with with individual random uncertainties 
σ1,r and σ2,r and a common systematic uncertainty σs:

xi = xtrue +�xi ,r +�xs

V [x2i ] = hx2i i � hxi i2

= h(xtrue +�xi ,r +�xs)
2i � hxtrue +�xi ,r +�xsi2

= h(�xi ,r +�xs)
2i

= �2
i ,r + �2

s

Variance:

Covariance: cov[x1, x2] = hx1x2i � hx1ihx2i
= ...

= �2
s

h�xi ,ri = 0, h�xsi = 0,

h(�xi ,r)
2i = �2

i ,r, h(�xs)
2i = �2

s
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Systematic uncertainties:  
Covariance matrix approach (II)

35

Covariance matrix for x1 and x2:

V =

✓
�2
1,r + �2

s �2
s

�2
s �2

2,r + �2
s

◆

This also works when the uncertainties are quoted as relative uncertainties:

�s = "x  V =

✓
�2
1,r + "2x21 "2x1x2
"2x1x2 �2

2,r + "2x21

◆
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Example: 
Transverse momentum spectrum of the Higgs boson

36

14 9 Results
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Figure 4: Higgs boson production cross section as a function of p
H
T , after applying the unfold-

ing procedure. Data points are shown, together with statistical and systematic uncertainties.
The vertical bars on the data points correspond to the sum in quadrature of the statistical and
systematic uncertainties. The model dependence uncertainty is also shown. The pink (and
back-slashed filling) and green (and slashed filling) lines and areas represent the SM theo-
retical estimates in which the acceptance of the dominant ggH contribution is modelled by
HRES and POWHEG V2, respectively. The subdominant component of the signal is denoted as
XH=VBF+VH and it is shown with the cross filled area separately. The bottom panel shows the
ratio of data and POWHEG V2 theoretical estimate to the HRES theoretical prediction.

To measure the inclusive cross section in the fiducial phase space, the differential measured
spectrum is integrated over p

H
T . In order to compute the contributions of the bin uncertain-

ties of the differential spectrum to the inclusive uncertainty, error propagation is performed
taking into account the covariance matrix of the six signal strengths. For the extrapolation of
this result to the fiducial phase space, the unfolding procedure is not needed, and the inclu-
sive measurement has only to be corrected for the fiducial phase space selection efficiency efid.
Dividing the measured number of events by the integrated luminosity and correcting for the
overall selection efficiency, which is estimated in simulation to be efid = 36.2%, the inclusive
fiducial sB, sfid, is computed to be:

sfid = 39 ± 8 (stat) ± 9 (syst) fb, (4)

in agreement within the uncertainties with the theoretical estimate of 48 ± 8 fb, computed inte-
grating the spectrum obtained with the POWHEG V2 program for the ggH process and includ-
ing the XH contribution.
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Figure 5: Correlation matrix among the p
H
T bins of the differential spectrum.

10 Summary
The cross section for Higgs boson production in pp collisions has been studied using the
H ! W+W� decay mode, followed by leptonic decays of the W bosons to an oppositely charged
electron-muon pair in the final state. Measurements have been performed using data from pp
collisions at a centre-of-mass energy of 8 TeV collected by the CMS experiment at the LHC and
corresponding to an integrated luminosity of 19.4 fb�1. The differential cross section has been
measured as a function of the Higgs boson transverse momentum in a fiducial phase space,
defined to match the experimental kinematic acceptance. An unfolding procedure has been
used to extrapolate the measured results to the fiducial phase space and to correct for the de-
tector effects. The measurements have been compared to SM theoretical estimations provided
by the HRES and POWHEG V2 generators, showing good agreement within the experimental
uncertainties. The inclusive production sB in the fiducial phase space has been measured to be
39 ± 8 (stat) ± 9 (syst) fb, consistent with the SM expectation.
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Correlation matrix of the pT bins:

⇢i ,j =
Vi ,j

�i�j
, V = covariance matrix
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Weighted average of correlated data points

37

�̂ =
NX

i=1

wiyi

~y = (y1, y2, ..., yn)Consider n data points yi with covariance matrix V:

One can calculate a weighted average λ by minimizing

�2(�) = (~y � ~�)TV�1(~y � ~�)
~� := (�,�, ...,�)

One obtains (here without calculation):

Variance results from error propagation:

wi =

Pn
j=1(V

�1)i ,jPn
k,l=1(V

�1)k,l

�2
�̂
= ~wTV ~w =

nX

i ,j=1

wiVijwj

Minimizing the χ2 gives the best linear unbiased 
estimate (BLUE) → linear unbiased estimator 
with the lowest variance

‣ BLUE combination may be 
biased if uncertainties not known 
or are estimated from measured 
values  

‣ Improvement: iterative approach 
(rescaling uncertainties based on 
previous iteration)
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Special case:  
Weighted average of two correlated measurements 
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V =

✓
�2
1 ⇢�1�2

⇢�1�2 �2
2

◆

V�1 =
1

1� ⇢2

 
1
�2
1

�⇢
�1�2

�⇢
�1�2

1
�2
2

!

�̂ = wy1 + (1� w)y2

w =
�2
2 � ⇢�1�2

�2
1 + �2

2 � 2⇢�1�2
V [�̂] = �2 =

(1� ⇢2)�2
1�

2
2

�2
1 + �2

2 � 2⇢�1�2

y1, y2

Consider two measurements with covariance matrix V (ρ = correlation coeff.):

Applying the formulas from the previous slide:

equivalently:

1

�2
=

1

1� ⇢2


1

�2
1

+
1

�2
2

� 2⇢

�1�2

�
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Bayesian approach to systematic uncertainties

"Bayesians lose no sleep over systematics" (lecture S. Oser)

39

Quantity of interest: , prior knowledge: θ π(θ)
Likelihood depends parameter  ("nuisance parameter")ν
We simply treat  and  as an unknown parameters:θ ν

As we are only interested in , we marginalize by integrating over :θ ν

Prior knowledge on  often is the result of a calibration measurement.ν

P(✓) =

Z
P(✓, ⌫) d⌫

P(✓, ⌫|data) / L(data|✓, ⌫)⇡(✓, ⌫)


