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1.1 Introduction
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Learning goals and required knowledge

This course is a natural follow-up to PEP4 for Bachelor students interested in
Particle Physics. Master students are invited to attend this lecture in parallel
or after the Particle Physics course.

Learning goals

= Get to know and apply the toolbox of statistical methods used in particle
physics

= Understand error bars and confidence limits as reported in publications

= Solid understanding of maximum likelihood and least squares fits

= From measurement to message: which conclusion can you draw from your
data (and which not)?

= |_earn to apply machine learning methods

Required knowledge

= Basic understanding of experimental particle physics (as taught in the
bachelor's course)

= Basic knowledge of python is helpful
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Practical information (l)

= \Website

» https://uebungen.physik.uni-heidelberg.de/vorlesung/20202/1225
= | ecture

» Flipped/inverted class room!
» Links to slides and videos provided before Thursday meeting

» Contact time on Thursdays:
- Via Zoom

- Questions / discussion, questions can be sent beforehand,
e.g. through rocket.chat [room: “ws20-smipp”]) or email

- Quizzes

- Typical no comprehensive repetition of the contents of the lecture videos!
» Exact time for Thursday meeting flexible, for example:

- Thursdays, 16:00-17:00: time to study slides / videos

- Thursdays, 17:00-17:30: Zoom-Meeting: discussion / quizzes

- First Thursday meeting (5 Nov 2020) starts at 16:15
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Practical information (l1)

= [utorials

» Mondays, 16:00 — 17:45

» Z0oOm

» Weekly problem sheets, to be handed in on Thursday before 12:00
» See next slide for detailed schedule

 Exam

» There will be a written exam at the end of the semester
» Refers to contents of lectures and exercises

» 60% of the points of the homework sheets required to be eligible to write the
exam

» Date to be fixed
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Schedule

Tutorial Lecture
Monday Thursday

45:2.11.-8.11.
46:9.11. - 15.11.

47:16.11. - 22.11.
48:23.11. - 29.11.

49:30.11. - 6.12.
50:7.12.-13.12.
51:14.12 - 20.12.

2:11.1.-17.1.
3:18.1. — 24.1.
4:25.1.-31.1.
5:1.2.-7.1.

6:8.1. - 14.2.

7:15.1.-21.1.
8:22.1.—28.1.

Intro, Python basic

online exercises,
Python adv.

Sheet 01
Sheet 02
Sheet 03
Sheet 04
Sheet 05

Sheet 06
Sheet 07
Sheet 08
Sheet 09
Sheet 10
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Lecture 01
Lecture 02

Lecture 03
Lecture 04
Lecture 05
Lecture 06
Lecture 07

Hand in (12:00)

Sheet 01

Sheet 02
Sheet 03
Sheet 04
Sheet 05
Sheet 06

Xmas holidays: 3 weeks

Lecture 08
Lecture 09
Lecture 10
Lecture 11

Lecture 12

Exam week (date to be confirmed)

Sheet 07
Sheet 08
Sheet 09
Sheet 10

Study Week

Exercise Sheets
Hand out (after L.)

Sheet 01
Sheet 02

Sheet 03
Sheet 04
Sheet 05
Sheet 06
Sheet 07

Sheet 08
Sheet 09
Sheet 10
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Useful books

m 5. Cowan, Statistical Data Analysis
m | Lista, Statistical Methods for Data Analysis in Particle Physics

m Behnke, Kroeninger, Schott, Schoerner-Sadenius: Data Analysis in High
—nergy Physics: A Practical Guide to Statistical Methods

= R. Barlow, Statistics: A Guide to the Use of Statistical Methods in the
Physical Sciences

= Bohm, Zech, Introduction to Statistics and Data Analysis for Physicist
available online]

= Blobel, Lohrmann: Statistische Methoden der Datenanalyse (in German),
free ebook]

= L. Lyons:
Statistics for Nuclear and Particle Physicists (Cambridge University Press)

= [ James, Statistical Methods in Experimental physics
= W. Metzger, Statistical Methods in Data Analysis [available online]
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http://www-library.desy.de/preparch/books/vstatmp_engl.pdf
http://www.desy.de/~blobel/ebuch.html
http://www.hef.ru.nl/~wes/stat_course/statist.pdf

Further Material

= Glen Cowan: http://www.pp.rhul.ac.uk/~cowan/stat course.html

= Scott Oser: http://www.phas.ubc.ca/~oser/p509/

= [erascale Statistics School:
https://indico.desy.de/indico/event/25594/other-view?view=standard

= Particle Data Group reviews on Probability and Statistics
» https://pda.lbl.gov/2020/reviews/rpp2020-rev-probability. pdf
» https://pdg.lbl.gov/2020/reviews/rpp2020-rev-statistics.pdf
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Why bother with statistical methods”

"750 GeV diphoton excess”
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Presentations by CMS and ATLAS, December 2015:
https://indico.cern.ch/event/442432/
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How knowledge is created?

Guess theory/model Perform experiment

- usually mathematical - reject / modify theory in case of

- self-consistent disagreement with data

- simple explanations, few arbitrary - If theory requires too many
parameters adjustments it becomes

- testable predictions unattractive

The advance of scientific knowledge is an
evolutionary process

Karl Popper
(1902-1994)

source: Wikipedia

Statistical methods are an important part of this process
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A look at other research fields

"Why Most Published Research Findings
Are False":

Main thesis: large number, if not the majority, of
published medical research papers contain
results that cannot be replicated.

Reproducibility crisis:
Affects the social sciences and life sciences
most severely (in particular psychology

Don't know
7 %

No, there is no crisis
3%

Is there a reproducibility
Crisis”? [Nature 533, 2016]

TN

1576

, . researchers _ Yes, a significant crisis
Yes, a slight crisis 59 94

38 %

surveyed
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https://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970

Sources of uncertainty

= Underlying theory (quantum mechanics) is probabilistic

» true randomness

= Limited knowledge about the measurement process

» present even without quantum mechanics

We quantify uncertainty using probability
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Mathematical definition of probability

Let A be an event. Then probability is a number obeying
three conditions, the Kolmogorov axioms:

1. P(A) >0 (non—negatlve real number) Kolmogorov, 1933
1,

2. P(S) =1, where S is the set of all A, the sample space
3. PIAuB)=PA)+ PB) forany A, B which are exclusive, i.e., AnB=0

From these axioms further properties can be derived, e.g.:

P(A):1_P(A) ANB

P(@) =0 o B
if A c Bthen PA) < P(B) @
PA u B) = PIA) + P(B) - PA n B) A )

But what does P mean?
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Interpretations of probability

https://plato.stanford.edu/entries/probability-interpret/

= Classical

» Assign equal probabilities based on symmetry of the problem,
e.g., rolling dice: P(6) = 1/6

» difficult to generalize

= Frequentist
» Let A, B, ... be outcomes of an repeatable experiment:

times outcome is A

P(A) = lim

n— oo n

= Bayesian (subjective probability)

» A, B, ... are hypotheses (statements that are true or false)

P(A) = degree of believe that A is true
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Criticisms of the probabillity interpretations

= Criticisms of the frequency interpretation

» N — oo can never be achieved in practice. When is n large enough?

» P Is not an intrinsic property of A, it depends on the how the ensemble of
possible outcomes was constructed

- Example: P(patient is treated in hospital | positive Corona test) is different wether or
not one knows the age of the person

» We want to talk about the probability of events that are not repeatable
- Example 1: P(it will rain tomorrow), but there is only one tomorrow
- Example 2: P(Universe started with a Big Bang), but only one universe

= Criticisms of the subjective Bayesian interpretation

» “Subjective” estimates have no place in science

» How to quantify the prior state of our knowledge upon which we base our
probability estimate?
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Fun with probab”itieg https://en.wikipedia.org/wiki/Monty_Hall_problem

Monty Hall problem ("Ziegenproblem®)

Suppose you're on a game show, and you're given the choice of three doors:
Behind one door is a car; behind the others, goats. You pick a door, say No. 1,
and the host, who knows what's behind the doors, opens another door, say
No. 3, which has a goat. He then says to you, "Do you want to pick door

No. 27" Is it to your advantage to switch your choice”

ey

» The host must always open a door that was not picked by the contestant

Standard assumptions

» The host must always open a door to reveal a goat and never the car.

» The host must always offer the chance to switch between the originally
chosen door and the remaining closed door.

Under these assumptions you should switch your choice!

Statistical Methods in Particle Physics WS 2020/21 | K. Reygers | 1. Basics Concepts
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Conditional probability and independent events

For two events A and B, the conditional probabillity is defined as

P((n<3)Nneven) 1/6
P(n even) T 1/2

—1/3

Example: rolling dice: P(n < 3|n even) =

Events A and B independent <— P(AN B) = P(A) - P(B)

An event A is independent of B if P(A|B) = P(A)

Statistical Methods in Particle Physics WS 2020/21 | K. Reygers | 1. Basics Concepts
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BSayes' theorem .

Definition of conditional probability: Venn diagram
P(AN B) P(B N A)
= P(B|A) =
P(A|B) F(B) and (BIA) P(A)
P(B|A)P(A)

P(ANB)=P(BNA) — |P(AB)= P(B)

[doubtful whether the
portrait actually shows Bayes]

First published (posthumously) by the Reverend
Thomas Bayes (1702-1761)

First modern formulation by Pierre-Simon Laplace
in 1812

Accepted by everyone if probabilities are not
Bayesian probabillities
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—Xample of using Bayes' theorem:
Test for a rare disease

Base probability (for anyone) P(D) = 0.001
to have a disease D: P(no D) = 0.999

Consider a test for the disease: result is positive or negative (+ or —):

“sensitivity” — P(4]D) = 0.98 P(+|no D) = 0.03
P(—|D) = 0.02  “specificity” —> P(—|no D) = 0.97

Suppose your result is +. How worried should you be?

_ P(+D)P(D) _ F(+D)PID)
PO = TR0y T RID)P) + A(+o D)P(uo D)
0.98 x 0.001 0032

"~ 0.98 x 0.001 + 0.03 x 0.999

Probabillity for you to have the disease is 3.2%, i.e., you're probably ok.

Remark: false positives not a relevant issue in statistics of Corona cases
(in case of a positive result usually double checks are made resulting in very high specificity)
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Bayesian inference: Degree of believe In a theory given
a certain set of data (|)

prior (subjective belief

probability of getting in the theory before
the data if theory is true seeing the data)

\ /

P(data|theory)P(theory)
P(data)

P(theory|data) =

\

posterior probabillity, i.e., \
subjective belief in the theory

after seeing the data guarantees normalization:

P(data) = Z P(datal|theory;)P(theory;)

Addresses question: "What should | believe?”

Statistical Methods in Particle Physics WS 2020/21 | K. Reygers | 1. Basics Concepts
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Bayesian inference: Degree of believe in a theory
given a certain set of data (ll)

For a continuous parameter A:
A : true value of a parameter of nature

f( m‘ )\) Pprior( )\) m : measurement

Alm) m) = [ V)PV X

Pposterior ()\‘ m) —

Problems with Bayesian inference

What functional form to chose for P ;,,(4)?

Uninformed prior: flat? In which variable, e.g., in A, A2, 1/4, In A7

Bayesian reply
Choice of prior usually unimportant after a few experiments

Jaynes’ robot: Priors are uniguely determined by your state of knowledge.
Thus scientists with the same background knowledge construct the same

priors.
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—xample of a posterior distribution

GW190814: Gravitational waves from the coalescence of a 23 solar mass
Black Hole with a 2.6 solar mass compact object

0.0 , Posterior distribution
vertical ines: — EOBNRPHM 1 for mass of the lighter
= _ 90% credible ———- EOBNR HM objects:
= 7.51 bounds for each ,
5 waveformmodel | | ff \\ | FEOBNR
- —— Phenom PHM
.’:g' 5.0 -=== Phenom HM
E‘ """" Phenom
S 2.5 ;
D—1 P /‘:, NI
uuuh’ﬂ';-:;;." Sl s
0.0 I
2.3 2.0 2.9 3.1
LIGO Scientific Collaboration and Virgo Note:

Collaboration:
The Astrophysical Journal Letters,
896:L.44 (20pp), 2020 June 20

Sampling from a multi-parameter posterior distribution
typically involves Markov chain Monte Carlo (MCMC)
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Are you a Frequentist or a Bayesian®

Suppose mass of a particle is measured with Gaussian resolution o and the
result ist reported as

Bayesian

2 2 : 2 2
’D(m|mtrue) X e_(m_mtrue) /(207) flat prlo;for Mtrue P(mtruelm) X e—(m_mtrue) /(207)

Frequentist

This is a statement about the interval [m—o, m+0o]. For a large number of
hypothetically repeated experiments the interval would contain the true value in
68% of the cases. In the frequentist approach, a probabilistic statement about
the true value is nonsense (the true value is what it is).

"Bayesians address the questions everyone is interested in by using
assumptions that no one believes. Frequentist use impeccable logic
to deal with an issue that is of no interest to anyone.” — Louis Lyons
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Bayesian inference: Jeffreys' prior

How to model complete ignorance about the value of a parameter 67
» Uniform distribution in 6, exp 6, In 6, 1/6, ...7?

» Example: Lifetime T of a particle, uniform distribution in T or particle's width [ = 1/1 ?

Jeffreys' prior (hon-informative prior) for a model L(?\g) of the measurement:

) - , [ 9InL(%|8) OIn L(R|6) \ |
77(9) X 1(9) /\((9) = det < (99(,' l ) aé’j >
\ determinant of the Fisher information matrix /

invariant under re-parameterization . .
expectation value evaluated by x

iIntegrating over all possible results

Examples: PDF parameter Jeffreys' prior
Poissonian mean p p(M) « 1V
Gaussian mean u p(M) « 1

Statistical Methods in Particle Physics WS 2020/21 | K. Reygers | 1. Basics Concepts
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Jeffreys' prior: Example

Exponential distribution: L(t|7) = Zet/7
T

Jeffreys' prior: (1) x /I(7T) = \ E ((%_ In L(t | 7‘))

d 1 t
—InL(t - —— 4+ —
dTn(‘T) T+T2

t 1\ t—1\° 1 21
EI(L—-2) | =E — —yi=L = =
(7‘2 7‘> <T2> T4 [t T4 72

1
v m(T) o . (orior distribution)
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Sayesian versus Freguentism [based on L. Lyons]

Bayesian Frequentist
Meaning of probability degree of belief frequentist definition
Probability of
yes anathema
parameters
Needs prior yes no
_Unphysmal l empty excluded by prior can occur
intervals
: posterior probability parameter values,
Final statement distribution hypothesis test (p-value)

Integrate over nuisance Various methods, e.g.,

Systematics parameter profile likelihood, hard

Combination of

can be hard (prior) ok
measurements
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Sayesian versus
-requentism

https://xkcd.com/1132/

DID THE SUN JUST EXPLODE?

(ITS NIGHT, 50 WERE NOT SURE.)

THIS NEUTRINO DETECTOR MERSURES
WHETHER THE SUN HAS GONE NOVA.

LET's TRY.
OETELTOR! HAS THE

THEN, [TROUS TWO DICE. |F THEY
BOTH COME UP SiX, IT UES TO US.
OMHERWISE, IT TELLS THE TRUH.

B
=0

FREQUENTIST STATISTICIAN: PAYESIAN STATISTIOAN:
THE PROBABILITY OF THIS RESULT

HAPPENING BY CHANCE 15 3;=0077 BET YOU $50
GNCE p<0.05, T CONCLUDE T HANT.
THAT THE SUN HAS EXPLODED, )

e

O
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1.2 Describing the Data
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Random variables and probability density functions

Random variable:
» Variable whose possible values are numerical outcomes of a random
phenomenon
» Can be discrete or continuous

Probability density function (pdf) of a continuous variable:

probability density
| function

P(x found in [x, x + dx]) = f(x) dx

0

Normalization: / f(x)dx =1 "x must be somewhere'

— OO
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Histograms

=~ 30 1 T | |
= (a)
. | i
Histogram: 20 |- :
» representation of the frequencies of the
numerical outcome of a random o L |
phenomenon
pdf = histogram for 0 2 4 e s 0
» infinite data sample X
» zero bin width = 05 : , : :
» normalized to unit area o ol @
N X 03 — ]
f(x) = (*)
nAXx 02 -
n = total number of entries 01 k -
Ax = bin width 0 ! '
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Mean, Median, and Mode

N
Mean of a
data sample: Z

:1 B
"sample mea 0.005
Mean of a pdf: _
0.004
ME<X>E/XP(x)dx ’
= expectation value E[x] 0.003 ‘
Median: 0.002 [}
point with 50% probability
above and 50% probability 0001 I
below ] ¥ I
MOde 0 (;ylizlol )}0%1 l810l | l1(1)0l | l150l | l14110l | l166 180 2—00

the most likely value .
mode median mean
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Variance and standard deviation

expectation value

|
Variance of a distribution:  V/(x) = / dx P(x)(x — pu)? = E[(x — u)?]

V(x) = / dx P(x)x? — 24 / dx P(x)x +p° / dx P(x) = (x?) — p* = (x%) — (x)?

\ - _J/
NS

. 1 .
Sample variance:  V/(x) = D (xi—x)=x2 - %

i
This formula underestimates the variance of underlying
distribution as it uses the mean calculated from datal

Use this if you have to estimate the mean Use this if you know the true mean p:
from data (unbiased sample variance):

V() = 27 S0 — %)’ V() = 5 306 — n)

Standard deviation: ¢ = v/ V(x)
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Multivariate distributions

Outcome of experiment

characterized by a vector (xi, ..., Xn) 10 . . .
Y | event 4
P(AN B) = f(x, y)dxdy 8 | i
joint pdf » -
| ’ 6 I NS 7
Normalization: e L
4 3* e | ;, event B
/ / X1y o0 Xp) dxq...dx, = 1 )
. — ke dx
Sometimes we want only the pdf of
one component: 0 | ' |
0 2 4 6 8 10

"marginal pdf*
= projection of joint pdf
onto individual axes

£ (x) = / (x,y)dy
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Marginal pdf = projections

10

1)

(b)

8 10 0 2 4 6 8 10

x and y independent if

f(x.y) = f(x) - ,(y)
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Covariance and correlation

« Covariance (i, := (x), t, := (y)):

covlx, y] = E[(x — ux)(y — py)]

Correlation coefficient (dimensionless):

B cov|x, y]
Py = OxT)y fX(X):/dy f(x,y)
-
x, y independent, i.e., f(x,y) = £,(x) - £,() ) = [ dxf(x.)

El(x — i)y — )] = / dx / dy (x — )y — 1y)F (%, y)
= /(X — i) e (X) dX/(y — iy )ty (y)dy =0

— cov[x,y] =0 (N.B. converse not always true)
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Never trust summary statistics alone;
always visualize your data

https://www.autodeskresearch.com/publications/samestats
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Linear combinations of random variables

Consider two random variables with known covariance cov(x, y):

X +y) = {x)+{y)

(ax) = a(x)

Viax] = a° V]|

x|

cov(x, x) = V/[x]
Vix+y] = V]x

Example of more detailed calculation:

+ Vl]y| 4+ 2cov(x, y)

Vix +y] = E[(x+y — pix — py)°] = E[(x — px + y — p1y)°]
= E[(x — p)® + (v — 1y)” + 2(x — px)(y — 1y )]

— E(X — /Lx)z] + E[(y — ,Uy)Q] T 2E[(X o Mx)(.y o :u)/)]

= V[x] + V[y] + 2cov(x, y)
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Higher moments

3 0.8
X — (x)
Skewness: 71 =

o 0.6

N N f(x)
0.4
0.2

> >
Negative Skew Positive Skew 0.0

https://en.wikipedia.org/wiki/Skewness

Symmetric distribution have skewness
equal to zero

_ 4 f
Kurtosis: [y = (X <X>> (X)

B2 — 3

72

defined such that y2 = O for the 1E-3

normal distribution
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Correlation # Causation

Examples of illogically inferring causation from correlation
https://en.wikipedia.org/wiki/Correlation_does_not_imply_causation

Example 1 ("reverse causality"):

» The faster windmills are observed to rotate, the more wind is observed to be.
» Therefore wind is caused by the rotation of windmills.

Example 2 ("third factor C causes both A and B"):

» Sleeping with one's shoes on is strongly correlated with waking up with a
headache.

» Therefore, sleeping with one's shoes on causes headache.

Worldwide non-commercial space launches correlation

correlates with oo
%Xam p e 3 o S ; Sociology doctorates awarded (US) coefficient: 0.79
( re | at | O n S h | p | S C O | n C I d e n t al ) : . 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
» many examples on
tylervigen.com
("spurious correlations”)

2 (sn) pIpieme safeloop ABojonos =

Worldwid

30 Launches 500 Degrees awarde
1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

-@- Sociology doctorates awarded (US)»- Worldwide non-commercial space launches
tylervigen.com

Statistical Methods in Particle Physics WS 2020/21 | K. Reygers | 1. Basics Concepts 41


http://tylervigen.com

What makes nobel prize winners?

35- Correlation coefficient:
- den n Switzerland O . 79 "I
304
r=0.791
P<0.0001 Denmark
o Cpn
5 > Austria T = Improved cognitive
= st Norway . .
2 function associated
a
é ? 5= United Kingdom Wlth d I’egU|ar Iﬂtake Of
= .
s flavonoids®????
g 157
@ United B [lreland B Germany
§ The Netherlands ™= States
§ 10- — E Fianie PrObably ﬂOt "
— Belgium .
.§ Cana!al -l— Finland
“ 5 Poland I"h Australia
Portugal Gije—cA Italy
e == __ Spain
of Wl Yo L83
China Brazil
0 ' ] ] l 5[ ' ' ' ] llO ' I ' ' 1]5 .
Chocolate Consumption (kg/yr/capita) F Messel’h, 201 2,
Figure 1. Correlation between Countries’ Annual Per Capita Chocolate Consumption and the Number of Nobel NeW England Journal
Laureates per 10 Million Population. Of Medicine 201 2
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Correlation # Causation

SOUNDS LIKE THE
CLASS HELPED.

PERMANENT LINK TO THIS COMIC: HTTP//XKCD.COM/552/
IMAGE URL (FOR HOTLINKING/EMBEDDING): HTTP./IMGS.XKCD.COM/COMICS/CORRELATION.PNG
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