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1.1 Introduction
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Contents
1. Basics concepts 

‣ Probability 
‣ Mean, median, mode 
‣ Covariance and correlation 

2. Probability distributions 
3. Uncertainty 

‣ Statistical and systematic uncertainties 
‣ Propagation of uncertainties 
‣ Combination of uncorrelated 

measurements 
4. Monte Carlo and numerical methods 

‣ Generation of random numbers 
‣ Monte Carlo integration 
‣ Applications in HE 

5. Maximum likelihood estimation 
‣ Basics: consistency, bias, efficiency 
‣ Maximum likelihood method
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6. Least squares 
7. Goodness-of-fit and hypothesis 

testing 
8. Confidence limits and intervals 

‣ Neyman construction 
‣ Feldman-Cousins confidence 

intervals 
9. Machine learning 

‣ General Overview: machine 
learning, deep learning and all that 
‣ Neural Networks 
‣ Boosted Decision trees 

10. Unfolding

“Bayes vs. frequentist”
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Learning goals and required knowledge

4

This course is a natural follow-up to PEP4 for Bachelor students interested in 
Particle Physics. Master students are invited to attend this lecture in parallel 
or after the Particle Physics course. 

Learning goals 
■ Get to know and apply the toolbox of statistical methods used in particle 

physics 
■ Understand error bars and confidence limits as reported in publications 
■ Solid understanding of maximum likelihood and least squares fits 
■ From measurement to message: which conclusion can you draw from your 

data (and which not)? 
■ Learn to apply machine learning methods 

Required knowledge 
■ Basic understanding of experimental particle physics (as taught in the 

bachelor's course) 
■ Basic knowledge of python is helpful
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Practical information (I)

■ Website 
‣ https://uebungen.physik.uni-heidelberg.de/vorlesung/20202/1225 

■ Lecture 
‣ Flipped/inverted class room! 
‣ Links to slides and videos provided before Thursday meeting 
‣ Contact time on Thursdays: 

- Via Zoom 
- Questions / discussion, questions can be sent beforehand,  

e.g. through rocket.chat [room: “ws20-smipp”]) or email 
- Quizzes 
- Typical no comprehensive repetition of the contents of the lecture videos! 

‣ Exact time for Thursday meeting flexible, for example: 
- Thursdays, 16:00-17:00: time to study slides / videos 
- Thursdays, 17:00-17:30: Zoom-Meeting: discussion / quizzes 
- First Thursday meeting (5 Nov 2020) starts at 16:15

5

https://uebungen.physik.uni-heidelberg.de/vorlesung/20202/1225
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Practical information (II)

■ Tutorials 
‣ Mondays, 16:00 – 17:45 
‣ Zoom 
‣ Weekly problem sheets, to be handed in on Thursday before 12:00 
‣ See next slide for detailed schedule 

■ Exam 
‣ There will be a written exam at the end of the semester 
‣ Refers to contents of lectures and exercises 
‣ 60% of the points of the homework sheets required to be eligible to write the 

exam 
‣ Date to be fixed

6
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Schedule

7

Week
Tutorial	
Monday

Lecture	
Thursday

Exercise	Sheets	
Hand	in		(12:00)								Hand	out	(after	L.)

45:	2.11.	–	8.11. Intro,	Python	basic Lecture	01 -- Sheet	01

46:	9.11.	–	15.11. online	exercises,	
Python	adv.

Lecture	02 Sheet	01 Sheet	02

47:	16.11.	–	22.11. Sheet	01 Lecture	03 Sheet	02 Sheet	03

48:	23.11.	–	29.11. Sheet	02 Lecture	04 Sheet	03 Sheet	04

49:	30.11.	–	6.12. Sheet	03 Lecture	05 Sheet	04 Sheet	05

50:	7.12.	–	13.12. Sheet	04 Lecture	06 Sheet	05 Sheet	06

51:	14.12	–	20.12. Sheet	05 Lecture	07 Sheet	06 Sheet	07

Xmas	holidays:	3	weeks

2:	11.1.	–	17.1. Sheet	06 Lecture	08 Sheet	07 Sheet	08

3:	18.1.	–	24.1. Sheet	07 Lecture	09 Sheet	08 Sheet	09

4:	25.1.	–	31.1. Sheet	08 Lecture	10 Sheet	09 Sheet	10

5:	1.2.	–	7.1. Sheet	09 Lecture	11 Sheet	10

6:	8.1.	-	14.2. Sheet	10 Lecture	12

7:	15.1.	–	21.1. Study	Week

8:	22.1.	–	28.1. Exam	week	(date	to	be	confirmed)
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Useful books
■ G. Cowan, Statistical Data Analysis 
■ L. Lista, Statistical Methods for Data Analysis in Particle Physics 
■ Behnke, Kroeninger, Schott, Schoerner-Sadenius: Data Analysis in High 

Energy Physics: A Practical Guide to Statistical Methods 
■ R. Barlow, Statistics: A Guide to the Use of Statistical Methods in the 

Physical Sciences 
■ Bohm, Zech, Introduction to Statistics and Data Analysis for Physicist 

[available online] 
■ Blobel, Lohrmann: Statistische Methoden der Datenanalyse (in German),  

[free ebook] 
■ L. Lyons: 

Statistics for Nuclear and Particle Physicists (Cambridge University Press) 
■ F. James, Statistical Methods in Experimental physics 
■ W. Metzger, Statistical Methods in Data Analysis [available online]

8

http://www-library.desy.de/preparch/books/vstatmp_engl.pdf
http://www.desy.de/~blobel/ebuch.html
http://www.hef.ru.nl/~wes/stat_course/statist.pdf
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Further Material

■ Glen Cowan: http://www.pp.rhul.ac.uk/~cowan/stat_course.html 

■ Scott Oser: http://www.phas.ubc.ca/~oser/p509/ 

■ Terascale Statistics School:  
https://indico.desy.de/indico/event/25594/other-view?view=standard 

■ Particle Data Group reviews on Probability and Statistics 
‣ https://pdg.lbl.gov/2020/reviews/rpp2020-rev-probability.pdf 
‣ https://pdg.lbl.gov/2020/reviews/rpp2020-rev-statistics.pdf 
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http://www.pp.rhul.ac.uk/~cowan/stat_course.html
http://www.phas.ubc.ca/~oser/p509/
https://indico.desy.de/indico/event/25594/other-view?view=standard
https://pdg.lbl.gov/2020/reviews/rpp2020-rev-probability.pdf
https://pdg.lbl.gov/2020/reviews/rpp2020-rev-statistics.pdf
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Why bother with statistical methods?
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Presentations by CMS and ATLAS, December 2015: 
https://indico.cern.ch/event/442432/

"750 GeV diphoton excess"
Statistics:  
Draw reliable conclusions  
from data 

In case of doubt:  
just get more data … 

Yes, but not always easy …

A heavy Higgs boson? 

Peak disappeared with more 
data … [link]

https://en.wikipedia.org/wiki/750_GeV_diphoton_excess#December_2015_data
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How knowledge is created?

11

Guess theory/model
- usually mathematical 
- self-consistent 
- simple explanations, few arbitrary  

parameters 
- testable predictions

Perform experiment
- reject / modify theory in case of 

disagreement with data 
- if theory requires too many 

adjustments it becomes 
unattractive  

The advance of scientific knowledge is an 
evolutionary process

Karl Popper  
(1902–1994)

source:	Wikipedia

Statistical methods are an important part of this process 
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A look at other research fields
"Why Most Published Research Findings 
Are False":  
Main thesis: large number, if not the majority, of 
published medical research papers contain 
results that cannot be replicated. 

Reproducibility crisis:  
Affects the social sciences and life sciences 
most severely (in particular psychology)

12

John Ioannidis  
(Stanford School of Medicine) 
PLoS Med 2(8): e124., (2005), 
doi:10.1371/journal.pmed.0020124

1576 
researchers 

surveyed

Don't know
7 %

No, there is no crisis
3 %

Yes, a slight crisis
38 %

Yes, a significant crisis
52 %

Is there a reproducibility 
crisis? [Nature 533, 2016]

https://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970
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Sources of uncertainty

■ Underlying theory (quantum mechanics) is probabilistic 
‣ true randomness 

■ Limited knowledge about the measurement process 
‣ present even without quantum mechanics

13

We quantify uncertainty using probability
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Mathematical definition of probability

14

Let A be an event. Then probability is a number obeying  
three conditions, the Kolmogorov axioms: 

1. P(A) ≥ 0 (non-negative real number) 
2. P(S) = 1, where S is the set of all A, the sample space 
3. P(A ∪ B) = P(A) + P(B) for any A, B which are exclusive, i.e., A ∩ B = 0 

From these axioms further properties can be derived, e.g.: 

P(Ā) = 1 – P(A) 
P(∅) = 0 
if A ⊂ B then P(A) ≤ P(B) 
P(A ∪ B) = P(A) + P(B) – P(A ∩ B) 

Kolmogorov, 1933

But what does P mean?
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Interpretations of probability

15

■ Classical 
‣ Assign equal probabilities based on symmetry of the problem,  

e.g., rolling dice: P(6) = 1/6 
‣ difficult to generalize 

■ Frequentist 
‣ Let A, B, … be outcomes of an repeatable experiment:

P(A) = lim
n!1

times outcome is A

n

■ Bayesian (subjective probability) 
‣ A, B, … are hypotheses (statements that are true or false) 

P(A) = degree of believe that A is true

https://plato.stanford.edu/entries/probability-interpret/
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Criticisms of the probability interpretations
■ Criticisms of the frequency interpretation 
‣ n → ∞ can never be achieved in practice. When is n large enough? 
‣ P is not an intrinsic property of A, it depends on the how the ensemble of 

possible outcomes was constructed 
- Example: P(patient is treated in hospital | positive Corona test) is different wether or 

not one knows the age of the person 
‣ We want to talk about the probability of events that are not repeatable 

- Example 1: P(it will rain tomorrow), but there is only one tomorrow 
- Example 2: P(Universe started with a Big Bang), but only one universe  

■ Criticisms of the subjective Bayesian interpretation 
‣ “Subjective” estimates have no place in science 
‣ How to quantify the prior state of our knowledge upon which we base our 

probability estimate?

16
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Fun with probabilities 

17

Monty Hall problem ("Ziegenproblem") 
Suppose you're on a game show, and you're given the choice of three doors: 
Behind one door is a car; behind the others, goats. You pick a door, say No. 1, 
and the host, who knows what's behind the doors, opens another door, say 
No. 3, which has a goat. He then says to you, "Do you want to pick door 
No. 2?" Is it to your advantage to switch your choice?

Standard assumptions 
‣ The host must always open a door that was not picked by the contestant 
‣ The host must always open a door to reveal a goat and never the car. 
‣ The host must always offer the chance to switch between the originally 

chosen door and the remaining closed door.

https://en.wikipedia.org/wiki/Monty_Hall_problem

Under these assumptions you should switch your choice!
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Conditional probability and independent events

18

For two events A and B, the conditional probability is defined as 

P(A|B) = P(A \ B)

P(B)

An event A is independent of B if P(A|B) = P(A)

Events A and B independent () P(A \ B) = P(A) · P(B)

Example: rolling dice: P(n < 3|n even) =
P((n < 3) \ n even)

P(n even)
=

1/6

1/2
= 1/3
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Bayes' theorem

19

Definition of conditional probability:

P(A|B) = P(A \ B)

P(B)
P(B |A) = P(B \ A)

P(A)
and

P(A \ B) = P(B \ A) P(A|B) = P(B |A)P(A)
P(B)

First published (posthumously) by the Reverend 
Thomas Bayes (1702−1761) 
First modern formulation by Pierre-Simon Laplace 
in 1812 
Accepted by everyone if probabilities are not 
Bayesian probabilities 

[doubtful whether the  
portrait actually shows Bayes]

!

Venn diagram



Statistical Methods in Particle Physics WS 2020/21 | K. Reygers  | 1. Basics Concepts

Example of using Bayes' theorem: 
Test for a rare disease

20

Base probability (for anyone)  
to have a disease D:

Consider a test for the disease: result is positive or negative (+ or –):

P(+|D) = 0.98

P(�|D) = 0.02

P(+|no D) = 0.03

P(�|no D) = 0.97

Suppose your result is +. How worried should you be?

Probability for you to have the disease is 3.2%, i.e., you're probably ok.

P(D) = 0.001

P(no D) = 0.999

“sensitivity”
“specificity”

Remark: false positives not a relevant issue in statistics of Corona cases  
(in case of a positive result usually double checks are made resulting in very high specificity)

P(D|+) =
P(+|D)P(D)

P(+)
=

P(+|D)P(D)

P(+|D)P(D) + P(+|no D)P(no D)

=
0.98⇥ 0.001

0.98⇥ 0.001 + 0.03⇥ 0.999
= 0.032
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Bayesian inference: Degree of believe in a theory given 
a certain set of data (I)

21

P(theory|data) = P(data|theory)P(theory)
P(data)

probability of getting 
the data if theory is true

prior (subjective belief  
in the theory before 
seeing the data)

posterior probability, i.e., 
subjective belief in the theory 
after seeing the data guarantees normalization:

P(data) =
X

i

P(data|theoryi )P(theoryi )

Addresses question: "What should I believe?"
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Bayesian inference: Degree of believe in a theory 
given a certain set of data (II)

22

Pposterior(�|m) =
f (m|�)Pprior(�)

f1(m)

Problems with Bayesian inference 

What functional form to chose for ? 

Uninformed prior: flat? In which variable, e.g., in ? 

Bayesian reply 
Choice of prior usually unimportant after a few experiments 
Jaynes’ robot: Priors are uniquely determined by your state of knowledge. 
Thus scientists with the same background knowledge construct the same 
priors. 

Pprior(λ)

λ, λ2, 1/λ, ln λ

For a continuous parameter λ:
� : true value of a parameter of nature

m : measurement

f1(m) =

Z
f (m|�0)P(�0) d�0
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Example of a posterior distribution

23

GW190814: Gravitational waves from the coalescence of a 23 solar mass 
Black Hole with a 2.6 solar mass compact object

LIGO Scientific Collaboration and Virgo 
Collaboration: 
The Astrophysical Journal Letters, 
896:L44 (20pp), 2020 June 20

vertical lines: 
90% credible 
bounds for each 
waveform model

Posterior distribution 
for mass of the lighter 
objects:

Note:  
Sampling from a multi-parameter posterior distribution 
typically involves Markov chain Monte Carlo (MCMC) 
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Are you a Frequentist or a Bayesian?

Suppose mass of a particle is measured with Gaussian resolution  and the 
result ist reported as 

σ

24

Bayesian

P(mtrue|m) / e�(m�mtrue)
2/(2�2)P(m|mtrue) / e�(m�mtrue)

2/(2�2)

m ± �

Frequentist 
This is a statement about the interval [m–σ, m+σ]. For a large number of 
hypothetically repeated experiments the interval would contain the true value in 
68% of the cases. In the frequentist approach, a probabilistic statement about 
the true value is nonsense (the true value is what it is).

flat prior for mtrue!

"Bayesians address the questions everyone is interested in by using 
assumptions that no one believes. Frequentist use impeccable logic 
to deal with an issue that is of no interest to anyone.” – Louis Lyons 
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Bayesian inference: Jeffreys' prior

25

How to model complete ignorance about the value of a parameter θ?  
‣ Uniform distribution in θ, exp θ, ln θ, 1/θ, …? 
‣ Example: Lifetime τ of a particle, uniform distribution in τ or particle's width Γ = 1/τ ?

Jeffreys' prior (non-informative prior) for a model            of the measurement:

⇡(~✓) /
q
I (~✓) I (~✓) = det

"*
@ ln L(~x |~✓)

@✓i

@ ln L(~x |~✓)
@✓j

+#

determinant of the Fisher information matrix

invariant under re-parameterization expectation value evaluated by 
integrating over all possible results 

~x

PDF parameter Jeffreys' prior

Poissonian mean µ p(µ) ∝ 1/√µ

Gaussian mean  µ p(µ) ∝ 1

Examples:

L(~x |~✓)
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Jeffreys' prior: Example

26

Exponential distribution:

Jeffreys' prior:

L(t | ⌧) = 1

⌧
e�t/⌧

d

d⌧
ln L(t|⌧) = �1

⌧
+

t

⌧ 2

E

"✓
t

⌧ 2
� 1

⌧

◆2
#
= E

"✓
t � ⌧

⌧ 2

◆2
#
=

1

⌧ 4
V [t] =

⌧ 2

⌧ 4
=

1

⌧ 2

 ⇡(⌧) / 1

⌧

⇡(⌧) /
p

I (⌧) =

vuutE

"✓
d

d⌧
ln L(t | ⌧)

◆2
#

(prior distribution)
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Bayesian versus Frequentism

27

Bayesian Frequentist

Meaning of probability degree of belief frequentist definition

Probability of 
parameters yes anathema

Needs prior yes no

Unphysical / empty 
intervals excluded by prior can occur

Final statement posterior probability 
distribution

parameter values, 
hypothesis test (p-value)

Systematics Integrate over nuisance 
parameter 

Various methods, e.g., 
profile likelihood, hard

Combination of 
measurements can be hard (prior) ok

[based on L. Lyons]
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Bayesian versus 
Frequentism

28

https://xkcd.com/1132/
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1.2 Describing the Data
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Random variables and probability density functions

Random variable: 
‣ Variable whose possible values are numerical outcomes of a random 

phenomenon 
‣ Can be discrete or continuous

30

Probability density function (pdf) of a continuous variable:

P(x found in [x , x + dx ]) = f (x) dx

probability density 
function

Z 1

�1
f (x) dx = 1Normalization: "x must be somewhere"
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Histograms

Histogram: 
‣ representation of the frequencies of the 

numerical outcome of a random 
phenomenon 

 
 pdf = histogram for  
‣ infinite data sample 
‣ zero bin width 
‣ normalized to unit area

31

f (x) =
N(x)

n�x

n = total number of entries

�x = bin width



Statistical Methods in Particle Physics WS 2020/21 | K. Reygers  | 1. Basics Concepts

Mean, Median, and Mode

Mean of a 
data sample:

32

4

The Centre of the Data: Mean, Median, & Mode

 Mean of a data set:

x=
1

N
∑
i=1

N

xi

Median:  the point with 
50% probability above 
& 50% below.  (If a tie, 
use an average of the 
tied values.)  Less 
sensitive to tails!

Mode: the most likely 
value

≡〈 x〉≡∫dx Px x

Mean of a PDF = 
expectation value 
of x

mode median mean

x̄ =
1

N

NX

i=1

xi

Mean of a pdf:

µ ⌘ hxi ⌘
Z

x P(x) dx

≡ expectation value E[x]

Median: 
point with 50% probability 
above and 50% probability 
below

Mode: 
the most likely value

"sample mean"
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Variance and standard deviation

Variance of a distribution:

33

Sample variance: V (x) =
1

N

X

i

(xi � x̄)2 = x2 � x̄2

This formula underestimates the variance of underlying 
distribution as it uses the mean calculated from data!

Use this if you have to estimate the mean 
from data (unbiased sample variance):

Use this if you know the true mean μ:

Standard deviation: � =
p

V (x)

expectation value

V (x) =
1

N

X

i

(xi � µ)2V̂ (x) =
1

N � 1

X

i

(xi � x̄)2

V (x) =

Z
dx P(x)(x � µ)2 = E [(x � µ)2]

V (x) =

Z
dx P(x)x2 � 2µ

Z
dx P(x)x

| {z }
=µ

+µ2

Z
dx P(x) = hx2i � µ2 = hx2i � hxi2
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Multivariate distributions

34

Outcome of experiment 
characterized by a vector (x1, …, xn)

G. Cowan  Statistical Data Analysis / Stat 1 21 

Multivariate distributions 

Outcome of experiment charac- 
terized by several values, e.g. an  
n-component vector, (x1, ... xn)  

joint pdf  

Normalization: 

P(A \ B) = f (x , y) dxdy

Z
...

Z
f (x1, ..., xn) dx1...dxn = 1

Normalization:

Sometimes we want only the pdf of 
one component:

fx(x) =

Z
f (x , y) dy "marginal pdf" 

= projection of joint pdf 
onto individual axes

joint pdf
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Marginal pdf = projections

35

G. Cowan  Statistical Data Analysis / Stat 1 23 

Marginal pdf  (2) 

Marginal pdf ~ 
projection of joint pdf 
onto individual axes. 

x and y independent if

f (x , y) = fx(x) · fy (y)
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Covariance and correlation

■ Covariance ( ):μx := ⟨x⟩, μy := ⟨y⟩

36

cov[x , y ] = E [(x � µx)(y � µy )]

Correlation coefficient (dimensionless):

⇢xy =
cov[x, y]

�x�y

x, y independent, i.e.,  :f(x, y) = fx(x) ⋅ fy(y)

! cov[x , y ] = 0 (N.B. converse not always true)

fx(x) =

Z
dy f (x , y)

fy (y) =

Z
dx f (x , y)

E [(x � µx)(y � µy )] =

Z
dx

Z
dy (x � µx)(y � µy )f (x , y)

=

Z
(x � µx)fx(x) dx

Z
(y � µy )fy (y) dy = 0
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Correlation coefficient

37

cov[x , y ] = E [(x � µx)(y � µy )]
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Never trust summary statistics alone;  
always visualize your data

38

https://www.autodeskresearch.com/publications/samestats

same summary 
statistics for all 
data sets, in 
particular corr. = 0
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Linear combinations of random variables

Consider two random variables with known covariance cov(x, y):

39

V [x + y ] = E [(x + y � µx � µy )
2] = E [(x � µx + y � µy )

2]

= E [(x � µx)
2 + (y � µy )

2 + 2(x � µx)(y � µy )]

= E [(x � µx)
2] + E [(y � µy )

2] + 2E [(x � µx)(y � µy )]

= V [x ] + V [y ] + 2cov(x , y)

Example of more detailed calculation:

hx + yi = hxi+ hyi
haxi = ahxi

V [ax ] = a2V [x ]

cov(x , x) = V [x ]

V [x + y ] = V [x ] + V [y ] + 2cov(x , y)
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Higher moments

Skewness:

40

�1 =

*✓
x � hxi

�

◆3
+

Symmetric distribution have skewness 
equal to zero 

�2 =

*✓
x � hxi

�

◆4
+

Kurtosis:

�2 = �2 � 3

defined such that γ2 = 0 for the 
normal distribution

https://en.wikipedia.org/wiki/Skewness
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Correlation ≠ Causation

Example 1 ("reverse causality"): 
‣ The faster windmills are observed to rotate, the more wind is observed to be. 
‣ Therefore wind is caused by the rotation of windmills.
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Examples of illogically inferring causation from correlation

Example 2 ("third factor C causes both A and B"): 
‣ Sleeping with one's shoes on is strongly correlated with waking up with a 

headache. 
‣ Therefore, sleeping with one's shoes on causes headache.

https://en.wikipedia.org/wiki/Correlation_does_not_imply_causation

Example 3  
(“relationship is coincidental"): 
‣ many examples on  

tylervigen.com 
("spurious correlations”)

correlation 
coefficient: 0.79

http://tylervigen.com
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What makes nobel prize winners?
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F. Messerli, 2012, 
New England Journal 
of Medicine, 2012

Correlation coefficient: 
0.791 

Improved cognitive 
function associated 
with a regular intake of 
flavonoids??? 

Probably not … 
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Correlation ≠ Causation

■ www
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