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Material
https://www.physi.uni-heidelberg.de/~reygers/lectures/2020/smipp-grk-2149/

P1 > Startseite

GRK 2149 workshop: Statistical Methods in Particle Physics

Lectures for the Retreat of the Research Training Group (Graduiertenkolleg) 2149 "Strong and Weak Interactions” - 9-10 September 2020

Overview

Basics

Maximum likelihood method

Least Squares

Hypothesis tests and Goodness-of-fit
Systematic uncertainties

Decision trees

We'll use python 3 in the course. Basic knowdegle of the language is useful for this course. We'll work a lot with jupyter notebooks. A nice summary of important python
commands is available on the website of the Stanford lecture CS231n.

Here you find the slides of the lecture. S| d en Ot e:

Examples

= basic_chi2_fit_iminuit.ipynb tools and is "user-friendly", but also

= error_ellipse.ipynb Examp|eS aﬂd

= extended_ml_fit_example.ipynb

= mi_fit_example.ipynb ~~~ problems in Python

slow.

= p-values_and_n-sigma.ipynb

= random_numbers_from_distribution.ipynb / | S JU“ a _th e .I:u.turer?

Problems

O WOW~NOOUHWN-=

—

"runs like C, but reads like Python"

. Construct a Bayesian credible interval (html, notebook) X ( N a.tu re 57 2 ' -I 4 -1 B -1 4 2 (20.1 9)

. Linear least squares and error propgation (html, notebook) XX \ ; /
. Simultaneous least-squares fit to several data sets (blast-wave fit to particle spectra) (html, notebook) XXX

. Unbinned maximum likelihood fit (double exponential decay) (html, notebook) XX

. The lighthouse problem: another unbinned maximum likelihood fit (html, notebook) XX

. Unbinned maximum likelihood fit with Gaussian constraint on a parameter (html, notebook) X

. Kolmogorov-Smirnov test (html, notebook) X

. Significance of a peak above background (html, notebook) XXX

. Least-squares fit with external Gaussian constraint (html, notebook) X

. Separation of gamma and hadron showers measured with the MAGIC Cherenkov telescope using a boosted decision tree and a random forest (html, notebook)

XX

X = quick, XX = intermediate, XXX = takes a bit longer
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Python provides a great ecosystem of


https://www.physi.uni-heidelberg.de/~reygers/lectures/2020/smipp-grk-2149/
http://julialang.org/
https://www.nature.com/articles/d41586-019-02310-3

Hands—on :XerCiSGS Will spend a good fraction of the

time on these hands-on exercises.

Problems

1.
2.
3.
4.

Construct a Bayesian credible interval (html, notebook) X

Unbinned maximum likelihood fit (double exponential decay) (html, notebook) XX

The lighthouse problem: another unbinned maximum likelihood fit (html, notebook) XX

Unbinned maximum likelihood fit with Gaussian constraint on a parameter (html,
notebook) X

5. Linear least squares and error propgation (html, notebook) XX

6. Simultaneous least-squares fit to several data sets (blast-wave fit to particle spectra)

7.
8.
9.

(html, notebook) XXX

Kolmogorov-Smirnov test (html, notebook) X

Significance of a peak above background (html, notebook) XXX

Least-squares fit with external Gaussian constraint (html, notebook) X

10.Separation of gamma and hadron showers measured with the MAGIC Cherenkov

telescope using a boosted decision tree and a random forest (html, notebook) XX

X = quick, XX = intermediate, XXX = takes a bit longer
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https://www.physi.uni-heidelberg.de/~reygers/lectures/2020/smipp-grk-2149/notebooks/problems/credible_interval.html
https://www.physi.uni-heidelberg.de/~reygers/lectures/2020/smipp-grk-2149/notebooks/problems/credible_interval.ipynb
https://www.physi.uni-heidelberg.de/~reygers/lectures/2020/smipp-grk-2149/notebooks/problems/ml_fit.html
https://www.physi.uni-heidelberg.de/~reygers/lectures/2020/smipp-grk-2149/notebooks/problems/ml_fit.ipynb
https://www.physi.uni-heidelberg.de/~reygers/lectures/2020/smipp-grk-2149/notebooks/problems/lighthouse.html
https://www.physi.uni-heidelberg.de/~reygers/lectures/2020/smipp-grk-2149/notebooks/problems/lighthouse.ipynb
https://www.physi.uni-heidelberg.de/~reygers/lectures/2020/smipp-grk-2149/notebooks/problems/ml_fit_with_gaussian_constraint.html
https://www.physi.uni-heidelberg.de/~reygers/lectures/2020/smipp-grk-2149/notebooks/problems/ml_fit_with_gaussian_constraint.ipynb
https://www.physi.uni-heidelberg.de/~reygers/lectures/2020/smipp-grk-2149/notebooks/problems/linear_least_squares.html
https://www.physi.uni-heidelberg.de/~reygers/lectures/2020/smipp-grk-2149/notebooks/problems/linear_least_squares.ipynb
https://www.physi.uni-heidelberg.de/~reygers/lectures/2020/smipp-grk-2149/notebooks/problems/blastwave_fit.html
https://www.physi.uni-heidelberg.de/~reygers/lectures/2020/smipp-grk-2149/notebooks/problems/blastwave_fit.ipynb
https://www.physi.uni-heidelberg.de/~reygers/lectures/2020/smipp-grk-2149/notebooks/problems/ks_test.html
https://www.physi.uni-heidelberg.de/~reygers/lectures/2020/smipp-grk-2149/notebooks/problems/ks_test.ipynb
https://www.physi.uni-heidelberg.de/~reygers/lectures/2020/smipp-grk-2149/notebooks/problems/significance.html
https://www.physi.uni-heidelberg.de/~reygers/lectures/2020/smipp-grk-2149/notebooks/problems/significance.ipynb
https://www.physi.uni-heidelberg.de/~reygers/lectures/2020/smipp-grk-2149/notebooks/problems/chi2_fit_with_constraint.html
https://www.physi.uni-heidelberg.de/~reygers/lectures/2020/smipp-grk-2149/notebooks/problems/chi2_fit_with_constraint.ipynb
https://www.physi.uni-heidelberg.de/~reygers/lectures/2020/smipp-grk-2149/notebooks/problems/magic_xgboost_and_random_forest.html
https://www.physi.uni-heidelberg.de/~reygers/lectures/2020/smipp-grk-2149/notebooks/problems/magic_xgboost_and_random_forest.ipynb

Hands-on exercises: Example

Typically you just need to add one or two lines where "your code here" appears

# chi2 for a given particle species
def chi2_particle(particle, Tkin, beta_s, n):

# blast-wave prediction
dndpt_bw = dndpt_blastwave(pt_meas[particle], mass[particle], Tkin, beta_s, n)

# normalization
A = normalization(particle, Tkin, beta_s, n)

#III
# your code here

# return np.sum(pulls * pulls)

# chi2 for a given particle species
def chi2_particle(particle, Tkin, beta_s, n):

# blast-wave prediction
dndpt_bw = dndpt_blastwave(pt_meas[particle], mass([particle], Tkin, beta_s, n)

# normalization
A = normalization(particle, Tkin, beta_s, n)

pulls = (dndpt_meas[particle] - A * dndpt_bw) / dndpt_meas_err[particle]
return np.sum(pulls * pulls)

Statistical Methods in Particle Physics | Mlnster 2020 | K. Reygers 5



Working environment (here: macOS)

Assumption: homebrew is installed

install python3 (see https://docs.python-guide.org/starting/install3/osx/)

$ brew install python
$ python --version
Python 3.8.5

Make sure pip3 is up-to-date (alternative: conda)
$ pip3 install --upgrade pip

Install needed modules:

$ pip3 install --upgrade jupyter matplotlib numpy
pandas scipy scikit-learn xgboost iminuit

run jupyter:
$ jupyter lab or $ jupyter notebook

Statistical Methods in Particle Physics | Minster 2020 | K. Reygers 6



Introduction and basic concepts
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Why bother with statistical methods”

"750 GeV diphoton excess”

104 = |

E ATLIAS Prelliminary ; % Statistics:
(@) n e Data _ . .
§  sL t 1 Draw reliable conclusions
‘g ? —— Background-only fit § from da.ta
L B —
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: T~ ;
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Presentations by CMS and ATLAS, December 2015:
https://indico.cern.ch/event/442432/
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https://en.wikipedia.org/wiki/750_GeV_diphoton_excess#December_2015_data

How Knowledge is Created?

Guess theory/model Perform experiment

- usually mathematical - reject / modify theory in case of

- self-consistent disagreement with data

- simple explanations, few arbitrary - If theory requires too many
parameters adjustments it becomes

- testable predictions unattractive

The advance of scientific knowledge is an
evolutionary process

Karl Popper
(1902-1994)

source: Wikipedia

Statistical methods are an important part of this process
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A look at other research fields

"Why Most Published Research Findings
Are False":

Main thesis: large number, if not the majority, of
published medical research papers contain
results that cannot be replicated.

Reproducibility crisis:
Affects the social sciences and medicine most
severely (in particular psychology

Statistical Methods in Particle Physics | Milnster 2020 | K. Reygers

Open occess, freely availadle onfine

Why Most Published Research Findings

Are False

Jobwn P. A, Ioannidis
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Useful books

m 5. Cowan, Statistical Data Analysis
m | Lista, Statistical Methods for Data Analysis in Particle Physics

m Behnke, Kroeninger, Schott, Schoerner-Sadenius: Data Analysis in High
—nergy Physics: A Practical Guide to Statistical Methods

= R. Barlow, Statistics: A Guide to the Use of Statistical Methods in the
Physical Sciences

= Bohm, Zech, Introduction to Statistics and Data Analysis for Physicist
available online]

= Blobel, Lohrmann: Statistische Methoden der Datenanalyse (in German),
free ebook]

= L. Lyons:
Statistics for Nuclear and Particle Physicists (Cambridge University Press)

= [ James, Statistical Methods in Experimental physics
= W. Metzger, Statistical Methods in Data Analysis [available online]

Statistical Methods in Particle Physics | Minster 2020 | K. Reygers 11


http://www-library.desy.de/preparch/books/vstatmp_engl.pdf
http://www.desy.de/~blobel/ebuch.html
http://www.hef.ru.nl/~wes/stat_course/statist.pdf

Further Material

= Glen Cowan: http://www.pp.rhul.ac.uk/~cowan/stat course.html

= Scott Oser: http://www.phas.ubc.ca/~oser/p509/

= [erascale Statistics School:
https://indico.desy.de/indico/event/25594/other-view?view=standard

= Particle Data Group reviews on Probability and Statistics
» https://pda.lbl.gov/2020/reviews/rpp2020-rev-probability. pdf
» https://pdg.lbl.gov/2020/reviews/rpp2020-rev-statistics.pdf

= K.R., Statistical Methods in Particle Physics, WS 2017/18:
https://uebungen.physik.uni-heidelberg.de/vorlesung/201/72/smipp

Statistical Methods in Particle Physics | Minster 2020 | K. Reygers 12


http://www.pp.rhul.ac.uk/~cowan/stat_course.html
http://www.phas.ubc.ca/~oser/p509/
https://indico.desy.de/indico/event/25594/other-view?view=standard
https://pdg.lbl.gov/2020/reviews/rpp2020-rev-probability.pdf
https://pdg.lbl.gov/2020/reviews/rpp2020-rev-statistics.pdf
https://uebungen.physik.uni-heidelberg.de/vorlesung/20172/smipp

Interpretations of Probabillity

» Classical

» Assign equal probabilities based on symmetry of the problem,
e.g., rolling dice: P(6) = 1/6

» difficult to generalize

= Frequentist
» Let A, B, ... be outcomes of an repeatable experiment:

times outcome is A

P(A) = lim

n— oo n

= Bayesian (subjective probability)

» A, B, ... are hypotheses (statements that are true or false)

P(A) = degree of believe that A is true

Statistical Methods in Particle Physics | Mlnster 2020 | K. Reygers 13



Criticisms of the Probability Interpretations

= Criticisms of the frequency interpretation

» N — oo can never be achieved in practice. When is n large enough?

» P Is not an intrinsic property of A, it depends on the how the ensemble of
possible outcomes was constructed

- Example: P(person | talk to is a physicist) depends on whether | am in a football
stadium or at a physics workshop

» We want to talk about the probability of events that are not repeatable
- Example 1: P(it will rain tomorrow), but there is only one tomorrow
- Example 2: P(Universe started with a Big Bang), but only one universe

= Criticisms of the subjective Bayesian interpretation

» “Subjective” estimates have no place in science

» How to quantify the prior state of our knowledge upon which we base our
probability estimate?

Statistical Methods in Particle Physics | Milnster 2020 | K. Reygers
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Sayes’ [heorem

Definition of conditional probability:

P(AN B)
P(B)

P(A|B) =

P(ANB)=P(BNA) —

[doubtful whether the
portrait actually shows Bayes]

N 1812

and

Venn diagram

P(BIA) =~
P(AIB) = = (B/L?Z;I; (A)

First published (posthumously) by the Reverend
Thomas Bayes (1702-1761)

First modern formulation by Pierre-Simon Laplace

Accepted by everyone if probabilities are not
Bayesian probabillities

Statistical Methods in Particle Physics | Minster 2020 | K. Reygers
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Sayesian inference: Degree of Believe in a Theory
Given a Certain Set of Data (l)

prior (subjective belief

probability of getting in the theory before
the data if theory is true seeing the data)

\ /

P(data|theory)P(theory)
P(data)

P(theory|data) =

\

posterior probabillity, i.e., \
subjective belief in the theory

after seeing the data guarantees normalization:

P(data) = Z P(datal|theory;)P(theory;)

Addresses question: "What should | believe?”

Statistical Methods in Particle Physics | Minster 2020 | K. Reygers 16



Sayesian Inference: Degree of Believe in a Theory
Given a Certain Set of Data (ll)

For a continuous parameter A:
A : true value of a parameter of nature

f( m‘ )\) Pprior( )\) m : measurement

Alm) m) = [ V)PV X

Pposterior ()\‘ m) —

Problems with Bayesian inference

What functional form to chose for P ;,,(4)?

Uninformed prior: flat? In which variable, e.g., in A, A2, 1/4, In A7

Bayesian reply
Choice of prior usually unimportant after a few experiments

Jaynes’ robot: Priors are uniguely determined by your state of knowledge.
Thus scientists with the same background knowledge construct the same

priors.

Statistical Methods in Particle Physics | Minster 2020 | K. Reygers 17



—xample of a Posterior Distribution

GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass
Black Hole with a 2.6 Solar Mass Compact Object

10.0 o , Posterior Distribution
vertical lines: —— EOBNRPHM | 5 mass of the lighter
90% credible ———- EOBNR HM b .
7.51 bounds for each o objects:
-------- EOBNR

waveform model
———  Phenom PHM

Probability Density

5.0 -=== Phenom HM
"""" Phenom
2.5
‘;.
2% e
TP o SN
uu!-l“.'l":':‘:"”
0.0 paseEs— I
2.3 2.9 2.9 3.1
LIGO Scientific Collaboration and Virgo Note:

Coliaboration: Sampling from a multi-parameter posterior distribution
The Astrophysical Journal Letters, piNg P P

896:L44 (20pp), 2020 June 20 typically involves Markov chain Monte Carlo (MCMC)
Statistical Methods in Particle Physics | Mlnster 2020 | K. Reygers 18



Are you a Frequentist or a Bayesian®

Suppose mass of a particle is measured with Gaussian resolution o and the
result ist reported as

Bayesian

2 2 : 2 2
’D(m|mtrue) X e_(m_mtrue) /(207) flat prlo;for Mtrue P(mtruelm) X e—(m_mtrue) /(207)

Frequentist

This is a statement about the interval [m—o, m+0o]. For a large number of
hypothetically repeated experiments the interval would contain the true value in
68% of the cases. In the frequentist approach, a probabilistic statement about
the true value is nonsense (the true value is what it is).

"Bayesians address the questions everyone is interested in by using
assumptions that no one believes. Frequentist use impeccable logic
to deal with an issue that is of no interest to anyone.” — Louis Lyons

Statistical Methods in Particle Physics | Minster 2020 | K. Reygers 19



Bayesian Inference: Jeffreys' Prior

How to model complete ignorance about the value of a parameter 67
» Uniform distribution in 6, exp 6, In 6, 1/6, ...7?

» Example: Lifetime T of a particle, uniform distribution in T or particle's width [ = 1/1 ?

Jeffreys' prior (hon-informative prior) for a model L(?\g) of the measurement:

m(0) o

\

iInvariant under re-parameterization

Examples:

- , [ 9InL(%|0) 1n L(X|6) \
(6) ’\(H)Zdet < 00; 00;
determinant of the Fisher information matrix /

expectation value evaluated by x
iIntegrating over all possible results

PDF parameter

Jeffreys' prior

Poissonian mean p

p(M) ~ 1/\p

Gaussian mean p

p(M) = 1

Statistical Methods in Particle Physics | Minster 2020 | K. Reygers
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Jeffreys'

Exponential distribution:

Jeffreys' prior: (1) x /I(7T) = \ E ((%_ In L(t | 7‘))

d

E |n L(t’T)
/1

El( - _ =
(7‘2 T

Prior: Example

1
==+
.
-
) |-
1
.

1

L(t|7)=—e ¥/

T

Statistical Methods in Particle Physics | Milnster 2020 | K. Reygers
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Sayesian versus Freguentism [based on L. Lyons]

Bayesian Frequentist
Meaning of probability degree of belief frequentist definition
Probability of
yes anathema
parameters
Needs prior yes no
_Unphysmal l empty excluded by prior can occur
intervals
: posterior probability parameter values,
Final statement distribution hypothesis test (p-value)

Integrate over nuisance Various methods, e.g.,

Systematics parameter profile likelihood, hard

Combination of

can be hard (prior) ok
measurements

Statistical Methods in Particle Physics | Minster 2020 | K. Reygers 22



Variance and Standard Deviation

Expected value of a random variable x that follows a distribution P(x):
E[x] = (x) = /XP(X) dx

Variance:

Vix] = El(x — )] = / dx P(x)(x — 1)’

V[x] = E |[(x — E[X])2: =E [XZ — 2x E[x] + E[X]z}
= E [x*] — 2E[x] E[x] + E[x]* = E [x*] — E[x]* = (x*) — (x)?

Standard deviation:

o = +/V][x]

Statistical Methods in Particle Physics | Minster 2020 | K. Reygers 23



Poisson Distribution

k

T
plkip) = -7e "

El =g VIK =g

Properties:
» n1, ho follow Poisson distr.
— n+1+n2 follows Poisson distr., too

» Can be approximated by a Gaussian
for large p

Counting experiment:

Examples:
» Clicks of a Geiger counter in a given
time interval

» Number of Prussian cavalrymen
Killed by horse-kicks

https://en.wikipedia.org/wiki/Poisson_distribution

0.40 1 1 1 |
0.35} H=
0.30} =4
p=10
- 0.25} .
% 0.20

*0.15
0.10}
0.05
0.00

Number of deaths Actual number Potsson
in 1 corpsin 1 year of such cases prediction
0 109 108.7
1 65 66.3
2 22 20.2
3 3 4.1
4 1 0.6

Statistical Methods in Particle Physics | Mlnster 2020 | K. Reygers 24




Sinomial Distribution

N independent experiments

» Qutcome of each is 'success' or 'failure’
» Probabillity for success is p

N _
f(kiNp) = () )P =PV E=Np VK = No(1 - p)
N _ N! binomial coefficient: number of different ways
k kKI(N — k)! (permutations) to have k successes in N tries

Use binomial distribution to model processes with two outcomes

» Example: Detection efficiency (either we detect particle or not)

For small p, the binomial distribution can be approximated by a Poisson
distribution (more exactly, in the Imit N = «, p = 0, N - p constant)
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(Gaussian Distribution

| 1 (x — )’
gixipo) = 21O P (_ 2072 )
Elx] = p
Variance:  V[x] = ¢*

10

Py g:(X)

02

00

038

https://en.wikipedia.org/wiki/Normal_distribution

1

1

1

T'T'Y' Ty

bu =0, 0=1 ("standard normal distribution, N(O,1)"):

H=0, 0%=0.2, m—
H=0, 07=10,—— 1
p=0, 0?=50,— |
H==2,0%=(5, ==
5 -3 -3 -z -1 0 T
X
_ X2
P(x) = 2
\ 2T

Cumulative distribution related to error function:

2
2 dz

O(x) = \/% /_XOO %

2 {erf( /

V2

)+
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Binomial, Poisson and Normal Distribution

Binomial
B(k; N, p)

N — oo, p — 0, Np = pifixed

Poisson P(k; 1) :

Binomial B(k; n, p) :

Normal
N(x; u, o)

k—p
» N(0,1) as pu— o0
Vi 0.1

k — np
v np(1 — p)

Statistical Methods in Particle Physics | Minster 2020 | K. Reygers
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> N(0,1) as n— o0

Poisson
P(k; 1)
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Deviation In Units of o for a Gaussian

<
o

0.3

- 34.1%| 34.1%

0.2

0.0 0.1

95.45% of area within £20 95% of area within +1.9600

1 +Z 68.27% of area within 10 90% of area within +1.6450
P(Zo) 2 dx
\/ 2
nJ-Z 99.73% of area within £30  99% of area within £2.5760
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p-value and significance

p-value:

probabillity that a random process produces a measurement thus far, or further,

from the true mean

p-value and significance (one-tailed):

One-tailed
Gaussian p-values
sximlien
2.6 standard to report

a “discovery”

p=1-9(2), Z=0"'(1-p)

notebook: p-values_and_n-sigma.ipynb

—

Deviation p-value
10 0.16

20 0.023

30 0.0013
40 3.2 x10-°
50 2.9 x 10-7

Statistical Methods in Particle Physics | Minster 2020 | K. Reygers
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DID THE SUN JUST EXPLODE?

. . (ITS NIGHT, SO WERE NOT SURE,)
Frequentist vs. Bayesian THI5 NEUTRIND DETECTOR MERSLRED

WHETHER THE SUN HAS GONE NOVA.

Statistics ( THEN, [T ROLLS TUlO DICE. IF TFEY

BOTH COME UP SiX, IT UES TO US.
OMHERWISE, IT TELLS THE TRUH.
LETS TRY.
DETECTOR! HAS THE
SN GONE NOVA? o

)
s ()

FREQUENTIST STRNSTICIAN- BAYESIAN STATISTIOAN:

THE PROGABLITY OF TS RESULT
HAPPENING BY CHANCE 1S &=0027 BET YOU $50
GNCE p<0.05, T CONCUIDE T HANT
mmmammsmoow )

https://xkcd.com/1132/ 3 \ E %
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Why 50 for Discovery in Particle Physics?
50 & p-value = 2.87 x 10-7 (one-tailed test)

History: There are many cases of 30 and 40 effects that have disappeared
with more data

The Look-Elsewhere Effect

Systematics:
» Usually more difficult to estimate than statistical uncertainties
» "Safety margin”

Subconscious Bayes factor:

» Physicists subconsciously tend to assess the Bayesian probabilities p(H+|data)
and p(Ho|data)

» If H1 involves something very unexpected (e.g., neutrinos travel faster than the
speed of light) then prior probability for null hypothesis Ho is much larger than
for Hs.

» "Extraordinary claims require extraordinary evidence"

Last point = unreasonable to have a single criterion (50) for all experiments

Louis Lyons, Statistical Issues in Searches for New Physics, arXiv:1409.1903
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https://xkcd.com/882/
JELLY BEANS WE FOUNDNO THAT SETILES THAT, W m L B ﬁm ﬁ&%&'ﬁ
CAUSE. ACNE! LINK BETWEEN T HEAR ITS ONLY ensaoroe | | ceanaore || easmoroe || ceasmbre | | o monE
SCIENTISTS! JELLY BEANS AND A CERTAN COLOR (p>005) " || (P>005) || (P>005) || (P>005) || (P>005)
INVESTIGATE! ANE (P> 0.05), THAT CAUSES IT. @ @ @ @ @
PLAYING Sa '
hwc‘cm:ﬂ sor
... FINE. ( MUINECRAET! ﬂ ﬂ ﬁ ﬂ ﬁ
M| @ e Y
% / y veroowono | [ weroonone | [ weroonono | [ weE ronone | [ WE Foonono
! LINK BETWEEN LINK BETWEEN LINK BETWEEN LINK BETWEEN LINK BETWEEN
SALMON JELLY RED Jewy TURGUOISE JELLY MAGENTA JELLY YELLOW JELY
BEANS PRD ANE BEANS AND ANE BEANS AND ANNE BEANS AND ANE BEANS AND AINE
ﬁ% (P>0.05) (P>0.05). (P> o)os). (P> o)os). (P> o)os).
/ /
= News == come |wre | [nome, [
GREY JELLY TAN JELWY CvAN JELY GREEN JELY MAUVE JELY
BEANS AND ANE BEANS AND ANE BEANS AND ANE BEANS AND AINE BEANS AND ANE
WAl
To ACNE! R —
h WE FOUND NO \EF%)SS&?J V{EFOUNDN) WE FOUND NO \Jg F%gg&%
5% Conroene Ehmhe || B || Bhak. || Shak. || Smsk
s S T vt (P>005), (P>0.05). (P> o)os). (P> o)os ). (P> o)os ).
S e o Py, P P / /
5% CHANCE
%cmgcmmcss @% @i & @ @
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Covariance and Correlation

Covariance (i, := (x), i, := (¥)):

cov[x, y] = E[(x — px)(y — py)]

Correlation coefficient (dimensionless):

cov|x, y]

Pxy —
4 Ox0y

X, y independent, i.e., f(x,y) =f.(x) -fy(y):

Ellx— ) = )] = [ = )6 dx [ (7 = ) (v) dy = 0
—  covlx,y] =0

N.B. converse not always true
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Never trust summary statistics alone;
always visualize your data

https://www.autodeskresearch.com/publications/samestats

...,..-:-:;”'-..‘. X Mean: 54.26 same summary
Hel Bl ] IFHean: AT.85 = ciatistics for all
gt e XOSD 18T e i
Bast e Y SD : 26.93 , )

e corr. - -0 08 Particular corr. =0

-o. - - = O
‘.. - e \‘ . ... N 0" .’. ,"
», e o
!.: “wel > \. ~ - o~ .;'
Sian ™ \ l:“ v.:-o . .
Cheo = - . -
g :::: i Sv; . 4 3 3’ ~l
. .
: \ -,
- L) .o?.-o %‘o\ * I. .'\.‘
c. o . \ - * - »” .‘
oy
- . .
*o . “-. - - :
" 3 R T o SR S e
2 % S’ :'“ : - Nt - - ‘ ’
& -
¥ -; ?. s
.:' . e e - " .
. 3 ? ' %
v . e °
» oo.ooo.nld“:ﬂ‘-’-. I l ’
’.g" el - sms e e .. . ,
- * . .
o 203 e - .':o: .' : v f o
o ANt o w ¢ A &‘ .
LR B 7/
r ...o 4
? p S . L
% & R = Yo,
!
M..«'( ) ..’ / % CJ - ~
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Linear Combinations of

Random Variables

Consider two random variables with known covariance cov(x, y):

(x+y) = (x) + ()
(ax) = a(x)

V[ax] = a* V[x]
VIx +y] = VIx] + V]y] + 2cov(x, y)

Calculation:

Vix+y] = E[(x +y — pix — pty)°] = E[(x — px + ¥ — 11y)°]

— E:(X_,ux)2 =+ ()/

= 1y)* +2(x = )y — )]

= E[(x — )] + E[(y — 11y)°] + 2E[(x — ) (y — )]
= V(x| + Vl]y] + 2cov(x, y)
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Reduction of the Standard Deviation for Repeated
ndependent Measurements

Consider the average of n independent observation x;:

Expectation values and variance of the measurements:
Ex;]| = u; Vx| = o?

Standard deviation of the mean:

- ]- k 2 1 2 0}

Standard deviation of the mean decreases as 1/{n
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Linear Error Propagation
Consider a measurement of values x;and their covariances:
X = (X1, X2, ..., Xp) Vii = cov|x;, xj]

Let y be a function of the xi;  y = f(X)

What is the variance of y?

Approach: Taylor expansion of y around 7 where p;i = E[xi]

\

In practice we estimate i
by measured value X;

Vly]l = o = Ely®] — ElyJ’
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Linear

Ely] is easy:

—rror Propagation Formula
Taylor expansion:  y(X) ~ y(ji) + 2; Bi ] iy (xi — pi)
Elyl =y()  as E[xi—pi]=0
B2 Ely*(X)] = y*(i) +2y(u)z [ :Lg Elxi — pil

Thus:

"\ [0y oy
2 ..

Statistical Methods in Particle Physics | Minster 2020 | K. Reygers
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Matrix Notation

Let vector J be givenby  J = ﬁy, e, Ji = (ﬂ)

Then: o, g { Ix 8)9-} y i J'VJ

ij=1

Example: y:ﬁ, jz( L/ >

2
X2 —X1/X;
1 2 1
2 X1 01 COV[X1, X2] X0
Oy =\ '~ 2 2 X1
x> x cov|[xy, x;] o5 2
0'2 X 2
1 1
(1 x o - gcovpx x| \ 1 5 X X1
= —, - : ; « o | = 501+ 505 —2—cov[xi, xo]
X2 X5 o Cov[x1, xo] — 20 X5 X2 X
oo o2 o3 cov[xi,x] 05 02 o3 010
y 71 4 72 LA Yy Y91 92 PO102
- S =5t 52 =5 =51t 572
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Linear Error Proportion:

Sanity checks:

Average of fully correlated

measurements:

Difference of fully correlated

measurements:

_ 2
y=ax — o0,
2
o
____nhn y
y =X — >
Yy = X1 + Xo —
y=X1—X2 —
o
y=X1x2 — —3
1

—Xamples
= 3’02 i.e. 0, = |alo
, 02 . Oy Ox
— =n"— l.e. = = |n|—
X y X
0)2, = 07 + 05 + 2cov[xq, xo]
0)2, = 0% + 05 — 2cov[xy, xo]
2 2
_ 0; | 03 i 2cov[x1,x2]
X1 X5 X1 X2

x1+x), 00=0p=0, p=1

y=Xx1—Xp, 01=0=0, p=1

2 2 2
v 0, =20"—20"=0
Statistical Methods in Particle Physics | Mlnster 2020 | K. Reygers 40
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_Inear Error Propagation for Uncorrelated
Measurements

Special case: the x; are uncorrelated, i.e., Vi = §;07:

These formulas are exact only for linear functions.

Approximation breaks down if function is nonlinear over a region comparable

IN size to the a..

Statistical Methods in Particle Physics | Minster 2020 | K. Reygers

41



Linear Error Propagation:
Generalization from R"—R to RP—Rm

Generalization: Consider set of m functions:

Y(X) = (y1(X), y2(X), ..., ym(X))

Then:

"L [0y O
covlyi, yi] = U = ) { a{(k (9));/} Vij
i OXjlz=p

ij=1

INn matrix notation:

U=JvJT  J;= Py’}
OX; | »_-

Statistical Methods in Particle Physics | Minster 2020 | K. Reygers 42



Multivariate Normal distribution

transposed column
(row) vector vector
I I I |
1 1

f()—()v /j' V) — (27_‘_)/\//2‘\/‘1/2 eXp _5()?_ /j)Tv—l()?_ :J)
X = (X1, ..., Xn), = (u1, ..., n)

Mean: E[x;] = i Covariance: cov[x;, xj] = V;

Forn = 2:

() v (o)

POxOy Oy (1 —p?) \—p/(ox0y) 1/0)2/

o0 = correlation coefficient
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2d Gaussian Distribution and Error Ellipse

2d Gaussian distribution:

1
f(x1, Xo; pi1, 2, 01,0, p) = X

2T 01095 \/1 — p?

1 _ X1 — M1 ? Xp — [ ° X1 — M1 Xo — [ _
_ — 2
exp( 2(1 = p?) ( ! > +< . > "\ 02

where p = cov(x1, X2)/(0102) is the correlation coefficient.

Lines of constant probability correspond to constant argument of exp
— this defines an ellipse

10 ellipse: f(x1, x2) has dropped to 1//e of its maximum value
(argument of exp is =1/2):

2 2
(Xl—m) +<X2—M2> _2p<X1—M1> (Xz—m):l_pz
01 o) 01 02
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2d Gaussian: Error Ellipse

http://www.phas.ubc.ca/~o0ser/p509/Lec_07.pdf o0
> 3 [T, fy(x>=/ f(x,y)dy
: Ellipse which contains ; 1 1
5 L 68% of the events | ~ Voro. P72

- 10 ellipse (1//e of
- maximum values)

1 I f(y) = . exp (—1
i \/%O'y 2
oL
: I:>1D
' | 16 0.6827
N i 20 0.9545
: 30 0.9973
2 = | > - 1.5150
: Ox Ox : 2.4860
P T B T B 3.4390
3 ) 1 0 1 2 3

X

Probability for an event to be within 10 ellipse: 39.34%

Statistical Methods in Particle Physics | Minster 2020 | K. Reygers

X — [x
O x

0.3934
0.8647
0.9889
0.6827
0.9545
0.9973

)

45



Maximum Likelihood Method
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—stimator

Suppose we have a measurement of n independent values
X = (X1, X2, ..., Xp)

which follow the same underlying distribution f(x; 0),
e.g., f(x; 8) = 1/6 exp(—x/0).

.I.d. random variables = independent, identically distributed

An estimator Is a function of the data which provides a numerical estimate of
the parameter B:

A(X)

B often is not only one parameter but a vector of parameters.
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Consistency

An estimator is consistent if it
converges to the true value

Iim 0 =20
n— oo
Bias

Difference btw. expectation value
of estimator and true value

E::E[Hﬁ]—g

Efficiency

An estimator Is efficient if its
variance V(0) is small

efficient & Equal-sign in
Cramér—Rao inequality holds

Properties of Estimators

large
variance

biased

: — 9

http://www.pp.rhul.ac.uk/~cowan/stat_course.htm!

Example: Estimators for the lifetime of a particle

Estimator Consistent? Unbiased? Efficient?
A _ bttt 4ty
T = - yes yes yes
F = Libtedh  yeg no no
n—1
T="t no yes no

http://www.terascale.de/e149980/index_eng.htm|
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Unblased Estimator for Mean and Variance

Consider n independent and identically distributed measurements x; drawn
from a distribution with mean p and standard deviation o:

. 1
Estimator for the mean: == x;
n 4

Eli] = — E[Z Xi| = — Z Elxi] = — estimator is unbiased
2
R o)
V(i) = V[; ZX;] — V[Z xi| = — V[X] 7 e, op = NG
Unbiased estimator for the 2. H 1 - _2)2
variance: > T n—1 26 =)

=1

Multiplying the sample variance by n/(n—-1) is known as Bessel's correction.
Note that s Is not an unbiased estimator of the standard deviation:

https://en.wikipedia.org/wiki/Unbiased_estimation_of_standard_deviation
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Likellhood Function and Maximum Likelihood

Suppose we have a measurement of n independent values

X = (X1, X2, ..., Xn)

drawn from the distribution

—

f(x;0), 0 = (01,0, ...,0n)

The joint pdf for the observed values X is given by:
L(%;0) = [ ] f(xi; 0) "likelihood function"
=1
We consider measured values as fixed and the parameters as variables.

Principle of maximum likelihood

—

The best estimate of the parameters @ is that value which maximizes the
likelihood function
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Likelihood function is not a probability density function

The integral of L(x’, 8) with respect to the parameter is not necessarily
equal to unity (L(x’, @) might not be integrable at all).

This is why L(x, @) is not a probability density function.

Example: exponential decay, one measurement at t = 1h.

1 1 -
L(T)=~-e T~ > as 71— o0, / L(7)dT not defined
T T 0

Note: With Jeffreys' prior 1/t the posterior L(1) 11(T) is normalizable.
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Maximum Likelihood Example 1: Exponential Decay

Consider exponential pdf: f(t:7) = le—t/f
-

Independent measurements drawn from this distribution: ti, t, ..., ty

n

1
Likelihood function:  L(7) = | | T e ti/T
_
=1

L(T) is maximum when In L(1) is maximum:

|nL(T):Zn:Inf(ti;T):zn:(ln%_g>

=

FInd maximum:

OlnL(t) ~ /1 )\ . 1l
or 07 .Z("+_2>_0 (S
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Maximum Likelihood Example 2: Gaussian (l)

Consider x1, X2, ..., Xn» drawn from Gaussian(u, 02)

1 (x=p)?
f(x;p,0%) = \/ﬂge_ 202

Log-likelihood function:

n

In L(M,O'2) _ Zln f(x,-;,u,02) — Z <|n \/]é? —Ino — (Xlz_o_f) >

=1

Derivatives w.r.t. y and o2:

(9|nL(,u,02):§n:x,-—,u 6’|nL(,u,02)_i((x,-—,u)2 1 >

ou o 0o? 204 202
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Maximum Likelihood Example 2: Gaussian (lI)

Setting the derivatives w.r.t. p and o2 to zero and solving the equations:

ﬂ:%len EEZ%Z(Xi—ﬁ)Q
i=1

=1

We find that the ML estimator for 02 is biased!
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Maximum Likelihood Uncertainty

Consider maximum likelihood estimate of a parameter 6. Methods to estimate
Uncertainty of 6:

1. 04 from Monte Carlo
Generate pseudo-data by sampling the assumed distribution using the ML
estimate @ as parameter

2. Use minimum variance bound
1

OAr —
9 Vs n L ()
3. AlnL = — 1/2 method:

1

InL(d £0)=InL(0) - >

For Gaussian likelihood function all methods agree.

Method 3 usually gives asymmetric uncertainties (which are messy).
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Likelihood Function and Minimum Variance Bound

Let's first consider likelihood function with only one parameter:
L(X;0) = L(x1, x2, ..., Xn; 0) = H f(x;;0)
=1
Let 4(X) be an unbiased estimator of the parameter ¢

It can be shown that the variance (of any unbiased estimator) satisfies:

V[f] >

For a biased estimator this becomes
b\ 2
1+ 55)
02 1In L
A

This bound is called Rao-Cramér-Frechet minimum variance bound (MVB)

V[h] >

Statistical Methods in Particle Physics | Minster 2020 | K. Reygers
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MVB Example: Exponential Decay

Reminder:

OlnL(t) ~/ 1 )\ ., 1 |
e 3 G B o

S

a2|nL(T)_§”: L, ti\_n 2 - c_n(_ 2
02r < T2 3) 72 3L 72 T
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Uncertainty of the ML Estimator:
Approximating the Minimum Variance Bound

In many cases it is impractical to calculate the MVB analytically. Instead,

one uses the following approximation which is good for large n:

E _82InL N_E)zlnL
020 | 020

N

0=0
The variance of the ML estimator is given by:

A 1
V[H] - 02InL
020

0=0

Example: Exponential decay

Statistical Methods in Particle Physics | Milnster 2020 | K. Reygers
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Asymptotic Normality of the Likelihood function

For any probability function f(x; @) the likelihood function L approaches a
Gaussian for large n, i.e., for a large number of events, and the variance of
the ML estimator reaches the minimum variance bound.

10 data points

In L(7)
—15.0:‘ \
15 5 \\‘ Quadratic
! RN approximation
; of In L(1)
~16.0} N
~16.5] \
\
i \
- \
I B AR N T TR SR S S \ ||||| T
1.0 1.5 2.0 2.5 3.0

quadratic approximation
of In L(1) is not very good

Data points sampled from  f(t;7) = —

Statistical Methods in Particle Physics | Minster 2020 | K. Reygers

500 data points

In L(7)
~861.0¢
861.5:- /
: iR
862.0t
-862.5} | \
-8630L . . . .. ... i .......... .
1.0 1.5 2.0 2.5 3.0
quadratic approximation
of In L(1) is excellent
1 .
e t/7T with 7=2
-

59



Uncertainty of the ML Estimator:
AlnL = — 1/2 methoo
—i grr?‘?;rl:w/l\giuming

Taylor expansion of In L around the maximum: 02 Gaussian shape]

/

InL(0) = In L(6) P(,';QLL@ (6 — ) 21! Pal;eLL:é (6 — 0)* + ...

\ J/
-~

=0

If L(B) is approximately Gaussian (In L(B) then is a approximately a parabola):

In L(6) ~ In L (9 - ‘9)2 good approximation in
n L(0) ~1n Lmax = 2/3 the large sample limit
%

One can then estimate the uncertainties from the points where In L has
dropped by 1/2 from its maximum:

A 1
In L((g T (’)\‘é) ~ In Lmax — =

Statistical Methods in Particle Physics | Minster 2020 | K. Reygers
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llustration of the A In L = — 1/2 method

[ is Gaussian <«— InL is a parabola

log[ L(u)] + K

u
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Properties of the ML Estimator

The ML estimator is consistent,
.e., it approaches the true value in the limit of infinite measurements (N = )

ML estimator efficient for large n (you get the smallest possible variance)
For finite n the ML estimator is in general biased

ML efficiency theorem:
the ML estimator will be unbiased and efficient if an unbiased efficient

estimator exists

The ML Estimator is invariant under parameter transformation:
v=g() = ¢=gh)

ML does not provide a goodness-of-fit measure.
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Averaging Measurements with Gaussian Uncertainties

pdf for measurement (same mean, different 0):

i o?) = e T n ! (i — 1)
X; W, 07 ) = e i _ _ .\
K N In L(p) ,z_; (In N In o 207 )
Weighted average = ML estimate
dln L " xi — fi i
; (1) _ Z i Lo N p=—=—2
lu ,u:,[i i—1 O-I' Zi:]_ 0-_12
Uncertainty” In this case L is Gaussian and we can write it as
. (M—g)2 ) 1
L(p) xe *&  with o5 =
( ) o Zi #

We obtain the formula for the weighted average:
R 27:1 % 1
H= =n ==
D i1 % \/2721 %
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Minimum Variance Bound for m Parameters
f(x;0), 0= (01,05, ....0.)

Fisher information matrix I( @ ) (m x m matrix):

82
00,00,

] =~ | gy n L. B)

Cramér-Rao-Frechet bound for an unbiased estimator then states that V — 17!
IS a positive-semidefinite matrix.

In particular one obtained for the variance:

VO] > (1(6)™);
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Variance of the ML Estimator for m Parameters

For any probability function f(x; 8) the likelihood function L approaches a
multi-variate Gaussian for large n

AN
e

L(6) o o H(E-0)T V0] (9-0)

The variance of the ML estimator then reaches the MVB:
V[0 — 1(6)~?
or equivalently: -
0°In L(X; 0)

Covariance matrix of the estimated parameters: n Y N
_ = - _1
> 0% 1In L(X:
V[0 =~ | — " 2(_),< )
_ 00 |55

Standard deviation of a single parameters:

(Aféj — \/(V[g])jj

Statistical Methods in Particle Physics | Minster 2020 | K. Reygers
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Scattering angle distribution, x = cos 6:

Xmax

Normalization: / f(x;a, b)dx =1

min

Example: a=0.5, b=0.5; xnin = —0.95,

Numerical minimization with MINUIT:

a=0.53+0.08
b=051+0.16 o8
cov([3, b] = 0.006 Q06
p=0.48 ;M
Uncertainties and covariance from - 05
iInverse of Hessian matrix H:
9%In L 0.0

V=—H1 (H);=
| ( )J (9(9,8(% I—0

—xample: Two-Parameter ML Fit (from Cowan's

1 + ax + bx?

fxiab) = — 173

B00K)

Xmax = 0.95, 1000 MC events

histogram only
for visual representation,
full data set used in fit

s e

’_I_L_II_

~1.00-0.75-0.50—0.25 0.00 0.25 0.50 0.75 1.00

X
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—xample: Two-Parameter ML Fit (iminuit)

import numpy as np
import matplotlib.pyplot as plt
from iminuit import Minuit

X = np.loadtxt("data.txt")

def f(x, a, b):
"""normalized fit function"""
Xxmin = -0.95
Xxmax = 0.95
return (6 * (1 + a * X + b % x * X)) /
((xmax = xmin) * (3 * a * (xmax + xmin) +
2 % (3 + b * (xmax * xmax + xmax * xmin + xmin * xmin))))

def negative_log_likelihood(a, b):
p = np.log(f(x, a, b))
return -np.sum(p)

Iminuit uses introspection
to detect the parameter
names of your function

m = Minuit(negative_log_likelihood,
a=1l, b=1, error_a=0.01, error_b=0.01, errordef=Minuit.LIKELIHOOD)

m.migrad()

Statistical Methods in Particle Physics | Mlnster 2020 | K. Reygers 67



—xample: Two-Parameter ML Fit (iminuit)

m.migrad()

FCN = 606.5 Ncalls = 10 (146 total)
EDM = 1.33e-10 (Goal: 0.0001) up = 0.5

Valid Min. Valid Param. Above EDM Reached call limit

Hesse failed Has cov. Accurate Pos. def. Forced

Name Value Hesse Error Minos Error- Minos Error+ Limit- Limit+ Fixed

0 a 053 0.08
1 b 051 0.16

https://iminuit.readthedocs.io/en/stable/

https://nbviewer.jupyter.org/github/scikit-hep/iminuit/blolb/master/tutorial/basic tutorial.ipynb
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https://nbviewer.jupyter.org/github/scikit-hep/iminuit/blob/master/tutorial/basic_tutorial.ipynb
https://iminuit.readthedocs.io/en/stable/

—xample: Two-Parameter ML Fit (iminuit)

# covariance matrix m.draw_contour('a','b');
m.matrix()

0.8 A

a b
a 0.006 0.006 k£
b 0006 0.026 0.6 -

< 05 -

0.4 -

0.3 -

e Ed o ---ﬁ--- LB — - -

0.2 B T T T Ll
0.40 0.45 0.50 0.55 0.60 0.65
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—xtended Maximum Likelihood Method (l)

Standard ML fit: information is in the shape of the distribution of the data x;.

Extended ML fit: normalization becomes a fit parameter

Sometimes the number of observed events contains information
about the parameters of interest, e.g., when we measure a rate.

Normal ML method:

/ f(x,0)dx =1
Extended ML method:

/q(X, 5) dx = V(g) — predicted number of events

Statistical Methods in Particle Physics | Minster 2020 | K. Reygers
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—xtended Maximum Likelihood Method (ll)
Normalized pdf: /f(x, 5) dx = 1

Likelihood function:

n.—v n
—)

L(9) = Y Ij! Hf(x;;g) where v = v/(6)

Log-Likelihood function:

In L(6) = —In(nt) = »(6) + 3 In[f (xi: 0)(6)]

INn(n!) does not depend on the parameters. SO we need to minimize:

~InL(8) = v(0) = 3 Inlf (xi; O)(9)

prediction for total

number of events
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Application of the Extended ML Method:
Linear Combination of Signal and Background PDF (I)

501 Listogram only Signal s = 1873 = 54 Tvyo-component fit
300 for visual (signal + linear background)
representation
[ 2501 (Unbinned fit Parameters:
5 %% - signal counts s
S 150 - background counts b
100 - linear background (slope, intercept)
o - % - Gaussian peak: Y, o
° 2.6 2.8 3.0 3.2 3.4 3.6 3.8 Normalized pdf:
m (GeV) R R .
f(x;r,0)=rf(x,0)+ (1 —r)fp(x,0)
Signals =33 £ 7
81 negative log-likelihood:
- —InL(0) =s+b—nin(s+b) — Y In[f(x;: 0)]
§ - S i=1
S - _ v(s,b) =s+ b, r:5+b
* Hﬂ{ i ] ]] LIS Unbinned ML fit works fine also in
LT e | case of low statistics
2.6 2.8 3.0 3.2 3.4 3.6 3.8
m (GeV)
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Application of the Extended ML Method:
Linear Combination of Signal and Background PDF (ll)

Discussion:

We could have just fitted the normalized pdf:

— — —

f(x;rs,0) =rf(x,0)+(1—r)f(x,0)

Good estimate of the number of signal events: nsignal = r n

However, o, n is not a good estimate of the variation of the number of
signal events (ignores fluctuations of n)

[C. Blocker, Maximum Likelihood Primer]

(Trivial) example (L. Lyons): | protons heavy nuclei
96 protons and 4 heayy nuclei | ML estimate 96 + 2 440
have been measured in a cosmic

Extended ML estimate 96 £ 10 4 + 2

ray experiment
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http://web.ipac.caltech.edu/staff/fmasci/home/astro_refs/Likelihood_primer.pdf

Maximum Likelihood Fits with Binned Data (l)

k
Common practice: data put into a histogram: 7 = (1, ..., nk), Mot = Z n;
=1

Model prediction for the expected counts in bin 7 for fixed Niot:

Vi(g):ntot/binif(X;g)dX V,'(_)):(Vl,...,Vk)

If Ntot is fixed the probability to get a certain n is given by the multinomial
distribution.

Multinomial distribution (generalization of binomial distribution):

k
— k different possible outcomes, probability for outcome i is p;, Z pi=1
| =1
— — n ot- n n —
f(7; ot B) = ————— PI' o Y B=(p1. . P)
n: - - Ny :

Statistical Methods in Particle Physics | Minster 2020 | K. Reygers
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Maximum Likelihood Fits with Binned Data (ll)

With pi = vi/niot we write the likelihood of a certain n1, ..., nk outcome as:
— ntot! 1 n ) Nk ~
() ny!- .- ong! (ntot> (ntot> vil0) = (1, i)
Log-likelihood function:
k
InL(0) = nilnu(0)+ C
=1

Limit of zero bin width — usual unbinned maximum likelihood method

Treat the n; as Poisson-distributed (niot fluctuates,
predicted average viot = V1 + Vo + ... + Vk = extended log-likelihood:

k

n; k
L(g) — H %e_”f — In L((g) — E n; In Vi — UV = —lViot T E n; In Vi
a i=1

=1 =1
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Relation to Bayesian Parameter Estimation

Bayesian posterior distribution:

— —

P(é),)_()) L()? 2) (_}) _

J L(X; 0)m(6) do

Posterior distribution contains all information about the estimated parameters.

Often the mode (most probable value) of the posterior distribution is reported
— Coincides with ML estimate for a flat prior distribution

Marginalization in case one is interested in only one parameter of the Bayesian
posterior distribution:

p(0); X) = /P(g:?)d5k¢j =
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The Method of Least Squares
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Least Squares from ML (l)

Consider n measured values y1(x1), ya(x2), >
.., Yn(xn) assumed to be independent

Gaussian random variables with known

variances:

Vyil = o;

I

Assume we have a function f with

i
7Z,L/

A
II|IIIIIIIIIIIII

Elyi] = f(xi; 0)
. ) S S A AT A T B
We want to estimate 6 O 1 2 3 4 5 6 7
X

Likelihood function:

02
—» ! 1 1 y,-—f(x,-;@)
[(6) = | | —
( ) e \/%O’,‘ =P 2 ( g >
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Least Squares from ML (ll)

Log-likelihood function:

~ 1

NE

N 2
i — f(xi; 0 . -
(y (_X )) + terms not depending on 6

o
i=1 ’

So maximizing the likelihood is equivalent to minimizing

Iy F(x ) 2 Minimizing x2is called the method
Xz(é’) — Z Y ! of least squares, goes back to
1 Ti Gauss and Legendre.

In other words, for Gaussian uncertainties the method of least
squares coincides with the maximum likelihood method.

x>
iNnimization: — =0, =1,....m
Minimization 00 J — Number of parameters

The x2 minimization is often done numerically, e.g., using the MINUIT code

https://en.wikipedia.org/wiki/MINUIT
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Generalized Least Squares for Correlated y;

Suppose the y; have a covariance matrix V' and follow a multi-variate Gaussian:

L 1 L . Ti-1/> =
gy ii, V) = a2z P —5 (V=) VT — i)

The generalized least-squares method then corresponds to minimizing:

P(0) = (7 - F(Z0)TVi - f(%:0))

\—>

We can write this also as

2 (0) = Z(y, f(xi;:0)) (V™ i(y; — £ 0))
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Variance of the Least Squares Estimators

Using
X2(§) = —2In L(#) + const.

we can use the result for the variance of the ML estimators and obtain

4 —1 .
1 ?x*(X;0)
2 90,00, |

92X2(0)

0260 |~

3 e (V7)) =
i H=6

V(0] ~ 2

Or determine 1o uncertainties from the contour where
X2(9—7) — X?nin -+ 1
For z:0 uncertainties the condition is

X2(‘9_)/) = Xtin + 2°
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Linear Least Squares

Consider n data points y; whose uncertainties and correlations are described
by a covariance matrix V. The y; are measured at points x;.

We would like to fit a linear combination of m functions ai(x) to the data:

, examples:
f(x 5) _ Z 0.2:(x) n data points y; F(X) = O + O1x + 02
| / m parameters 6, f(x) = 6y + 01 cos(x)

The linear least squares problem can be solved in closed form:

Define n x m matrix A: A;; = aj(x;)  "design matrix"

Minimize = —ANTV - A, Y=, Yn)
pest fit parameters: covariance matrix of the parameters:
G= (ATViAL ATVl U=(ATV1A)"!

VO
symmetric mX m matrix

Statistical Methods in Particle Physics | Minster 2020 | K. Reygers
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Non-linear Least Squares

Use numerical minimization program like MINUIT if the model is not linear in the
parameters.

MINUIT’s MIGRAD minimizer: Quasi-Newton Method
https://en.wikipedia.org/wiki/Quasi-Newton_method

See also: Gauss—Newton, Levenberg—Marquardt, ...

Choice of initial values of the fit parameters important to converge to the
correct solution.

Often numerical minimization program is also used in the linear case for
convenience.

"Minuit2 has good performance compared

0 o TN e .
\ to other minimisers, and it is one of the
l I I I 1 I l ul few codes out there which compute error
estimates for your parameters.”

iminuit is a Jupyter-friendly Python frontend to the MINUIT2 C++ library.

https://iminuit.readthedocs.io/en/stable/
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-xample: Straight Line Fit: y = 60 + 61 - x ()

The conditions dx2/dBo and dx2/dB+ give two linear equations with two
variables which is easy to solve.

Here we use the general solution for linear least squares fits:

L=(ATVlA)tATY ! §=Ly

ATvA= (G T ). s @'

1 )

Statistical Methods in Particle Physics | Milnster 2020 | K. Reygers
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—xample: Straight Line Fit: y = 680 + 61 - x (ll)

shorthand notation
for the sum

\
Ty -1 -1 _ - [x]  —I[x] where [z] — 4
AVEA = Wbl - Wi <—[><1 [11) here 2]

The 2 x 2 matrix is easy to invert:

This gives:
L=(ATvtA)tATv !
1 ([X] —[X]>.<1/01 1/02 .. 1/0n>

T = XX \ =[x 1] x1/0% x/0% ... xa]O?
- 1 o R e P
TR -\ 12 L+ 1]
We finally obtain:
7 XPI] = [X][xy] R 3107 el 1] 2% 1 I——Y
= 00T~ = e = | T
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-xample: Straight Line Fit: y = 80 + 61 - x (lll)

> Fit result: =35
6 i
5F 2
: » Xyl = [x][xv]
- = — 1.16207
) S 1] S
of f1 = —DyI+ b 613045
J: [1][x?] = [x][x]
X v o, Covariance matrix of (6o, 61):
1 1.7 0.5 B B
2 23 0.3 U= (A"VTA)™
3 gg gj _< 0.211186 —0.0646035>
- Tas loe —0.0646035  0.0234105
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Straight Line Fit: Comparison to MINIUT

> /F // fit data points with linear function
60 TF1 *f = new TF1("f", "poll", 0., 6.);
: TFitResultPtr r = g->Fit("f", "FoqS", "", 0., 6.);
50y = b+ xb; r—>Print("V");
4 +
3F e
- Minimizer 1s Minuit
2 Chi2 = 2.29557
- Edm = 3.23988e-23
_ l l I R l l
OO 1 2 3 4 5 6 NCalls = 32
X po = 1.16207 +/- 0.45955
_ pl = 0.613945 +/- 0.153005
D 1—_
. Covariance Matrix:
0.8+ - po pl
: 10 ¢ellipse po 0.21119  -0.064603
0.6 ) pl -0.064603 0.02341
© 20 ellipse
0.4 P Correlation Matrix:
. po pl
0.2 po 1 -0.91879
O:H.|.H|..m..m...m..|u.|u.|.H|..m... pl —-0.91879 1
0 02040608 112141618 2 22

B
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Propagation of Fit Parameter Uncertainties
A . 24 1
y = b + 01x = (%@) = (X>
06,

ST 2 0o, 1]\ (1
2 _ JTyj= (1 0 cov|fo, 1
7y U ( X) <COV[90, 81] O'% X

_ (1 X) 08 -+ XCOV[éo, él] >
COV[@o, (91] -+ XO'%

= 02x2 + 2cov[fy, b1]x + o3

Note:
correlation vanishes if you choose

y =6+ 0;(x — (x))
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L east-Squares Fits to Histograms

Consider histogram with k bins and n; counts in bin /. If n; is not too small one
can use the Gaussian approximation of the Poisson distribution and apply the
least-squares method:

Pearson's x2: Y2(6) = Z (n V.(Vé’()g))z
Neyman's x2: X2(*) _ Z (ni — Vi(g))2

Problems arise in bins with few entries (typically less than 5), in particular in
Neyman's x-.

Bins with zero entries are problematic, typically omitted from the fit
— |eads to biased fit results
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Summary: Maximum Likelihood and x2 Method

Maximum likelihood method:

L(8) = T £(x: 6) 5’;2L 0, i=1..m ~ @
i=1 /
> 3 0°In L A A
U[H] — —H 1, h’J — 86’189] 5, H = (h,'j), U = (u,-j), Ujj = COV[@,‘, QJ]

covariance matrix of the estimated parameters 6;

Least-squares method:
No correlations btw. the y;

) ) —~ (yi — p(x;;0))?
(@) = ~21n L(G) + constant = 3~ ¥ #i0))
i=1 I
With correlations btw. the y;

2(0) = (7 — @0)" Vi — i), V=_(v) v;i=covly,yl

covariance matrix of the 6;
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Discussion of Fit Methods [Wouter Verkerke, link]

Unbinned maximum likelihood fit (the best)

+ Don't need to bin data (no loss of information)
+ Works with multi-dimensional data

+ No Gaussian assumption

— No direct goodness of fit estimate

— Can be computationally expensive for large n
— Can't plot directly with data

Least-squares fit (the easiest)

+ fast, robust, easy

+ goodness of fit

+ can plot with data

+ works fine at high statistics

— data should be Gaussian

— misses information with feature size < bin size

Binned maximum likelihood fit in between
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Hypothesis Tests and Goodness-of-Fit
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Hypotheses and Tests

Hypothesis test

» Statement about the validity of a model
» Tells you which of two competing models is more consistent with the data

Simple hypothesis: a hypothesis with no free parameters

» Examples: the detected particle is a pion; data follow Poissonian with mean 5

Composite hypothesis: contains unspecified parameter(s)

» Example: data follow Poissonian with mean > 5

Null hypothesis Ho and alternative hypothesis H-

» Ho often the background-only hypothesis
(e.g. the Standard Model in searches for new physics)

» Hi often signal or signal + background hypothesis

Question: Can null hypothesis be rejected by the data”
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Tests statistic

Test statistic #(X):

a (usually scalar) variable which is a function of the data alone that
IS used to test hypotheses

X = (x,...,X,): measured features/data

Examples:

[ = X2min Of a least-squares fit
L(q|e)

L(q| )

ALICE TRD: likelihood ratio for electrons and pions: f =

dE/dx — (dE/dx)

o
Qutput of a boosted decision tree or neural network

ALICE TPC dE/dx: t =
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Critical region

accept Ho <:

fn f(t|Ho)

critical region
(reject Ho)

F(t|H1)

i~

f o /
o ™ test statistic

-

The probability for Ho to be o0 B o
rejected while Ho is true: /t f(t|Ho) dt = a

"size" or "significance
o level" of the test

Probability to reject H+ / feut 1-B:

. f(t|Hy)dt = .. ..
even though it is true: e (£]H) & power of the test
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Type | and Type Il Errors

Type | error:
Null hypothesis is rejected while it is actually true

Type |l error:
Test fails to reject null hypothesis while it is actually false

Type | and type Il errors and their probabillities:

Hy is true Hy is false (i.e., Hy is true)

Hy is rejected Type | error («) Correct decision (1 — )

Hy is not rejected Correct decision (1 — «) Type Il error (5)
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Neyman—-Pearson Lemma

Neyman-Pearson lemma holds for simple hypotheses and states:

To get the highest power (i.e. smallest possible value of 3) of a test of Hp with
respect to the alternative H1 for a given significance level, the critical region W
should lbe chosen such that:

f(X|H)

t(X) = (3| o) > ¢ inside W and t(X) < c outside W

C Is a constant chosen to give a test of the desired significance level.

Equivalent formulation: optimal scalar test statistic is the likelihood ratio

f(X|H1)
f (X|Ho)

t(X) =
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Practical Considerations

Problem: often one does not have explicit formulas for f(x|Ho) and f(x|H+1)

One rather has Monte Carlo models for signal and background processes
which allow one to generate instances of the data

In this case one can use multi-variate classifiers to separate different types of
events

» Fisher discriminants

» Neural networks

» Support vector machines

» decision trees
> ...
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Least Squares Method: Goodness-of-Fit (l)

The minimum value of is a measure of the level of agreement between the
model and the data;

2
n

X2' :Z Yi—f(Xi?HS)

o
i=1 ’

Large X°min: the model can can be rejected.

If the model is correct, then X2min for repeated experiments follows a )(2
distribution:

1

27T (%)

f(t; nae) = (/2 te T2, £ = Xmin

with  ngsf = n — m = number of data points — number of fit parameters

S

Nnat = "Nnumber of degrees of freedom”
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L east Squares Method: Goodness-of-Fit (1)

Expectation value of the x2 distribution is Ngr
- X2 = Ngf iINdicates a good fit

Consistency of a model with the data is quantified with the p-value:

@)

p-value = / f(t; nge)dt
Xiin

The p-value is the probability to get a x2min as high as the olbserved one, or
higher, if the model is correct.

The p-value is not the probabillity that the model is correct.
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p-value for the Straight Line Fit Example

> /F
X2min = 229557, Ngf = 3: N
5[
p-value = 0.51337 )
2
—~ 0.25 1
(P i s
— - . observed X2min
—c0.2- '
= B
0.15H expected distribution

if model is correct

llfj

o 1 2 3 4 5 6 7 8 9 10

i
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Constant Model (y = 80) Rejected by Small p-value

>

Z' \2min = 2.29557, Nt = 3:
5¢ p-value = 0.51337
4
3k from scipy import stats
of ovalue = 1 - stats.chi2.cdf(chi2, n_dof)
' | | | | root [1] TMath::Prob(chi2, n_dof)
o 2 3 4 5 6
X
i X2min = 18.3964, Ngr = 4:
6_
sF p-value = 0.001032
A . + 8o =2.86 + 0.18
ab + 0="~2. + 0.
25 f Statistical uncertainty of the fit
1= parameter does not tell us
S E— I R e — whether model is correct!
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p-value for different X2min and Nas

http://pdg.lbl.gov/2017/reviews/rpp2016-rev-statistics.pdf
T 11

1.000
0.500

0.200
34 6 8 25\ 40

15
0.100
10 20\30 \ 50

0.050
0.020
0.010
0.005
0.002 N
0.001 | | | L1 | Il

R

20 30 4050 70 100

p-value for test
o for confidence intervals

X
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Confidence Intervalls for X2min / Nafas a fct. of Ny

http://pdg.lbl.gov/2017/reviews/rpp2016-rev-statistics.pdf

2.5_IIII‘IIIIIII‘IIII‘IIII‘IIII‘IIII‘IIII‘IIII‘IIII_
2.0 —
- 1% — -
1.5 — —
N 10%— % — =
X°/n ~
- 329 _
1.0 r 500 mem e e _
68 % -

90%——95%
B 00%— —
OO _I IIII‘IIII‘IIII‘IIII‘IIII‘IIII‘IIII‘IIII‘IIII_
0 10 20 30 40 50

Degrees of freedom n
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Goodness-of-Fit for Unbinned ML Fits (l)

In case of an unbinned ML fit one can put data and model prediction into a
histogram and perform a x2 test.

Consider the ratio / L: likelihood

L(n|v) N7
A =D 0—=(0q,...,0m
L(ﬁ‘ﬁ) v V( ) ( 1 )
For the multinomial ("M", niwot fixed) and Poisson distributed data ("P") one
obtains k: number of bins of the histogram
/ N~

k 1) n; k 1. n;
=TT (—) e I (_)
nj nj

We then consider

v2 = —=2In\
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Goodness-of-Fit for Unbinned ML Fits (lI)
For multinomially distributed data in the large sample limit
X%/I = —2Iln Ay = QZn, In 7

follows a x2 distribution for kK — m — 1 degrees of freedom if the model is
correct.

INn case of Poisson distributed data

follows a x2 distribution for kK — m degrees of freedom in the large sample limit
If the model Iis correct.
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Wilks' theorem

Let null hypothesis Ho be a special case of the hypothesis H;
("nested hypotheses")

Example:
H,: f(m) =ay+ am
H, : f(m) = ay+ aym + a,m* + aym>

Define: A7? :=—=2In

Wilks’ theorem:

If Ho is correct then — Ag? follows y? distribution with ny . = #added parameters
In the large sample limit.

In the above example: n,; = 2

Samuel S. Wilks, The Large-Sample Distribution of the Likelihood Ratio for Testing Composite Hypotheses
Ann. Math. Statist., Volume 9, Number 1 (1938), 60-62.
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https://projecteuclid.org/euclid.aoms/1177732360

Significance of a peak

2.6 2.8 3.0 3.2 3.4 3.6 3.8

m (GeV)

250 ~
| nrHI'Im [L, ‘m
200 AR Lﬂuﬂuﬂuﬂu s

2.6 2.8 3.0 3.2 3.4 3.6 3.8

m (GeV)

H,: f(m) =ay+ aym+ a,N(m; u, o)

u=3.1, 6 =0.03 fixed in H;
— one additional parameter

AF? = —2In (i%;) — 225

— )?2 should follow a )(2 distribution
with ngr = 1 if Ho ist true

p-value = 2.15-105

— Hp can be safely rejected

Statistical Methods in Particle Physics | Milnster 2020 | K. Reygers

108



Kolmogorov—sSmirnov Test (I)

—

KS test is an unbinned goodness-of-fit test % 0.8
Q: Do data points come from a given £ 06
distribution? 2
T 04
Compare cumulative distribution function £ -
O .
F(x) = / f(x")dx’ 0
with the so-called Empirical Distribution 1
Function (EDF) £ 08
number of observations with x; < x -CSU
S5(x) = _ & 06
total number of observations 0
T 04
The test statistic is the maximum 2
difference between the two functions: S 02
D = sup|F(x) — S(x)| )

One can also test whether two one-dimensional sets of points are compatible with coming from
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Kolmogorov—Smirnov Test (ll)

Expected distribution of D known for given N = p-value

0.1 |

p-value

1E-3 |

1E-4

1 http //Www- Ilbrary desy. de/preparch/books/vstatmp engl pdf

Bohm, Zech,

0.01 |

— V/ND,

N = number of data points

Example:

Test whether data x; come
from standard normal
distribution N(O,1):

from scipy import stats
D, p_value =
stats.kstest(x, stats.norm.cdf)

Kolmogorov—-Smirnov test: only for 1d data
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Bayesian Hypothesis Testing

In Bayesian language, all problems are hypothesis tests!
» Posterior probability for a hypothesis P(H|data) or a parameter P(6|data)
P(DIH) - P(H)
P(D)

= Parameter estimation amounts to assigning a probability to the proposition
that the parameter lies in the interval [61, 62]

P(HID) =

» can reject hypothesis/parameter if posterior prob. is sufficiently small
= Example: LIGO PRL on detection of gravitational waves

In the source frame, the initial black hole masses are 36} M, and 297} M ,, and the final black hole mass is

6217 M, with 3.0702 M c? radiated in gravitational waves. All uncertainties define 90% credible intervals.

These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct
detection of gravitational waves and the first observation of a binary black hole merger.

DOI: 10.1103/PhysRevLett.116.061102

= Requires one to explicitly specify alternative hypotheses:

Often simply normalization
from [P(H|D) = 1
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Systematic Uncertainties
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Statistical and Systematic Uncertainties

quoting stat. and syst. uncertainty

x = 2.34 +£0.05 (stat.) + 0.03 (SySt.) separately gives us an idea whether
taking more data would be helpful

Statistical or random uncertainties
» Uncertainties that can be reliably estimated by repeating measurements

» They follow a known distribution like a Poisson rate or are determined empirically from
the distribution of an unbiased, sufficiently large sample.

» Relative uncertainty reduces as 1/\/N where N is the sample size

Systematic uncertainties
» Cannot be calculated solely from sampling fluctuations
» In most cases don't reduce as 1/{/N (but often also become smaller with larger N)
» Difficult to determine, in general less well known than the statistical uncertainty

» Systematic uncertainties # mistakes
(a bug in your computer code is not a systematic uncertainty)
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Systematic Uncertainties: Examples

Calibration uncertainties of the measurement apparatus

» E.g., energy scale uncertainty of a calorimeter
Uncertainty of the detector resolution

Detector acceptance
Limited knowledge about background processes
Uncertainties of auxiliary quantities

» E.g. reference branching ratios uses as input
» Uncertainty of theoretical quantities

The uncertainty in the estimation of such a systematic effect is called a
systematic uncertainty.
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Systematic Uncertainties = Mistakes, 1. Barlow

“Systematic Errors, Fact and

but mistakes still happen Fiction,” hep-ex/0207026

Look for mistakes be repeating the analysis with changes which should make
no difference:

Data subsets

Magnet up/down

Different selection cuts

Different histogram bin sizes and fit ranges
Different Event Generator for efficiency calculation

| 00K for impossibilities

If a check passes the test:
move on and do not add the discrepancy to the systematic uncertainty

If a check fails: try to identify the reason. Only as very last resort, add
contribution to total systematic uncertainty. This might underestimate the real

uncertainty.
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Handling discrete systematic uncertainties

Typical case: choice of model

With 1 preferred model and one other, quote R, = |R; — R, |

Ri+ Ry | IR — R

2

1 n —
n equal models, quote R + Z (R; — —R)* = (R? — R?)
n—1 = n—1

With 2 models of equal status, quote

Ri+R,  |R —R]
Two extreme model, quote =+
v 12
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— - 3 - Klein JR, Roodman, A. 2005,
—Xperimenter’s Bias? Annu. Rev. Nucl. Part. Sci. 55:141-63
IIOOIIIIIIIIIllllllllllllllllllllllllllllllllllll
i | | | | 1 Do researchers
i 1 unconsciously work
1050 ] toward a certain value?
N - )
g i -
'::‘, IOOO_ —_
9“:’ i -
5 950[ -
— - _
~—
5 ¢ 1 H] '
) X i
Z. 900 i _
: IEIEE::: :
850-1llllllllllllllllllIlllllllllIlllllllllllllllllll—

1960 1970 1980 1990 2000 2010
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Slind An alyses Klein JR, Roodman, A. 2005,

Annu. Rev. Nucl. Part. Sci. 55:141-63

Avoid experimenter’s bias by hiding certain aspects of the data.

Things that can be hidden in the analysis:

= [he signal events, when the signal occurs in a well-defined region of the
experiment’s phase space.

= [he result, when the numerical answer can be separated from all other
aspects of the analysis.

= [he number of events Iin the data set, when the answer relies directly upon
their count.

= A fraction of the entire data set.

Example: GERDA experiment

] wio PSD Qx5 [ ]
. W wPSD blinded winhdow
» search for neutrinoless double

beta decay

counts/keV

lllllllllllllll

» Signal: sharp peak

» Background model fixed prior to

C . . : . energy (kev)
unblinding of signal region — no evidence for a signal
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Combination of Systematic Uncertainties

In Most cases one tries to find independent sources of systematic
uncertainties. These independent uncertainties are therefore added in

quadrature:
2 2 D 2
Ot — 01 T 05+ ... + 0},

Often a few source dominate the systematic uncertainty
— No need to work to hard on correctly estimating the small uncertainties
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Systematic Uncertainties:
Covariance Matrix Approach (l)

Consider two measurement x1 and x2 with with individual random uncertainties
o1 r and o2, and a common systematic uncertainty Os:

(Ax; ) =0, (Axs) =0,

Xi :Xrue+AXir+AXs
t | (Bxi,)?) =02, ((Ax)?) = o2

Variance: Vixi] = (x%) — (x;)?
<(Xtrue + AX/ r =+ AXS)2> <Xtrue + AXi,r =+ AXS>2
(Ax;, + Axs)?)

= 0,-2, T a§
Covariance: COV[X1, X2] — <X1X2> — <X1><X2>
— 0'2

S
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Systematic Uncertainties:
Covariance Matrix Approach (ll)

Covariance matrix for x1 and xo:

2 2 2
\/ = (O-l,r _|2_ Os 5 O¢ 2)
o 0%, + O

S
This also works when the uncertainties are quoted as relative uncertainties:

O'% ;T €2X12 €2 X1 X0
O — &X D V — ) 2 2 9
E°X1X2 05, TE°X]
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—xample:
Transverse Momentum Spectrum of the Higgs-Boson

CMS 19.4 fb™' (8 TeV) Correlation matrix of the pr bins:
;‘ 11 | L LI LI | LI | 11 | LI | LI | 11 | LI I_
() —+— Data | 1
% - Statistical uncertainty - —_— CMS 19.4 1o (8 TeV) -
;;;_ Systematic uncertainty : %_) u?;: 0.4 _g
-8' 0.8 % B Model dependence — (-2- E:_ 0.8 %
;f—f Z 2 %/ 9gH (POWHEGV2+JHUGen) + XH | N g: 0.6 Ct)
© % \ S\ ggH (HRes) + XH i g 02 O
0.6l _mln ] XH = VBF + VH - =
1 g.‘j 0.3 0.2
] gL 0
| =L
: %E -0.2 0.2
_ ) -0.4
<
_ n
] e -0.6
m— g 02 03 02 -0 -0.8
I : I 7‘ : = | | | | | | | | | | | | | | | | | | |
>(-If; 3 ;— % _; [0,15] [15,45] [45,85] [85,125] [125,165] [165,~] -1
< of % E P! [GeV]
T “F .
2 1k %1 \N---% §%§_
sob—o .l \: = L V' = covariance matrix
o 0 20 40 60 80 100 120 140 160 180 200 Pij = O','O'" o
pH [GeV] J

arXiv:1606.01522v1
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Weighted Average of Correlated Data Points

Consider n data points yi with covariance matrix V: ¥ = (y1, Y2, -1 ¥n)
One can calculate a weighted average A by minimizing
YA =F-N"VI{y-

\)
SN =0 00
One obtains (here without calculation):

N —1
A=) wy w 2= (V)i
= iYi i = —
1 ZZ,/:l(V 1)k,/
Variance results from error propagation: » BLUE combination may be

biased if uncertainties not known
or are estimated from measured

values
1,j=1 . .
» Improvement: iterative approach
Minimizing the X2 gives the best linear unbiased (rescaling uncertainties based on
estimate (BLUE) — linear unbiased estimator previous iteration)

with the lowest variance
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Special Case:
Weighted Average of Two Correlated Measurements

Consider two measurements with covariance matrix V' (o = correlation coeft.):

neoy  v=( 1 o
PO102 O'%

Applying the formulas from the previous slide:

1 5 L
V= 1— p2 (i Uif) A=wyr + (1 —w)y
0102 0'2
W o— 0% — P0102 V[S\] _ 0_2 _ (1 _ /02)0-%0-%
0% + 05 — 2p0107 0% + 05 — 2p0107
equivalently:
1 1 1 1 20

- |
il | _
02 1—p? |07 05 0102
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Another Approach To Least Squares Fits in Case
of Correlated Systematic Uncertainties

Correlated systematic uncertainties can be taken into account with
generalized xz:
X(0) = = F(F0)) VY —£(%0), V= Vear +Veye
diagonal

Another approach (sometime called 'pull method"):

X2 _ i (yl + E0f,sys — f(Xi; 9))2 i 82
i—=1 Gl'z,stat \

penalty term
("e = systematic deviation in
units of the standard deviation®)

The pull method puts nuisance parameters on the same footing as other
parameters. The penalty term is none other than a frequentist version of the
Bayesian prior on the nuisance parameter.
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Sayesian approach to systematic uncertainties

"Bayesians lose no sleep over systematics” (lecture S. Oser)

Quantity of interest: @, prior knowledge: 7(6)
Likelihood depends parameter v ("nuisance parameter”)

We simply treat @ and v as unknown parameters:

P(60, v|data) oc L(datald, v)m(0, v)
As we are only interested in @, we marginalize by integrating over v:
P(0) = /P(@,u) dv

Prior knowledge on v often is the result of a calibration measurement.
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—xample of a Frequentist approach:
Profile method

Uncertainty in the probability function for the data described by
nuisance parameter v

L(8,v) = [ p(xil6. v)
If available, can include information on v from additional measurements y;:

L(0,v) = HP(Xi,ij'V)

Eliminate the nuisance parameter by using the profile likelihood:

Lo(6) = L(0,(6))
5(9) . value of v which maximizes L(0, v) for a given 6
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Profile likelihood ratio as test statistics

Let g be a test statistic and h(qg | 6, V) its distribution. The p-value
depends on the nuisance parameter v:

©.)

po() = / h(ql6. v) dg

dobs

Independence of the nuisance parameter is achieved approximately by
using the profile likelihood ratio as test statistic:

(9,7(0))
L(6,7)

)‘p(e) — -

This is motivated by the fact that —21n 4,(6) approaches the y*

distribution (with nqot = NUMber of parameters of interest) for a large
data sample (— Wilks' theorem).
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Decision trees
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Multivariate Ana ySiS: G. Cowan, Lecture on Statistical data analysis
An Early Example from Particle Physics

0.2 0.2 0.2 r

Signal: ete- = W+W-

0.15 F 0.8
o1 | o | often 4 well separated hadron jets
0,05 | 0.06 |
i o Background: e+e— = gqggg
: °'f°g(yn)' 4 less well separated hadron jets
02 | 02 | < input variables based on jet
structure, event shape, ...
i w8 none by itself gives much
o Lo T g S separation.
0.5 | g 0.5 1 0 0.5 1
log(Mg:) Sphericity Planarity
Neural network output:
G.Z G.2 : 0.2 g :
0.15 | 045 | 0.15 |- a1 |
. = » 06
et f 0.t | o | as E
0.08 F 0.08 | 005 ( 04 |-
0 0.5 1 Q Q.5 1 (¢} 0.5 1 0.2 |
Log{Aplonority) Thrust Min(E.) 0. [ p—
(Garrido, Juste and Martinez, ALEPH 96-144) "o 01 02 03 04 05 0s 07 08 09 |

Neuron Quiput
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Multi-Variate Classification

Consider events which can be either signal or background events.

Each event is characterized by n observables:

X = (X1, ..., Xn) "feature vector"
Goal: classify events as signal or background in an optimal way.

This is usually done by mapping the feature vector to a single variable, i.e.,
to scalar test statistic:

R" - R: y(X)

A cut y > ¢ to classity events as signal corresponds to selecting a
potentially complicated hyper-surface in feature space. In general superior
to classical "rectangular® cuts on the xi.
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Classification and Regression

The codomain Y of the function y: X = Y can be a set of labels or classes
or a continuous domain, e.g., R

Binary classification: Y =4{0,1} e.g., signal or background

Multi-class classification Y ={c, ¢, ..., ¢}

Y = finite set of labels — classification

Y =real numbers — regression

"All the impressive achievements of deep learning amount to just curve fitting"

J. Pearl, Turing Award Winner 2011,
https://www.quantamagazine.org/to-build-truly-intelligent-machines-teach-them-cause-and-effect-20180515/
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Classification: Different Approaches

rectangular cuts non linear

k-Nearest-Neighbor,
Boosted Decision Trees,
Random forests
Multi-Layer Perceptrons,
Support Vector Machines
Deep Neural Networks,

G. Cowan':
https://www.pp.rhul.ac.uk/~cowan/stat_course.html
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Different Approaches to Classification

Neyman-Pearson lemma states that likelihood ratio provides an optimal test
statistic for classification: b(%|S)

YX) = L3 B)

Problem: the underlying pdf's are almost never known explicitly.

Two basic approaches:

1. Estimate signal and background pdf's and construct test statistic based on
Neyman-Pearson lemma, e.g. Naive Bayes classifier (= Likelihood classifier)

2. Decision boundaries determined directly without approximating the pdf's
(linear discriminants, decision trees, neural networks, ...)
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Decision Trees arXiv:physics/0508045v1

root node __

MiniBooNE Detector

> 100 branch node
_— (node with further

< 100

PMT Hits?

B branching)
4/37
<0.2 GeV =0.2 GeV
S
39/1 ﬁ
<500 cm = 500 cm MiniBooNE: 1520

Radius?

S B photomultiplier signals,
7/1 7/9 goal: separation of ve
from v, events

/

leaf node (no further branching)

Space of feature vectors split up into rectangular volumes,

attributed to either signal or background
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Boosted Decision Trees and Random Forests

Drawback of decisions trees:
very sensitive to statistical fluctuations in training sample — boosting

Boosting is a general method of combining a set of classifiers (not necessarily
decisions trees) into a new, more stable classifier with smaller error.

Boosted decision trees:
Continuously increase the weight of incorrectly identified events and build new
trees; take weighted average

Random forests:
Build many independent trees from random subsets of the training sample;
makes the decision more robust to missing data

Both show excellent performance and are easy to train
(not much tuning needed)
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Boosted Decision Trees: |dea Weight is increased if

event was misclassified

classifier by the previous classifier
A — oo )

| re-weignt — "Next classifier should
PR classifier pay more attention to
I . £ ]
: - Ct(x) misclassified events
1 re-weight
_ classifier
Weighted Sample — C)(x)
: N .
1 re-welght Classifier (|)
_ classifier > y(Xx) = Z WiC (X)
Weighted Sample —_— CO)(x) l
1 re-weight
i
_ classifier Popular example:
Weighted Sample

Cm(x) ) AdaBoost
(Freund, Schapire, 1997)

H. Voss, Lecture: Graduierten-Kolleg, http://tmva.sourceforge.net/talks.shtml
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Practical Advice — Which Algorithm to Choose??

M. Kagan, https://indico.cern.ch/event/619370/

From Kaggle competitions:

Structured data: "High level” features that have meaning

» feature engineering + decision trees
» Random forests

require little or no preprocessing of the data
» XGBoost :| : Prep 7

Unstructured data: "Low level” features, no individual meaning

» deep neural networks (DNN)
» €.g. Image classification: convolutional NN

DNN have some impressive applications, but are they really the future?

Geoffrey Hinton (DNN pioneer), 2017: "My view is throw it all away and start again”
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