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Bayes vs. frequentist approach
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Material

3

https://www.physi.uni-heidelberg.de/~reygers/lectures/2020/smipp-grk-2149/

Side note: 
Python provides a great ecosystem of 
tools and is "user-friendly", but also 
slow. 

Is Julia the future? 
"runs like C, but reads like Python"  
(Nature 572, 141-142 (2019)

Examples and 
problems in Python

https://www.physi.uni-heidelberg.de/~reygers/lectures/2020/smipp-grk-2149/
http://julialang.org/
https://www.nature.com/articles/d41586-019-02310-3
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Hands-on Exercises
Problems


1. Construct a Bayesian credible interval (html, notebook) ⧖

2. Unbinned maximum likelihood fit (double exponential decay) (html, notebook) ⧖⧖

3. The lighthouse problem: another unbinned maximum likelihood fit (html, notebook) ⧖⧖

4. Unbinned maximum likelihood fit with Gaussian constraint on a parameter (html, 

notebook) ⧖

5. Linear least squares and error propgation (html, notebook) ⧖⧖

6. Simultaneous least-squares fit to several data sets (blast-wave fit to particle spectra) 

(html, notebook) ⧖⧖⧖

7. Kolmogorov-Smirnov test (html, notebook) ⧖

8. Significance of a peak above background (html, notebook) ⧖⧖⧖

9. Least-squares fit with external Gaussian constraint (html, notebook) ⧖

10.Separation of gamma and hadron showers measured with the MAGIC Cherenkov 

telescope using a boosted decision tree and a random forest (html, notebook) ⧖⧖  
 
⧖ = quick, ⧖⧖ = intermediate, ⧖⧖⧖ = takes a bit longer

4

Will spend a good fraction of the 
time on these hands-on exercises.

https://www.physi.uni-heidelberg.de/~reygers/lectures/2020/smipp-grk-2149/notebooks/problems/credible_interval.html
https://www.physi.uni-heidelberg.de/~reygers/lectures/2020/smipp-grk-2149/notebooks/problems/credible_interval.ipynb
https://www.physi.uni-heidelberg.de/~reygers/lectures/2020/smipp-grk-2149/notebooks/problems/ml_fit.html
https://www.physi.uni-heidelberg.de/~reygers/lectures/2020/smipp-grk-2149/notebooks/problems/ml_fit.ipynb
https://www.physi.uni-heidelberg.de/~reygers/lectures/2020/smipp-grk-2149/notebooks/problems/lighthouse.html
https://www.physi.uni-heidelberg.de/~reygers/lectures/2020/smipp-grk-2149/notebooks/problems/lighthouse.ipynb
https://www.physi.uni-heidelberg.de/~reygers/lectures/2020/smipp-grk-2149/notebooks/problems/ml_fit_with_gaussian_constraint.html
https://www.physi.uni-heidelberg.de/~reygers/lectures/2020/smipp-grk-2149/notebooks/problems/ml_fit_with_gaussian_constraint.ipynb
https://www.physi.uni-heidelberg.de/~reygers/lectures/2020/smipp-grk-2149/notebooks/problems/linear_least_squares.html
https://www.physi.uni-heidelberg.de/~reygers/lectures/2020/smipp-grk-2149/notebooks/problems/linear_least_squares.ipynb
https://www.physi.uni-heidelberg.de/~reygers/lectures/2020/smipp-grk-2149/notebooks/problems/blastwave_fit.html
https://www.physi.uni-heidelberg.de/~reygers/lectures/2020/smipp-grk-2149/notebooks/problems/blastwave_fit.ipynb
https://www.physi.uni-heidelberg.de/~reygers/lectures/2020/smipp-grk-2149/notebooks/problems/ks_test.html
https://www.physi.uni-heidelberg.de/~reygers/lectures/2020/smipp-grk-2149/notebooks/problems/ks_test.ipynb
https://www.physi.uni-heidelberg.de/~reygers/lectures/2020/smipp-grk-2149/notebooks/problems/significance.html
https://www.physi.uni-heidelberg.de/~reygers/lectures/2020/smipp-grk-2149/notebooks/problems/significance.ipynb
https://www.physi.uni-heidelberg.de/~reygers/lectures/2020/smipp-grk-2149/notebooks/problems/chi2_fit_with_constraint.html
https://www.physi.uni-heidelberg.de/~reygers/lectures/2020/smipp-grk-2149/notebooks/problems/chi2_fit_with_constraint.ipynb
https://www.physi.uni-heidelberg.de/~reygers/lectures/2020/smipp-grk-2149/notebooks/problems/magic_xgboost_and_random_forest.html
https://www.physi.uni-heidelberg.de/~reygers/lectures/2020/smipp-grk-2149/notebooks/problems/magic_xgboost_and_random_forest.ipynb
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Hands-on exercises: Example

5

Typically you just need to add one or two lines where "your code here" appears
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Working environment (here: macOS)

6

$ brew install python
$ python --version
Python 3.8.5

$ pip3 install --upgrade pip

$ pip3 install --upgrade jupyter matplotlib numpy 
pandas scipy scikit-learn xgboost iminuit

Assumption: homebrew is installed

install python3 (see https://docs.python-guide.org/starting/install3/osx/)

Make sure pip3 is up-to-date (alternative: conda)

Install needed modules:

run jupyter:
$ jupyter lab $ jupyter notebookor
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Introduction and basic concepts
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Why bother with statistical methods?

8

Presentations by CMS and ATLAS, December 2015: 
https://indico.cern.ch/event/442432/

"750 GeV diphoton excess"
Statistics:  
Draw reliable conclusions  
from data 

In case of doubt:  
just get more data … 

Yes, but not always easy …

A heavy Higgs boson? 

Peak disappeared with more 
data … [link]

https://en.wikipedia.org/wiki/750_GeV_diphoton_excess#December_2015_data
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How Knowledge is Created?

9

Guess theory/model
- usually mathematical 
- self-consistent 
- simple explanations, few arbitrary  

parameters 
- testable predictions

Perform experiment
- reject / modify theory in case of 

disagreement with data 
- if theory requires too many 

adjustments it becomes 
unattractive  

The advance of scientific knowledge is an 
evolutionary process

Karl Popper  
(1902–1994)

source:	Wikipedia

Statistical methods are an important part of this process 
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A look at other research fields

"Why Most Published Research Findings 
Are False":  
Main thesis: large number, if not the majority, of 
published medical research papers contain 
results that cannot be replicated. 

Reproducibility crisis:  
Affects the social sciences and medicine most 
severely (in particular psychology) 

10

John Ioannidis  
(Stanford School of Medicine) 
PLoS Med 2(8): e124., (2005), 
doi:10.1371/journal.pmed.0020124
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Useful books
■ G. Cowan, Statistical Data Analysis 
■ L. Lista, Statistical Methods for Data Analysis in Particle Physics 
■ Behnke, Kroeninger, Schott, Schoerner-Sadenius: Data Analysis in High 

Energy Physics: A Practical Guide to Statistical Methods 
■ R. Barlow, Statistics: A Guide to the Use of Statistical Methods in the 

Physical Sciences 
■ Bohm, Zech, Introduction to Statistics and Data Analysis for Physicist 

[available online] 
■ Blobel, Lohrmann: Statistische Methoden der Datenanalyse (in German),  

[free ebook] 
■ L. Lyons: 

Statistics for Nuclear and Particle Physicists (Cambridge University Press) 
■ F. James, Statistical Methods in Experimental physics 
■ W. Metzger, Statistical Methods in Data Analysis [available online]

11

http://www-library.desy.de/preparch/books/vstatmp_engl.pdf
http://www.desy.de/~blobel/ebuch.html
http://www.hef.ru.nl/~wes/stat_course/statist.pdf
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Further Material

■ Glen Cowan: http://www.pp.rhul.ac.uk/~cowan/stat_course.html 

■ Scott Oser: http://www.phas.ubc.ca/~oser/p509/ 

■ Terascale Statistics School:  
https://indico.desy.de/indico/event/25594/other-view?view=standard 

■ Particle Data Group reviews on Probability and Statistics 
‣ https://pdg.lbl.gov/2020/reviews/rpp2020-rev-probability.pdf 
‣ https://pdg.lbl.gov/2020/reviews/rpp2020-rev-statistics.pdf  

■ K.R., Statistical Methods in Particle Physics, WS 2017/18: 
https://uebungen.physik.uni-heidelberg.de/vorlesung/20172/smipp 
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http://www.pp.rhul.ac.uk/~cowan/stat_course.html
http://www.phas.ubc.ca/~oser/p509/
https://indico.desy.de/indico/event/25594/other-view?view=standard
https://pdg.lbl.gov/2020/reviews/rpp2020-rev-probability.pdf
https://pdg.lbl.gov/2020/reviews/rpp2020-rev-statistics.pdf
https://uebungen.physik.uni-heidelberg.de/vorlesung/20172/smipp
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Interpretations of Probability

13

■ Classical 
‣ Assign equal probabilities based on symmetry of the problem,  

e.g., rolling dice: P(6) = 1/6 
‣ difficult to generalize 

■ Frequentist 
‣ Let A, B, … be outcomes of an repeatable experiment:

P(A) = lim
n!1

times outcome is A

n

■ Bayesian (subjective probability) 
‣ A, B, … are hypotheses (statements that are true or false) 

P(A) = degree of believe that A is true
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Criticisms of the Probability Interpretations
■ Criticisms of the frequency interpretation 
‣ n → ∞ can never be achieved in practice. When is n large enough? 
‣ P is not an intrinsic property of A, it depends on the how the ensemble of 

possible outcomes was constructed 
- Example: P(person I talk to is a physicist) depends on whether I am in a football 

stadium or at a physics workshop 
‣ We want to talk about the probability of events that are not repeatable 

- Example 1: P(it will rain tomorrow), but there is only one tomorrow 
- Example 2: P(Universe started with a Big Bang), but only one universe  

■ Criticisms of the subjective Bayesian interpretation 
‣ “Subjective” estimates have no place in science 
‣ How to quantify the prior state of our knowledge upon which we base our 

probability estimate?

14
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Bayes' Theorem

15

Definition of conditional probability:

P(A|B) = P(A \ B)

P(B)
P(B |A) = P(B \ A)

P(A)
and

P(A \ B) = P(B \ A) P(A|B) = P(B |A)P(A)
P(B)

First published (posthumously) by the Reverend 
Thomas Bayes (1702−1761) 
First modern formulation by Pierre-Simon Laplace 
in 1812 
Accepted by everyone if probabilities are not 
Bayesian probabilities 

[doubtful whether the  
portrait actually shows Bayes]

!

Venn diagram
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Bayesian inference: Degree of Believe in a Theory 
Given a Certain Set of Data (I)

16

P(theory|data) = P(data|theory)P(theory)
P(data)

probability of getting 
the data if theory is true

prior (subjective belief  
in the theory before 
seeing the data)

posterior probability, i.e., 
subjective belief in the theory 
after seeing the data guarantees normalization:

P(data) =
X

i

P(data|theoryi )P(theoryi )

Addresses question: "What should I believe?"
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Bayesian inference: Degree of Believe in a Theory 
Given a Certain Set of Data (II)

17

Pposterior(�|m) =
f (m|�)Pprior(�)

f1(m)

Problems with Bayesian inference 

What functional form to chose for ? 

Uninformed prior: flat? In which variable, e.g., in ? 

Bayesian reply 
Choice of prior usually unimportant after a few experiments 
Jaynes’ robot: Priors are uniquely determined by your state of knowledge. 
Thus scientists with the same background knowledge construct the same 
priors. 

Pprior(λ)

λ, λ2, 1/λ, ln λ

For a continuous parameter λ:
� : true value of a parameter of nature

m : measurement

f1(m) =

Z
f (m|�0)P(�0) d�0
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Example of a Posterior Distribution

18

GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass 
Black Hole with a 2.6 Solar Mass Compact Object

LIGO Scientific Collaboration and Virgo 
Collaboration: 
The Astrophysical Journal Letters, 
896:L44 (20pp), 2020 June 20

vertical lines: 
90% credible 
bounds for each 
waveform model

Posterior Distribution 
for mass of the lighter 
objects:

Note:  
Sampling from a multi-parameter posterior distribution 
typically involves Markov chain Monte Carlo (MCMC) 
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Are you a Frequentist or a Bayesian?

Suppose mass of a particle is measured with Gaussian resolution  and the 
result ist reported as 

σ

19

Bayesian

P(mtrue|m) / e�(m�mtrue)
2/(2�2)P(m|mtrue) / e�(m�mtrue)

2/(2�2)

m ± �

Frequentist 
This is a statement about the interval [m–σ, m+σ]. For a large number of 
hypothetically repeated experiments the interval would contain the true value in 
68% of the cases. In the frequentist approach, a probabilistic statement about 
the true value is nonsense (the true value is what it is).

flat prior for mtrue!

"Bayesians address the questions everyone is interested in by using 
assumptions that no one believes. Frequentist use impeccable logic 
to deal with an issue that is of no interest to anyone.” – Louis Lyons 
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Bayesian Inference: Jeffreys' Prior

20

How to model complete ignorance about the value of a parameter θ?  
‣ Uniform distribution in θ, exp θ, ln θ, 1/θ, …? 
‣ Example: Lifetime τ of a particle, uniform distribution in τ or particle's width Γ = 1/τ ?

Jeffreys' prior (non-informative prior) for a model            of the measurement:

⇡(~✓) /
q
I (~✓) I (~✓) = det

"*
@ ln L(~x |~✓)

@✓i

@ ln L(~x |~✓)
@✓j

+#

determinant of the Fisher information matrix

invariant under re-parameterization expectation value evaluated by 
integrating over all possible results 

~x

PDF parameter Jeffreys' prior

Poissonian mean µ p(µ) ∝ 1/√µ

Gaussian mean  µ p(µ) ∝ 1

Examples:

L(~x |~✓)
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Jeffreys' Prior: Example

21

Exponential distribution:

Jeffreys' prior:

L(t | ⌧) = 1

⌧
e�t/⌧

d

d⌧
ln L(t|⌧) = �1

⌧
+

t

⌧ 2

E

"✓
t

⌧ 2
� 1

⌧

◆2
#
= E

"✓
t � ⌧

⌧ 2

◆2
#
=

1

⌧ 4
V [t] =

⌧ 2

⌧ 4
=

1

⌧ 2

 ⇡(⌧) / 1

⌧

⇡(⌧) /
p

I (⌧) =

vuutE

"✓
d

d⌧
ln L(t | ⌧)

◆2
#
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Bayesian versus Frequentism

22

Bayesian Frequentist

Meaning of probability degree of belief frequentist definition

Probability of 
parameters yes anathema

Needs prior yes no

Unphysical / empty 
intervals excluded by prior can occur

Final statement posterior probability 
distribution

parameter values, 
hypothesis test (p-value)

Systematics Integrate over nuisance 
parameter 

Various methods, e.g., 
profile likelihood, hard

Combination of 
measurements can be hard (prior) ok

[based on L. Lyons]
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Variance and Standard Deviation

23

Expected value of a random variable x that follows a distribution P(x):

E[x ] ⌘ hxi ⌘
Z

x P(x) dx

V[x ] = E [(x � µ)2] =

Z
dx P(x)(x � µ)2

Variance:

Standard deviation:

� =
p
V[x ]

V[x ] = E
⇥
(x � E[x ])2

⇤
= E

⇥
x2 � 2x E[x ] + E[x ]2

⇤

= E
⇥
x2
⇤
� 2 E[x ] E[x ] + E[x ]2 = E

⇥
x2
⇤
� E[x ]2 = hx2i � hxi2
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Poisson Distribution

Examples: 
‣ Clicks of a Geiger counter in a given 

time interval  
‣ Number of Prussian cavalrymen 

killed by horse-kicks 
24

Properties: 
‣ n1, n2 follow Poisson distr.  
→ n1+n2 follows Poisson distr., too 

‣ Can be approximated by a Gaussian 
for large μ

https://en.wikipedia.org/wiki/Poisson_distribution

E [k] = µ, V [k] = µ

p(k ;µ) =
µk

k!
e�µ μ = 1 

μ = 4 
μ = 10

Counting experiment:
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Binomial Distribution
N independent experiments 
‣ Outcome of each is 'success' or 'failure' 
‣ Probability for success is p

25

E [k] = Npf (k ;N, p) =

✓
N

k

◆
pk(1� p)N�k V [k] = Np(1� p)

✓
N

k

◆
=

N!

k!(N � k)!
binomial coefficient: number of different ways 
(permutations) to have k successes in N tries 

Use binomial distribution to model processes with two outcomes 
‣ Example: Detection efficiency (either we detect particle or not)

For small p, the binomial distribution can be approximated by a Poisson 
distribution (more exactly, in the limit N → ∞, p → 0, N·p constant)
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Gaussian Distribution

26

g(x ;µ,�) =
1p
2⇡�

exp

✓
� (x � µ)2

2�2

◆

E [x ] = µ

Variance: V [x ] = �2

μ = 0, σ = 1 ("standard normal distribution, N(0,1)"):

Cumulative distribution related to error function:

�(x) =
1p
2⇡

e�
x2

2

�(x) =
1p
2⇡

Z x

�1
e�

z2

2 dz =
1

2


erf

✓
xp
2

◆
+ 1

�

https://en.wikipedia.org/wiki/Normal_distribution
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Binomial, Poisson and Normal Distribution

27

Binomial
B(k ;N, p)

Poisson
P(k ;µ)

Normal
N(x ;µ,�)

N ! 1, p ! 0,Np = µ fixed

µ ! 1N ! 1

PoissonP(k ;µ) :
k � µ
p
µ

! N(0, 1) as µ ! 1

BinomialB(k ; n, p) :
k � npp
np(1� p)

! N(0, 1) as n ! 1
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Deviation in Units of σ for a Gaussian

28

68.27% of area within ±1σ 
95.45% of area within ±2σ 
99.73% of area within ±3σ

90% of area within ±1.645σ 
95% of area within ±1.960σ 
99% of area within ±2.576σ 

P(Z�) =
1p
2⇡

Z +Z

�Z
e�

x2

2 dx
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p-value and significance

29

p-value:  
probability that a random process produces a measurement thus far, or further, 
from the true mean  

One-tailed 
Gaussian p-values

standard to report 
a “discovery” 

Deviation p-value
1 σ 0.16 
2 σ 0.023 
3 σ 0.0013 
4 σ 3.2 × 10–5 

 × 10–55 σ 2.9 × 10–7 

notebook: p-values_and_n-sigma.ipynb

p-value and significance (one-tailed): 

p = 1� �(Z ), Z = ��1(1� p)
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Frequentist vs. Bayesian 
Statistics

30

https://xkcd.com/1132/
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Why 5σ for Discovery in Particle Physics?

History: There are many cases of 3σ and 4σ effects that have disappeared 
with more data  
The Look-Elsewhere Effect 
Systematics: 
‣ Usually more difficult to estimate than statistical uncertainties 
‣ "Safety margin" 

Subconscious Bayes factor: 
‣ Physicists subconsciously tend to assess the Bayesian probabilities p(H1|data) 

and p(H0|data) 
‣ If H1 involves something very unexpected (e.g., neutrinos travel faster than the 

speed of light) then prior probability for null hypothesis H0 is much larger than 
for H1. 

‣ "Extraordinary claims require extraordinary evidence"

31

5σ ⇔ p-value = 2.87 × 10–7 (one-tailed test)

Louis Lyons, Statistical Issues in Searches for New Physics, arXiv:1409.1903

Last point ⇒ unreasonable to have a single criterion (5σ) for all experiments
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Look-Elsewhere Effect

32

https://xkcd.com/882/
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Covariance and Correlation

Covariance ( ):μx := ⟨x⟩, μy := ⟨y⟩

33

cov[x , y ] = E [(x � µx)(y � µy )]

Correlation coefficient (dimensionless):

⇢xy =
cov[x, y]

�x�y

x, y independent, i.e.,  :f(x, y) = fx(x) ⋅ fy(y)

E [(x � µx)(y � µy )] =

Z
(x � µx)fx(x) dx

Z
(y � µy )fy (y) dy = 0

! cov[x , y ] = 0

N.B. converse not always true
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Never trust summary statistics alone;  
always visualize your data

34

https://www.autodeskresearch.com/publications/samestats

same summary 
statistics for all 
data sets, in 
particular corr. = 0
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Linear Combinations of Random Variables

35

Consider two random variables with known covariance cov(x, y):

hx + yi = hxi+ hyi
haxi = ahxi

V [ax ] = a2V [x ]

V [x + y ] = V [x ] + V [y ] + 2cov(x , y)

V [x + y ] = E [(x + y � µx � µy )
2] = E [(x � µx + y � µy )

2]

= E [(x � µx)
2 + (y � µy )

2 + 2(x � µx)(y � µy )]

= E [(x � µx)
2] + E [(y � µy )

2] + 2E [(x � µx)(y � µy )]

= V [x ] + V [y ] + 2cov(x , y)

Calculation:
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Reduction of the Standard Deviation for Repeated 
Independent Measurements

36

Consider the average of n independent observation xi:

x̄ =
1

n

nX

i=1

xi

Expectation values and variance of the measurements:

E [xi ] = µi V [xi ] = �2

Standard deviation of the mean:

V [x̄ ] =
1

n2

nX

i=1

�2
i =

1

n
�2 ! �x̄ =

�p
n

Standard deviation of the mean decreases as 1/√n
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Linear Error Propagation

37

Consider a measurement of values xi and their covariances:

~x = (x1, x2, ..., xn) Vij = cov[xi , xj ]

Let y be a function of the xi: y = f (~x)

What is the variance of y?

Approach: Taylor expansion of y around      where ~µ µi = E [xi ]

In practice we estimate μi 
by measured value xi

V [y ] ⌘ �2
y = E [y2]� E [y ]2
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Linear Error Propagation Formula

38

y(~x) ⇡ y(~µ) +
nX

i=1


@y

@xi

�

~x=~µ

(xi � µi )Taylor expansion:

E[y] is easy: E [y ] ⇡ y(~µ) as E [xi � µi ] = 0

E [y2(~x)] ⇡ y2(~µ) + 2y(~µ)
nX

i=1


@y

@xi

�

~x=~µ

E [xi � µi ]

+ E

2

4
 

nX

i=1


@y

@xi

�

~x=~µ

(xi � µi )

!0

@
nX

j=1


@y

@xj

�

~x=~µ

(xj � µj)

1

A

3

5

= y2(~µ) +
nX

i ,j=1


@y

@xi

@y

@xj

�

~x=~µ

Vij

E[y2]:

Thus: �2
y =

nX

i ,j=1


@y

@xi

@y

@xj

�

~x=~µ

Vij
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Matrix Notation

39

Let vector J be given by 

Then:

Example:

�2
y =

✓
1

x2
,� x1

x22

◆✓
�2
1 cov[x1, x2]

cov[x1, x2] �2
2

◆ 1
x2

� x1
x2
2

!

=

✓
1

x2
,� x1

x22

◆ �2
1

x2
� x1

x2
2
cov[x1, x2]

1
x2
cov[x1, x2]� x1

x2
2
�2
2

!
=

1

x22
�2
1 +

x21
x42

�2
2 � 2

x1
x32

cov[x1, x2]

!
�2
y

y2
=

�2
1

x21
+

�2
2

x22
� 2

cov[x1, x2]

x1x2
=

�2
y

y2
=

�2
1

x21
+

�2
2

x22
� 2

⇢�1�2

x1x2

~J = ~ry , i.e., Jj =

✓
@y

@xj

◆

~x=~µ

�2
y =

nX

i ,j=1


@y

@xi

@y

@xj

�

~x=~µ

Vij = ~J TV ~J

y =
x1
x2

, ~J =

✓
1/x2

�x1/x22

◆
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Linear Error Proportion: Examples

40

y = x1 + x2 ! �2
y = �2

1 + �2
2 + 2cov[x1, x2]

y = x1x2 !
�2
y

y2
=

�2
1

x21
+

�2
2

x22
+ 2

cov[x1, x2]

x1x2

y = xn !
�2
y

y2
= n2

�2
x

x2
i.e.

�y

y
= |n|�x

x

y = ax ! �2
y = a2�2

x i.e. �y = |a|�x

Sanity checks:
Average of fully correlated  
measurements:

y =
1

2
(x1 + x2) , �1 = �2 ⌘ �, ⇢ = 1  �y = �

Difference of fully correlated  
measurements:

y = x1 � x2, �1 = �2 ⌘ �, ⇢ = 1

 �2
y = 2�2 � 2�2 = 0

y = x1 � x2 ! �2
y = �2

1 + �2
2 � 2cov[x1, x2]
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Linear Error Propagation for Uncorrelated 
Measurements

41

Special case: the xi are uncorrelated, i.e.,                  : Vij = �ij�
2
i

�2
y =

nX

i=1


@y

@xi

�2

~x=~µ

�2
i

These formulas are exact only for linear functions.  
Approximation breaks down if function is nonlinear over a region comparable 
in size to the σi.
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Linear Error Propagation:  
Generalization from ℝn→ℝ to ℝn→ℝm

42

Generalization: Consider set of m functions:

~y(~x) = (y1(~x), y2(~x), ..., ym(~x))

cov[yk , yl ] ⌘ Ukl ⇡
nX

i ,j=1


@yk
@xi

@yl
@xj

�

~x=~µ

Vij

Then:

In matrix notation:

U = JVJT Jij =


@yi
@xj

�

~x=~µ
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Multivariate Normal distribution

For n = 2:

43

~x = (x1, ..., xn), ~µ = (µ1, ...,µn)

column 
vector

transposed 
(row) vector

E [xi ] = µi

V =

✓
�2
x ⇢�x�y

⇢�x�y �2
y

◆
 V�1 =

1

(1� ⇢2)

✓
1/�2

x �⇢/(�x�y )
�⇢/(�x�y ) 1/�2

y

◆

ρ = correlation coefficient

f (~x ; ~µ,V ) =
1

(2⇡)N/2|V |1/2
exp


�1

2
(~x � ~µ)TV�1(~x � ~µ)

�

Mean: cov[xi , xj ] = Vi ,jCovariance:
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2d Gaussian Distribution and Error Ellipse
2d Gaussian distribution:

44

f (x1, x2;µ1,µ2,�1,�, ⇢) =
1

2⇡�1�2

p
1� ⇢2

⇥

exp

 
� 1

2(1� ⇢2)

"✓
x1 � µ1

�1

◆2

+

✓
x2 � µ2

�2

◆2

� 2⇢

✓
x1 � µ1

�1

◆✓
x2 � µ2

�2

◆#!

where ρ = cov(x1, x2)/(σ1σ2) is the correlation coefficient.

Lines of constant probability correspond to constant argument of exp  
→ this defines an ellipse

1σ ellipse: f(x1, x2) has dropped to 1/√e of its maximum value  
(argument of exp is –1/2): 

✓
x1 � µ1

�1

◆2

+

✓
x2 � µ2

�2

◆2

� 2⇢

✓
x1 � µ1

�1

◆✓
x2 � µ2

�2

◆
= 1� ⇢2
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Physics 509 17

s
x
=2

s
y
=1

r=0.8

Red ellipse: 
contour with 
argument of 
exponential 
set to equal 
-1/2

Blue ellipse: 
contour 
containing 
68% of 2D 
probability 
content.

2d Gaussian: Error Ellipse

45

Probability for an event to be within 1σ ellipse: 39.34% 

1σ ellipse (1/√e of 
maximum values)

Ellipse which contains 
68% of the events

fy (x) =

Z 1

�1
f (x , y) dy

=
1p
2⇡�x

exp

 
�1

2

✓
x � µx

�x

◆2
!

fx(y) =
1p
2⇡�y

exp

 
�1

2

✓
y � µy

�y

◆2
!

http://www.phas.ubc.ca/~oser/p509/Lec_07.pdf

Luca Lista Statistical Methods for Data Analysis 43 

1D projections 

x 

y 

1σ 

2σ 

1σ 2σ 

P1D P2D 

1σ 0.6827 0.3934 

2σ 0.9545 0.8647 

3σ 0.9973 0.9889 

1.515σ 0.6827 

2.486σ 0.9545 

3.439σ 0.9973 

•  PDF projections are (1D) Gaussians: 
•  Areas of 1σ and 2σ  

contours differ 
in 1D and 2D! 
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Maximum Likelihood Method
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Estimator

47

Suppose we have a measurement of n independent values 

which follow the same underlying distribution f(x; θ),  
e.g., f(x; θ) = 1/θ exp(–x/θ).

~x = (x1, x2, ..., xn)

An estimator is a function of the data which provides a numerical estimate of 
the parameter θ:

✓̂(~x)

θ often is not only one parameter but a vector of parameters.

i.i.d. random variables = independent, identically distributed
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Properties of Estimators

48

G. Cowan  Statistical Data Analysis / Stat 3 20 

Properties of estimators 
If we were to repeat the entire measurement, the estimates 
from each would follow a pdf: 

biased large 
variance 

best 

We want small (or zero) bias (systematic error): 

→  average of repeated measurements should tend to true value. 

And we want a small variance (statistical error): 
→  small bias & variance are in general conflicting criteria 

Consistency 
An estimator is consistent if it 
converges to the true value

lim
n!1

~̂✓ = ~✓

Bias 
Difference btw. expectation value 
of estimator and true value

~b := E [~̂✓]� ~✓

Efficiency 
An estimator is efficient if its 
variance V(θ) is small 
efficient ⇔ Equal-sign in 
Cramér–Rao inequality holds  

Example: Estimators for the lifetime of a particle

http://www.terascale.de/e149980/index_eng.html

Estimator Consistent? Unbiased? E�cient?

⌧̂ = t1+t2+...+tn
n yes yes yes

⌧̂ = t1+t2+...+tn
n�1 yes no no

⌧̂ = t1 no yes no

http://www.pp.rhul.ac.uk/~cowan/stat_course.html
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Unbiased Estimator for Mean and Variance

49

Estimator for the mean: µ̂ =
1

n

nX

i=1

xi

Unbiased estimator for the 
variance:

s2 := �̂2 =
1

n � 1

nX

i=1

(xi � x̄)2

Consider n independent and identically distributed measurements xi drawn 
from a distribution with mean μ and standard deviation σ:

V[µ̂] = V[
1

n

X

i

xi ] =
1

n2
V[
X

i

xi ] =
1

n
V[x ] =

�2

n
, i.e., �µ̂ =

�p
n

E[µ̂] =
1

n
E[
X

i

xi ] =
1

n

X

i

E[xi ] = µ →  estimator is unbiased

Multiplying the sample variance by n/(n–1) is known as Bessel's correction. 
Note that s is not an unbiased estimator of the standard deviation:
https://en.wikipedia.org/wiki/Unbiased_estimation_of_standard_deviation
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Likelihood Function and Maximum Likelihood

50

Suppose we have a measurement of n independent values 

We consider measured values  as fixed and the parameters as variables.

~x = (x1, x2, ..., xn)

f (x ; ~✓), ~✓ = (✓1, ✓2, ..., ✓m)

The joint pdf for the observed values  is given by:⃗x

L(~x ; ~✓) =
nY

i=1

f (xi ; ~✓) "likelihood function"

Principle of maximum likelihood 

The best estimate of the parameters  is that value which maximizes the 
likelihood function 

⃗θ

drawn from the distribution 
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Likelihood function is not a probability density function

The integral of  with respect to the parameter is not necessarily 
equal to unity (  might not be integrable at all). 
 
This is why  is not a probability density function. 

L( ⃗x , ⃗θ )
L( ⃗x , ⃗θ )

L( ⃗x , ⃗θ )

51

Example: exponential decay, one measurement at t = 1h.

L(⌧) =
1

⌧
e�t/⌧ ⇡ 1

⌧
as ⌧ ! 1,

Z 1

0
L(⌧) d⌧ not defined

Note: With Jeffreys' prior 1/τ the posterior L(τ) π(τ) is normalizable.
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Maximum Likelihood Example 1: Exponential Decay

52

Consider exponential pdf: f (t; ⌧) =
1

⌧
e�t/⌧

Independent measurements drawn from this distribution: t1, t2, ..., tn

Likelihood function: L(⌧) =
nY

i=1

1

⌧
e�ti/⌧

L(τ) is maximum when ln L(τ) is maximum:

@ ln L(⌧)

@⌧
= 0  

nX

i=1

✓
�1

⌧
+

ti
⌧ 2

◆
= 0  ⌧̂ =

1

n

nX

i=1

ti

Find maximum:

ln L(⌧) =
nX

i=1

ln f (ti ; ⌧) =
nX

i=1

✓
ln

1

⌧
� ti

⌧

◆
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Maximum Likelihood Example 2: Gaussian (I)

53

Consider x1, x2, …, xn drawn from Gaussian(μ, σ2)

Log-likelihood function:

ln L(µ,�2) =
nX

i=1

ln f (xi ;µ,�
2) =

nX

i=1

✓
ln

1p
2⇡

� ln� � (xi � µ) 2

2�2

◆

Derivatives w.r.t. μ and σ2: 

@ ln L(µ,�2)

@µ
=

nX

i=1

xi � µ

�2

@ ln L(µ,�2)

@�2
=

nX

i=1

✓
(xi � µ) 2

2�4
� 1

2�2

◆

f (x ;µ,�2) =
1p
2⇡�

e�
(x�µ)2

2�2
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Maximum Likelihood Example 2: Gaussian (II)

54

Setting the derivatives w.r.t. μ and σ2 to zero and solving the equations: 

µ̂ =
1

n

nX

i=1

xi , c�2 =
1

n

nX

i=1

(xi � µ̂)2

We find that the ML estimator for σ2 is biased!
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Maximum Likelihood Uncertainty
Consider maximum likelihood estimate of a parameter θ. Methods to estimate 
Uncertainty of θ: 

1.  from Monte Carlo 
Generate pseudo-data by sampling the assumed distribution using the ML 
estimate  as parameter 

2. Use minimum variance bound 
 
 

3.  method:

σ ̂θ

̂θ

Δ ln L = − 1/2

55

ln L(✓̂ ± �) = ln L(✓̂)� 1

2

For Gaussian likelihood function all methods agree. 
Method 3 usually gives asymmetric uncertainties (which are messy).

�✓̂ =
1q

� @2

@2✓ ln L(✓)
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Likelihood Function and Minimum Variance Bound

56

Let's first consider likelihood function with only one parameter:

Let           be an unbiased estimator of the parameter ✓̂(~x) ✓

It can be shown that the variance (of any unbiased estimator) satisfies:

V [✓̂] � 1

E
h
�@2 ln L

@2✓

i

For a biased estimator this becomes

V [✓̂] �
�
1 + @b

@✓

�2

E
h
�@2 ln L

@2✓

i

This bound is called Rao-Cramér-Frechet minimum variance bound (MVB)

L(~x ; ✓) = L(x1, x2, ..., xn; ✓) =
nY

i=1

f (xi ; ✓)
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MVB Example: Exponential Decay

57

@ ln L(⌧)

@⌧
= 0  

nX

i=1

✓
�1

⌧
+

ti
⌧ 2

◆
= 0  ⌧̂ =

1

n

nX

i=1

ti

Reminder:

@2 ln L(⌧)

@2⌧
=

nX

i=1

✓
1

⌧ 2
� 2

ti
⌧ 3

◆
=

n

⌧ 2
� 2

⌧ 3

nX

i=1

ti =
n

⌧ 2

✓
1� 2⌧̂

⌧

◆

V [⌧̂ ] � 1

E
⇥
� n

⌧ 2

�
1� 2⌧̂

⌧

�⇤ =
1

� n
⌧ 2

⇣
1� 2E [⌧̂ ]

⌧

⌘ =
⌧ 2

n

Minimum variance bound (MVB):
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Uncertainty of the ML Estimator:  
Approximating the Minimum Variance Bound

58

In many cases it is impractical to calculate the MVB analytically. Instead, 
one uses the following approximation which is good for large n:

E


�@2 ln L

@2✓

�
⇡ �@2 ln L

@2✓

����
✓=✓̂

The variance of the ML estimator is given by: 

V [✓̂] = � 1
@2 ln L
@2✓

���
✓=✓̂

Example: Exponential decay

@2 ln L(⌧)

@2⌧
=

nX

i=1

✓
1

⌧ 2
� 2

ti
⌧ 3

◆
=

n

⌧ 2
� 2

⌧ 3

nX

i=1

ti =
n

⌧ 2

✓
1� 2⌧̂

⌧

◆

V [⌧̂ ] = �
✓
@2 ln L

@2✓

◆�1

⌧=⌧̂

=
⌧̂ 2

n
 �̂ =

⌧̂p
n
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Asymptotic Normality of the Likelihood function

59

1.0 1.5 2.0 2.5 3.0
�

-16.5

-16.0

-15.5

-15.0

ln L(�)

1.0 1.5 2.0 2.5 3.0
�-863.0

-862.5

-862.0

-861.5

-861.0

ln L(�)
10 data points 500 data points

quadratic approximation 
of ln L(τ) is not very good

quadratic approximation 
of ln L(τ) is excellent

Quadratic 
approximation 
of ln L(τ)

Data points sampled from f (t; ⌧) =
1

⌧
e�t/⌧  with ⌧ = 2

For any probability function   the likelihood function L approaches a 
Gaussian for large n, i.e., for a large number of events, and the variance of 
the ML estimator reaches the minimum variance bound.

f(x; θ)
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Uncertainty of the ML Estimator:  
 methodΔ ln L = − 1/2

60

ln L(✓) = ln L(✓̂) +


@ ln L

@✓

�

✓=✓̂

(✓ � ✓̂)

| {z }
=0

+
1

2!


@2 ln L

@2✓

�

✓=✓̂

(✓ � ✓̂)2 + ...

ln L(✓) ⇡ ln Lmax �
(✓ � ✓̂)2

2c�2
✓̂

ln L(✓̂ ± �̂✓̂) ⇡ ln Lmax �
1

2

Taylor expansion of ln L around the maximum:

If L(θ) is approximately Gaussian (ln L(θ) then is a approximately a parabola):

One can then estimate the uncertainties from the points where ln L has 
dropped by 1/2 from its maximum:

� 1

�2

[from MVB, 
or from assuming 
Gaussian shape]

good approximation in 
the large sample limit
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Illustration of the  methodΔ ln L = − 1/2

61

L is Gaussian    ⟷    ln L is a parabola
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Properties of the ML Estimator
The ML estimator is consistent,  
i.e., it approaches the true value in the limit of infinite measurements (n → ∞) 

ML estimator efficient for large n (you get the smallest possible variance) 

For finite n the ML estimator is in general biased 

ML efficiency theorem: 
the ML estimator will be unbiased and efficient if an unbiased efficient 
estimator exists  

The ML Estimator is invariant under parameter transformation: 

ML does not provide a goodness-of-fit measure.

62

 = g(✓) )  ̂ = g(✓̂)
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Averaging Measurements with Gaussian Uncertainties

63

f (x ;µ,�2
i ) =

1p
2⇡�i

e
� (x�µ)2

2�2
i ln L(µ) =

nX

i=1

✓
ln

1p
2⇡

� ln�i �
(xi � µ) 2

2�2
i

◆
pdf for measurement (same mean, different σ):

Weighted average = ML estimate

@ ln L(µ)

@µ

����
µ=µ̂

=
nX

i=1

xi � µ̂

�2
i

!
= 0 ) µ̂ =

Pn
i=1

xi
�2
iPn

i=1
1
�2
i

Uncertainty? In this case L is Gaussian and we can write it as

L(µ) / e
� (µ�µ̂)2

2�2
µ̂ with �2

µ̂ =
1P
i

1
�2
i

We obtain the formula for the weighted average:

µ̂ =

Pn
i=1

xi
�2
iPn

i=1
1
�2
i

± 1qPn
i=1

1
�2
i
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Minimum Variance Bound for m Parameters

64

f (x ; ~✓), ~✓ = (✓1, ✓2, ..., ✓m)

Fisher information matrix  (m × m matrix):I( ⃗θ )

Ijk [~✓] = �E


@2

@✓j@✓k
ln L(x , ~✓)

�

V [✓̂j ] � (I (~✓)�1)jj

Cramér-Rao-Frechet bound for an unbiased estimator then states that  
is a positive-semidefinite matrix.

V − I−1

In particular one obtained for the variance:
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Variance of the ML Estimator for m Parameters

65

For any probability function            the likelihood function L approaches a 
multi-variate Gaussian for large n

f (x ; ~✓)

Covariance matrix of the estimated parameters:

Standard deviation of a single parameters:

The variance of the ML estimator then reaches the MVB:

V [
b~✓] ! I (~✓)�1

L(~✓) / e�
1
2 (
~✓�b~✓)T V�1[

b~✓] (~✓�b~✓)

V [
b~✓] ⇡

"
�@2 ln L(~x ; ~✓)

@2~✓

�����
~✓=

b~✓

#�1

�̂✓̂j
=

q
(V [

b~✓])jj

or equivalently:
(V�1[

b~✓])ij = � @2 ln L(~x ; ~✓)

@✓i@✓j

�����
~✓=

b~✓
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Example: Two-Parameter ML Fit (from Cowan's Book)

66

f (x ; a, b) =
1 + ax + bx2

2 + 2b/3
Scattering angle distribution, x = cos θ:

Normalization:
Z xmax

xmin

f (x ; a, b) dx = 1

Example: a = 0.5, b = 0.5; xmin = �0.95, xmax = 0.95, 1000MC events

Numerical minimization with MINUIT: 

Uncertainties and covariance from 
inverse of Hessian matrix H:

â = 0.53± 0.08

b̂ = 0.51± 0.16

cov[â, b̂] = 0.006

⇢ = 0.48

histogram only 
for visual representation, 
full data set used in fit

bV = �H
�1, (H)ij =

@2 ln L

@✓i@✓j

����
~✓=~̂✓
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Example: Two-Parameter ML Fit (iminuit)

67

iminuit uses introspection 
to detect the parameter 
names of your function
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Example: Two-Parameter ML Fit (iminuit)

68

https://nbviewer.jupyter.org/github/scikit-hep/iminuit/blob/master/tutorial/basic_tutorial.ipynb
https://iminuit.readthedocs.io/en/stable/

https://nbviewer.jupyter.org/github/scikit-hep/iminuit/blob/master/tutorial/basic_tutorial.ipynb
https://iminuit.readthedocs.io/en/stable/
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Example: Two-Parameter ML Fit (iminuit)

69
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Extended Maximum Likelihood Method (I)

70

Standard ML fit: information is in the shape of the distribution of the data xi.

Sometimes the number of observed events contains information 
about the parameters of interest, e.g., when we measure a rate.

Z
f (x , ~✓) dx = 1

Normal ML method:

Extended ML method:

Z
q(x , ~✓) dx = ⌫(~✓) = predicted number of events

Extended ML fit: normalization becomes a fit parameter
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Extended Maximum Likelihood Method (II)

71

Z
f (x , ~✓) dx = 1

L(~✓) =
⌫ne�⌫

n!

nY

i=1

f (xi ; ~✓) where ⌫ ⌘ ⌫(~✓)

ln L(~✓) = � ln(n!)� ⌫(~✓) +
nX

i=1

ln[f (xi ; ~✓)⌫(~✓)]

� ln L̃(~✓) = ⌫(~✓)�
nX

i=1

ln[f (xi ; ~✓)⌫(~✓)]

Likelihood function:

Normalized pdf:

Log-Likelihood function:

ln(n!) does not depend on the parameters. So we need to minimize:

prediction for total 
number of events
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Application of the Extended ML Method: 
Linear Combination of Signal and Background PDF (I)

72

Normalized pdf:

Two-component fit  
(signal + linear background)

Unbinned ML fit works fine also in 
case of low statistics

f (x ; r , ~✓) = r fs(x , ~✓) + (1� r) fb(x , ~✓)

� ln L̃(~✓) = s + b � n ln(s + b)�
nX

i=1

ln[f (xi ; ~✓)]

⌫(s, b) = s + b, r =
s

s + b

histogram only 
for visual 
representation 
(unbinned fit) Parameters: 

- signal counts s 
- background counts b 
- linear background (slope, intercept) 
- Gaussian peak: μ, σ

negative log-likelihood:
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Application of the Extended ML Method: 
Linear Combination of Signal and Background PDF (II)

73

We could have just fitted the normalized pdf:

Discussion:

Good estimate of the number of signal events:

However,           is not a good estimate of the variation of the number of 
signal events (ignores fluctuations of n)
[C. Blocker, Maximum Likelihood Primer]

f (x ; rs , ~✓) = r fs(x , ~✓) + (1� r) fb(x , ~✓)

nsignal = r n

�r n

(Trivial) example (L. Lyons): 
96 protons and 4 heavy nuclei 
have been measured in a cosmic 
ray experiment

protons heavy nuclei 
nucleiML estimate 96 ± 2 4 ± 2  

Extended ML estimate 96 ± 10  4 ± 2  

http://web.ipac.caltech.edu/staff/fmasci/home/astro_refs/Likelihood_primer.pdf
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Maximum Likelihood Fits with Binned Data (I)

74

Common practice: data put into a histogram: ~n = (n1, ..., nk), ntot =
kX

i=1

ni

Model prediction for the expected counts in bin i for fixed ntot:

⌫i (~✓) = (⌫1, ..., ⌫k)

If ntot is fixed the probability to get a certain     is given by the multinomial 
distribution.

Multinomial distribution (generalization of binomial distribution):
→ k different possible outcomes, probability for outcome i is pi,  

kX

i=1

pi = 1

f (~n; ntot,~p) =
ntot!

n1! · ... · nk !
pn11 · ... · pnkk ~p = (p1, ..., pk)

~n

⌫i (~✓) = ntot

Z

bin i
f (x ; ~✓) dx
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Maximum Likelihood Fits with Binned Data (II)

75

⌫i (~✓) = (⌫1, ..., ⌫k)

With pi = νi/ntot we write the likelihood of a certain n1, …, nk outcome as:

L(~✓) =
ntot!

n1! · ... · nk !

✓
⌫1
ntot

◆n1

· ... ·
✓

⌫k
ntot

◆nk

Log-likelihood function:

ln L(~✓) =
kX

i=1

ni ln ⌫i (~✓) + C

Limit of zero bin width → usual unbinned maximum likelihood method

Treat the ni as Poisson-distributed (ntot fluctuates,  
predicted average νtot = ν1 + ν2 + … + νk → extended log-likelihood:

L(~✓) =
kY

i=1

⌫nii
ni !

e�⌫i ! ln L(~✓) =
kX

i=1

ni ln ⌫i � ⌫i = �⌫tot +
kX

i=1

ni ln ⌫i
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Relation to Bayesian Parameter Estimation

76

p(~✓;~x) =
L(~x ; ~✓)⇡(~✓)

R
L(~x ; ~✓)⇡(~✓) d~✓

Bayesian posterior distribution:

Posterior distribution contains all information about the estimated parameters.

Often the mode (most probable value) of the posterior distribution is reported 
→ Coincides with ML estimate for a flat prior distribution

Marginalization in case one is interested in only one parameter of the Bayesian 
posterior distribution:

p(✓j ;~x) =

Z
p(~✓;~x) d~✓k 6=j =

R
L(~x ; ~✓)⇡(~✓) d~✓k 6=jR
L(~x ; ~✓)⇡(~✓) d~✓
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The Method of Least Squares
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Least Squares from ML (I)

78

Consider n measured values y1(x1), y2(x2), 
… , yn(xn) assumed to be independent 
Gaussian random variables with known 
variances:

V [yi ] = �2
i

Assume we have a function f with 

E [yi ] = f (xi ; ~✓)

We want to estimate ~✓

Likelihood function:

L(~✓) =
nY

i=1

1p
2⇡�i

exp

2

4�1

2

 
yi � f (xi ; ~✓)

�i

!2
3

5

0 1 2 3 4 5 6 7
x

0

1

2

3

4

5

6

7y
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Least Squares from ML (II)

79

Log-likelihood function:

ln L(~✓) = �1

2

nX

i=1

 
yi � f (xi ; ~✓)

�i

!2

+ terms not depending on ~✓

So maximizing the likelihood is equivalent to minimizing

In other words, for Gaussian uncertainties the method of least 
squares coincides with the maximum likelihood method.

The χ2 minimization is often done numerically, e.g., using the MINUIT code 
https://en.wikipedia.org/wiki/MINUIT

�2(~✓) =
nX

i=1

 
yi � f (xi ; ~✓)

�i

!2 Minimizing χ2 is called the method 
of least squares, goes back to 
Gauss and Legendre. 

Minimization:
@�2

@✓j
= 0, j = 1, ...,m

Number of parameters
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Generalized Least Squares for Correlated yi

80

Suppose the yi have a covariance matrix V and follow a multi-variate Gaussian:

The generalized least-squares method then corresponds to minimizing:

We can write this also as

g(~y ; ~µ,V ) =
1

(2⇡)n/2|V |1/2
exp


�1

2
(~y � ~µ)TV�1(~y � ~µ)

�

�2(~✓) = (~y � ~f (~x ; ~✓))TV�1(~y � ~f (~x ; ~✓))

~f (~x ; ~✓) = (f (x1; ~✓), ..., f (xn; ~✓))

�2(~✓) =
X

i , j

(yi � f (xi ; ~✓))
T (V�1)ij(yj � f (xj ; ~✓))
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Variance of the Least Squares Estimators

81

Using 

�2(~✓) = �2 ln L(✓) + const.

we can use the result for the variance of the ML estimators and obtain 

Or determine 1σ uncertainties from the contour where

For z⋅σ uncertainties the condition is 

�2(~✓0) = �2
min + 1

�2(~✓0) = �2
min + z2

i.e.V [
b~✓] ⇡ 2

"
@2�2(~✓)

@2~✓

�����
~✓=

b~✓

#�1

(V�1[
b~✓])ij =

1

2

@2�2(~x ; ~✓)

@✓i@✓j

�����
~✓=

b~✓
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Linear Least Squares
Consider n data points yi whose uncertainties and correlations are described 
by a covariance matrix V. The yi are measured at points xi. 

82

We would like to fit a linear combination of m functions aj(x) to the data: 

f (x ; ~✓) =
mX

j=1

✓jaj(x)
n data points yi

m parameters ✓j

examples:

The linear least squares problem can be solved in closed form:

Define n × m matrix A:  Ai ,j = aj(xi ) "design matrix"

Minimize

b~✓ = (ATV�1A)�1

| {z }
symmetric m⇥m matrix

ATV�1~y U = (ATV�1A)�1

best fit parameters: covariance matrix of the parameters:

f (x) = ✓0 + ✓1x + ✓2x
2

f (x) = ✓0 + ✓1 cos(x)

�2 = (~y � A~✓)TV�1(~y � A~✓), ~y = (y1, ..., yn)
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Non-linear Least Squares

Use numerical minimization program like MINUIT if the model is not linear in the 
parameters. 

MINUIT’s MIGRAD minimizer: Quasi-Newton Method 
https://en.wikipedia.org/wiki/Quasi-Newton_method 

See also: Gauss–Newton, Levenberg–Marquardt, …  

Choice of initial values of the fit parameters important to converge to the 
correct solution. 

Often numerical minimization program is also used in the linear case for 
convenience. 

83

https://iminuit.readthedocs.io/en/stable/

"Minuit2 has good performance compared 
to other minimisers, and it is one of the 
few codes out there which compute error 
estimates for your parameters."
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Example: Straight Line Fit: y = θ0 + θ1·x (I)

84

The conditions dχ2/dθ0 and dχ2/dθ1 give two linear equations with two 
variables which is easy to solve.

Here we use the general solution for linear least squares fits:

L = (ATV�1A)�1 ATV�1 b~✓ = L~y

AT =

✓
1 1 ... 1
x1 x2 ... xn

◆
~✓ =

✓
✓0
✓1

◆
V�1 =

0

BBB@

1/�2
1

1/�2
2

. . .
1/�2

n

1

CCCA

ATV�1A =

✓
1/�2

1 1/�2
2 ... 1/�2

n

x1/�2
1 x2/�2

2 ... xn/�2
n

◆
·

0

BBB@

1 x1
1 x2
...

...
1 xn

1

CCCA
=

 P
i

1
�2
i

P
i

xi
�2
iP

i
xi
�2
i

P
i
x2
i

�2
i

!

ATV�1 =

✓
1/�2

1 1/�2
2 ... 1/�2

n

x1/�2
1 x2/�2

2 ... xn/�2
n

◆
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Example: Straight Line Fit: y = θ0 + θ1·x (II)

85

The 2 × 2 matrix is easy to invert: shorthand notation 
for the sum

This gives:

We finally obtain:

✓̂0 =
[x2][y ]� [x ][xy ]

[1][x2]� [x ][x ]
✓̂1 =

�[x ][y ] + [1][xy ]

[1][x2]� [x ][x ]

L = (ATV�1A)�1ATV�1

=
1

[1][x2]� [x ][x ]

✓
[x2] �[x ]
�[x ] [1]

◆
·
✓
1/�2

1 1/�2
2 ... 1/�2

n

x1/�2
1 x2/�2

2 ... xn/�2
n

◆

=
1

[1][x2]� [x ][x ]

 
[x2] 1

�2
1
� [x ] x1

�2
1

... [x2] 1
�2
n
� [x ] xn�2

n

�[x ] 1
�2
1
+ [1] x1

�2
1

... �[x ] 1
�2
n
+ [1] xn�2

n

!

(ATV�1A)�1 =
1

[1][x2]� [x ][x ]

✓
[x2] �[x ]
�[x ] [1]

◆
where [z ] :=

X

i

zi
�2
i

[xy ] :=
X

i

xiyi
�2
i
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Example: Straight Line Fit: y = θ0 + θ1·x (III)

86

0 1 2 3 4 5 6
x

0

1

2

3

4

5

6

7y

y = ✓0 + x✓1

Covariance matrix of (θ0, θ1):

Fit result:

x y σy
1 1.7 0.5
2 2.3 0.3
3 3.5 0.4
4 3.3 0.4
5 4.3 0.6

U = (ATV�1A)�1

=

✓
0.211186 �0.0646035

�0.0646035 0.0234105

◆

✓̂0 =
[x2][y ]� [x ][xy ]

[1][x2]� [x ][x ]
= 1.16207

✓̂1 =
�[x ][y ] + [1][xy ]

[1][x2]� [x ][x ]
= 0.613945

[z ] :=
X

i

z

�2
i
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0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
0θ

0

0.2

0.4

0.6

0.8

1

1θ
Straight Line Fit: Comparison to MINIUT

Constant function y = θ 
Straight-line fit y = θ0 + θ1 x 
Parabolic fit y = θ0 + θ1 x + θ2 x2 

Any polynomial fit 

Functions like y = θ sin x  
or y = θ exp x
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0 1 2 3 4 5 6
x

0

1

2

3

4

5

6

7y

y = ✓0 + x✓1

Minimizer is Minuit 
Chi2       =      2.29557 
NDf        =            3 
Edm        =  3.23988e-23 
NCalls     =           32 
p0         =      1.16207   +/-   0.45955      
p1         =     0.613945   +/-   0.153005     

Covariance Matrix: 
                   p0          p1 

p0            0.21119   -0.064603 
p1                -0.064603     0.02341 

Correlation Matrix: 
                   p0          p1 
p0                  1    -0.91879 
p1           -0.91879           1

1σ ellipse

2σ ellipse
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Propagation of Fit Parameter Uncertainties

88

0 1 2 3 4 5 6
x

0

1

2

3

4

5

6

7y

y = ✓̂0 + ✓̂1x

± 1σ error bands
Note: 
correlation vanishes if you choose 
y = θ0 + θ1(x − ⟨x⟩)

~J =

 
@y
@✓̂0
@y
@✓̂1

!
=

✓
1
x

◆

�2
y = ~J TU~J =

�
1 x

�✓ �2
0 cov[✓̂0, ✓̂1]

cov[✓̂0, ✓̂1] �2
1

◆✓
1
x

◆

=
�
1 x

�✓�2
0 + x cov[✓̂0, ✓̂1]
cov[✓̂0, ✓̂1] + x�2

1

◆

= �2
1x

2 + 2cov[✓̂0, ✓̂1]x + �2
0
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Least-Squares Fits to Histograms

89

Consider histogram with k bins and ni counts in bin i. If ni is not too small one 
can use the Gaussian approximation of the Poisson distribution and apply the 
least-squares method:

�2(~✓) =
kX

i=1

(ni � ⌫i (~✓))2

⌫i (~✓)
Pearson's χ2:

Neyman's χ2: �2(~✓) =
kX

i=1

(ni � ⌫i (~✓))2

ni

Problems arise in bins with few entries (typically less than 5), in particular in 
Neyman's χ2. 

Bins with zero entries are problematic, typically omitted from the fit 
→ leads to biased fit results
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Summary: Maximum Likelihood and χ2 Method

90

L(~✓) =
nY

i=1

f (xi ; ~✓)

�2(~✓) = (~y � ~µ(✓))TV�1(~y � ~µ(✓)), V = (vij), vij = cov[yi , yj ]

�2(~✓) = �2 ln L(~✓) + constant =
nX

i=1

(yi � µ(xi ; ~✓))2

�2
i

U[
b~✓] = 2H�1, hij =

@2�2

@✓i@✓j

����b~✓

Maximum likelihood method:

covariance matrix of the estimated parameters θi

Least-squares method:

@ ln L

@✓i
= 0, i = 1, ...,m  b~✓

No correlations btw. the yi;

With correlations btw. the yi;

U[
b~✓] = �H

�1, hij =
@2 ln L

@✓i@✓j

����b~✓
, H = (hij), U = (uij), uij = cov[✓̂i , ✓̂j ]

covariance matrix of the θi

@�2

@✓i
= 0, i = 1, ...,m  b~✓
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Discussion of Fit Methods
Unbinned maximum likelihood fit (the best) 

+ Don't need to bin data (no loss of information) 
+ Works with multi-dimensional data 
+ No Gaussian assumption 
– No direct goodness of fit estimate 
– Can be computationally expensive for large n 
– Can't plot directly with data 

Least-squares fit (the easiest) 
+ fast, robust, easy 
+ goodness of fit 
+ can plot with data 
+ works fine at high statistics 
– data should be Gaussian 
– misses information with feature size < bin size 

91

[Wouter Verkerke, link]

Binned maximum likelihood fit in between

https://www.physik.hu-berlin.de/de/gk1504/block-courses/autumn-2010/program_and_talks/Verkerke_part3/
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Hypothesis Tests and Goodness-of-Fit
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Hypotheses and Tests
Hypothesis test 
‣ Statement about the validity of a model 
‣ Tells you which of two competing models is more consistent with the data 

Simple hypothesis: a hypothesis with no free parameters 
‣ Examples: the detected particle is a pion; data follow Poissonian with mean 5 

Composite hypothesis: contains unspecified parameter(s) 
‣ Example: data follow Poissonian with mean > 5 

Null hypothesis H0 and alternative hypothesis H1  
‣ H0 often the background-only hypothesis  

(e.g. the Standard Model in searches for new physics) 
‣ H1 often signal or signal + background hypothesis 

Question: Can null hypothesis be rejected by the data?

93
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Tests statistic

94

Test statistic : 
a (usually scalar) variable which is a function of the data alone that 
is used to test hypotheses

t( ⃗x )

Examples:  
t = Χ2min of a least-squares fit 

ALICE TRD: likelihood ratio for electrons and pions:   

ALICE TPC dE/dx:  

Output of a boosted decision tree or neural network

t =
L(q |e)
L(q |π)

t =
dE/dx − ⟨dE/dx⟩

σ

: measured features/data⃗x = (x1, . . . , xn)
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Critical region

95

The probability for H0 to be 
rejected while H0 is true:

124 7 Hypothesis Tests

t

f(t)
signal

background

tcut

Fig. 7.1 Probability distribution functions for a discriminating variable t.x/ D x which has two
different PDFs for the signal (red) and background (yellow) hypotheses under test

One simple example is to use a single variable x which has discriminating power
between two hypotheses, say signal = “muon” versus background = “pion”, as
shown in Fig. 7.1. A good “separation” of the two cases can be achieved if the
PDFs of x under the hypotheses H1 = signal and H0 = background are appreciably
different.

On the basis of the observed value Ox of the discriminating variable x, a simple
test statistics can be defined as the measured value itself:

Ot D t.Ox/ D Ox : (7.1)

A selection requirement (in physics jargon sometimes called cut) can be defined
by identifying a particle as a muon if Ot ! tcut or as a pion if Ot > tcut, where the value
tcut is chosen a priori.

Not all real muons will be correctly identified as a muon according to this
criterion, as well as not all real pions will be correctly identified as pions. The
expected fraction of selected signal particles (muons) is usually called signal
selection efficiency and the expected fraction of selected background particles
(pions) is called misidentification probability.

Misidentified particles constitute a background to positively identified signal
particles. Applying the required selection (cut), in this case t ! tcut, on a data
sample made of different detected particles, each providing a measurements of
x, the selected data sample will be enriched of signal, reducing the fraction of
background in the selected data sample with respect to the original unselected
sample. The sample will be actually enriched if the selection efficiency is larger
than the misidentification probability, which is the case considering the shapes of
the PDFs in Fig. 7.1 and the chosen selection cut.

critical region 
(reject H0)

f (t|H0)

f (t|H1)

α:  
"size" or "significance 
level" of the test 
1– β:  
"power of the test"

Probability to reject H1  
even though it is true:

test statistic
Z 1

tcut

f (t|H0) dt = ↵

Z tcut

�1
f (t|H1) dt = �

β α

accept H0
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Type I and Type II Errors

96

Type I and type II errors and their probabilities:

Type I error: 
Null hypothesis is rejected while it is actually true

Type II error: 
Test fails to reject null hypothesis while it is actually false 

H0 is true H0 is false (i.e., H1 is true)

H0 is rejected Type I error (↵) Correct decision (1� �)

H0 is not rejected Correct decision (1� ↵) Type II error (�)
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Neyman–Pearson Lemma

To get the highest power (i.e. smallest possible value of β) of a test of H0 with 
respect to the alternative H1 for a given significance level, the critical region W 
should be chosen such that:

97

Neyman-Pearson lemma holds for simple hypotheses and states:

and

c is a constant chosen to give a test of the desired significance level.

Equivalent formulation: optimal scalar test statistic is the likelihood ratio

t(~x) :=
f (~x |H1)

f (~x |H0)
> c inside W

t(~x) =
f (~x |H1)

f (~x |H0)

t(~x)  c outside W
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Practical Considerations

Problem: often one does not have explicit formulas for f(x|H0) and f(x|H1) 
One rather has Monte Carlo models for signal and background processes 
which allow one to generate instances of the data 
In this case one can use multi-variate classifiers to separate different types of 
events 
‣ Fisher discriminants  
‣ Neural networks  
‣ Support vector machines 
‣ decision trees  
‣ … 

98
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Least Squares Method: Goodness-of-Fit (I)

99

�2
min =

nX

i=1

0

@yi � f (xi ;
b~✓)

�i

1

A
2

The minimum value of is a measure of the level of agreement between the 
model and the data;

Large χ2min: the model can can be rejected.

If the model is correct, then χ2min for repeated experiments follows a 
distribution: 

χ2

f (t; ndf) =
1

2ndf/2�
�
ndf
2

� tndf/2�1e�t/2, t = �2
min

with ndf = n �m = number of data points� number of fit parameters

ndf = "number of degrees of freedom"
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Least Squares Method: Goodness-of-Fit (II)

100

Expectation value of the χ2 distribution is ndf 

→ χ2 ≈ ndf indicates a good fit 

Consistency of a model with the data is quantified with the p-value:

p-value =

Z 1

�2
min

f (t; ndf) dt

The p-value is the probability to get a χ2min as high as the observed one, or 
higher, if the model is correct.

The p-value is not the probability that the model is correct.



Statistical Methods in Particle Physics | Münster 2020 | K. Reygers 

0 1 2 3 4 5 6 7 8 9 10
t

0

0.05

0.1

0.15

0.2

0.25

(t,
 3

)
2 m

in
χ

0 1 2 3 4 5 6
x

0

1

2

3

4

5

6

7y

p-value for the Straight Line Fit Example
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χ2min = 2.29557, ndf = 3:

p-value = 0.51337

observed χ2min

expected distribution 
if model is correct
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Constant Model (y = θ0) Rejected by Small p-value
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7y χ2min = 2.29557, ndf = 3:

p-value = 0.51337

root [1] TMath::Prob(chi2, n_dof)

χ2min = 18.3964, ndf = 4:
p-value = 0.001032

θ0 = 2.86  ±  0.18

Statistical uncertainty of the fit 
parameter does not tell us 
whether model is correct!

from scipy import stats 
pvalue = 1 - stats.chi2.cdf(chi2, n_dof)
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p-value for different χ2min and ndf
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http://pdg.lbl.gov/2017/reviews/rpp2016-rev-statistics.pdf
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Confidence Intervalls for χ2min / ndf as a fct. of ndf
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Goodness-of-Fit for Unbinned ML Fits (I)

105

In case of an unbinned ML fit one can put data and model prediction into a 
histogram and perform a χ2 test.

Consider the ratio

For the multinomial ("M", ntot fixed) and Poisson distributed data ("P") one 
obtains 

�M =
kY

i=1

✓
⌫i
ni

◆ni

, �P = entot�⌫tot

kY

i=1

✓
⌫i
ni

◆ni

k: number of bins of the histogram

We then consider

� =
L(~n|~⌫)
L(~n|~n) , ~⌫ = ~⌫(~✓), ~✓ = (✓1, ..., ✓m)

L: likelihood

�2 := �2 ln�
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Goodness-of-Fit for Unbinned ML Fits (II)
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For multinomially distributed data in the large sample limit

�2
M := �2 ln�M = 2

kX

i=1

ni ln
ni
⌫̂i

follows a χ2 distribution for k – m – 1 degrees of freedom if the model is 
correct.

�2
P := �2 ln�P = 2

kX

i=1

✓
ni ln

ni
⌫̂i

+ ⌫̂i � ni

◆
In case of Poisson distributed data

follows a χ2 distribution for k – m degrees of freedom in the large sample limit 
if the model is correct.
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Wilks' theorem
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Let null hypothesis H0 be a special case of the hypothesis H1 
("nested hypotheses")

Example: 
  H0 : f(m) = a0 + a1m

H1 : f(m) = a0 + a1m + a2m2 + a3m3

Wilks’ theorem:  
If H0 is correct then  follows  distribution with  = #added parameters 
in the large sample limit.

−Δχ̃2 χ2 ndof

Δχ̃2 := − 2 ln ( L(H1)
L(H0) )

In the above example: ndof = 2

Samuel S. Wilks, The Large-Sample Distribution of the Likelihood Ratio for Testing Composite Hypotheses 
Ann. Math. Statist., Volume 9, Number 1 (1938), 60-62.

Define:

https://projecteuclid.org/euclid.aoms/1177732360
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Significance of a peak

108

  H0 : f(m) = a0 + a1m
H1 : f(m) = a0 + a1m + a2N(m; μ, σ)

,  fixed in  
→ one additional parameter
μ = 3.1 σ = 0.03 H1H0

H1

 should follow a  distribution 
with  if H0 ist true
−Δχ̃2 χ2

ndof = 1

p-value = 2.15·10–6

→ H0 can be safely rejected

��̃2 := �2 ln

✓
L(H1)

L(H0)

◆
= �22.5
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Kolmogorov–Smirnov Test (I)
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KS test is an unbinned goodness-of-fit test

Compare cumulative distribution function 

F (x) =

Z x

�1
f (x 0) dx 0

with the so-called Empirical Distribution 
Function (EDF)

S(x) =
number of observations with xi < x

total number of observations

The test statistic is the maximum 
difference between the two functions:

D = sup|F (x)� S(x)|

Q: Do data points come from a given 
distribution?

One can also test whether two one-dimensional sets of points are compatible with coming from 
the same parent distribution.

F(x) S(x)
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Kolmogorov–Smirnov Test (II)

110

10.3 Goodness-of-Fit Tests 265

Fig. 10.10. P-value as a function of the Kolmogorov test statistic D∗.

The Kolmogorov–Smirnov test emphasizes more the center of the distribution
than the tails because there the distribution function is tied to the values zero and
one and thus is little sensitive to deviations at the borders. Since it is based on
the distribution function, deviations are integrated over a certain range. Therefore
it is not very sensitive to deviations which are localized in a narrow region. In Fig.
10.8 the left hand and the right hand histograms have the same excess of entries in
the region left of the center. The Kolmogorov–Smirnov test produces in both cases
approximately the same value of the test statistic, even though we would think that
the distribution of the right hand histogram is harder to explain by a statistical
fluctuation of a uniform distribution. This shows again, that the power of a test
depends strongly on the alternatives to H0. The deviations of the left hand histogram
are well detected by the Kolmogorov–Smirnov test, those of the right hand histogram
much better by the Anderson–Darling test which we will present below.

There exist other EDF tests [57], which in most situations are more effective than
the simple Kolmogorov–Smirnov test.

10.3.6 Tests of the Kolmogorov–Smirnov – and Cramer–von Mises
Families

In the Kuiper test one uses as the test statistic the sum V = D+ +D− of the two
deviations of the empirical distribution function S from F . This quantity is designed
for distributions “on the circle”. This are distributions where the beginning and the
end of the distributed quantity are arbitrary, like the distribution of the azimuthal
angle which can be presented with equal justification in all intervals [ϕ0,ϕ0 + 2π]
with arbitrary ϕ0.

The tests of the Cramer–von Mises family are based on the quadratic difference
between F and S. The simple Cramer–von Mises test employs the test statistic

Expected distribution of D known for given N → p-value
Bohm, Zech, 
http://www-library.desy.de/preparch/books/vstatmp_engl.pdf

D⇤ =
p
ND,

N = number of data points

from scipy import stats 
D, p_value =  
stats.kstest(x, stats.norm.cdf)

Kolmogorov–Smirnov test: only for 1d data

Example: 
Test whether data xi come 
from standard normal 
distribution N(0,1):
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Bayesian Hypothesis Testing
In Bayesian language, all problems are hypothesis tests!  
‣ Posterior probability for a hypothesis P(H|data) or a parameter P(θ|data)

111

■ Parameter estimation amounts to assigning a probability to the proposition 
that the parameter lies in the interval [θ1, θ2] 
‣ can reject hypothesis/parameter if posterior prob. is sufficiently small 

■ Example: LIGO PRL on detection of gravitational waves

P(H|D) =
P(D|H) · P(H)

P(D)

■ Requires one to explicitly specify alternative hypotheses:

P(D) = P(D|H1) + P(D|H2) + P(D|H3) + ...
Often simply normalization 
from ∫P(H|D) = 1
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Systematic Uncertainties
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Statistical and Systematic Uncertainties

113

Statistical or random uncertainties 
‣ Uncertainties that can be reliably estimated by repeating measurements 
‣ They follow a known distribution like a Poisson rate or are determined empirically from 

the distribution of an unbiased, sufficiently large sample.  
‣ Relative uncertainty reduces as 1/√N where N is the sample size

Systematic uncertainties 
‣ Cannot be calculated solely from sampling fluctuations  
‣ In most cases don't reduce as 1/√N (but often also become smaller with larger N) 
‣ Difficult to determine, in general less well known than the statistical uncertainty 
‣ Systematic uncertainties ≠ mistakes  

(a bug in your computer code is not a systematic uncertainty)

x = 2.34± 0.05 (stat.)± 0.03 (syst.)
quoting stat. and syst. uncertainty 
separately gives us an idea whether 
taking more data would be helpful
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Systematic Uncertainties: Examples

Calibration uncertainties of the measurement apparatus 
‣ E.g., energy scale uncertainty of a calorimeter 

Uncertainty of the detector resolution 
Detector acceptance 
Limited knowledge about background processes 
Uncertainties of auxiliary quantities 
‣ E.g. reference branching ratios uses as input 
‣ Uncertainty of theoretical quantities 

…

114

The uncertainty in the estimation of such a systematic effect is called a 
systematic uncertainty.  
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Systematic Uncertainties ≠ Mistakes,  
but mistakes still happen
Look for mistakes be repeating the analysis with changes which should make 
no difference:

115

Data subsets 
Magnet up/down 
Different selection cuts 
Different histogram bin sizes and fit ranges 
Different Event Generator for efficiency calculation 
Look for impossibilities 

R. Barlow

If a check passes the test:  
move on and do not add the discrepancy to the systematic uncertainty 

If a check fails: try to identify the reason. Only as very last resort, add 
contribution to total systematic uncertainty. This might underestimate the real 
uncertainty.

“Systematic Errors, Fact and  
Fiction,” hep-ex/0207026 
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Handling discrete systematic uncertainties
Typical case: choice of model

116

With 1 preferred model and one other, quote R1 ± |R1 − R2 |

With 2 models of equal status, quote  
R1 + R2

2
± |R1 − R2 |

2

n equal models, quote  R̄ ± 1
n − 1

n

∑
i=1

(Ri − R)2 =
n

n − 1
(R2 − R2)

Two extreme model, quote  
R1 + R2

2
± |R1 − R2 |

12
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Experimenter’s Bias?

117

Klein JR, Roodman, A. 2005,  
Annu. Rev. Nucl. Part. Sci. 55:141–63

Do researchers 
unconsciously work 
toward a certain value?
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Blind Analyses

■ The signal events, when the signal occurs in a well-defined region of the  
experiment’s phase space.  

■ The result, when the numerical answer can be separated from all other 
aspects of the analysis.  

■ The number of events in the data set, when the answer relies directly upon 
their count.  

■ A fraction of the entire data set. 

118

Avoid experimenter’s bias by hiding certain aspects of the data.
Things that can be hidden in the analysis:

Unblinded spectrum

Cts in Qββ±5 keV golden silver BEGe total
expected, w/o PSD 3.3 0.8 1.0 5.1
observed, w/o PSD 5 1 1 7
expected, w PSD 2.0 0.4 0.1 2.5
observed, w PSD 2 1 0 3

Spectrum agrees with flat background expectation, no hint for gamma-line at Qββ !

W. Maneschg (MPI-K) GERDA: Results Phase I - Outlook Phase II Mainz, March 25, 2014 12 / 1

Example: GERDA experiment 
‣ search for neutrinoless double 

beta decay 
‣ Signal: sharp peak  
‣ Background model fixed prior to 

unblinding of signal region
energy (kev)→ no evidence for a signal

Klein JR, Roodman, A. 2005,  
Annu. Rev. Nucl. Part. Sci. 55:141–63
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Combination of Systematic Uncertainties

119

In most cases one tries to find independent sources of systematic 
uncertainties. These independent uncertainties are therefore added in 
quadrature: 

�2
tot = �2

1 + �2
2 + ... + �2

n

Often a few source dominate the systematic uncertainty 
→ No need to work to hard on correctly estimating the small uncertainties 
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Systematic Uncertainties:  
Covariance Matrix Approach (I)

120

Consider two measurement x1 and x2 with with individual random uncertainties 
σ1,r and σ2,r and a common systematic uncertainty σs:

xi = xtrue +�xi ,r +�xs

Variance:

Covariance: cov[x1, x2] = hx1x2i � hx1ihx2i
= ...

= �2
s

h�xi ,ri = 0, h�xsi = 0,

h(�xi ,r)
2i = �2

i ,r, h(�xs)
2i = �2

s

V [xi ] = hx2i i � hxi i2

= h(xtrue +�xi ,r +�xs)
2i � hxtrue +�xi ,r +�xsi2

= h(�xi ,r +�xs)
2i

= �2
i ,r + �2

s
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Systematic Uncertainties:  
Covariance Matrix Approach (II)

121

Covariance matrix for x1 and x2:

V =

✓
�2
1,r + �2

s �2
s

�2
s �2

2,r + �2
s

◆

This also works when the uncertainties are quoted as relative uncertainties:

�s = "x  V =

✓
�2
1,r + "2x21 "2x1x2
"2x1x2 �2

2,r + "2x21

◆
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Example: 
Transverse Momentum Spectrum of the Higgs-Boson

122

14 9 Results
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Figure 4: Higgs boson production cross section as a function of p
H
T , after applying the unfold-

ing procedure. Data points are shown, together with statistical and systematic uncertainties.
The vertical bars on the data points correspond to the sum in quadrature of the statistical and
systematic uncertainties. The model dependence uncertainty is also shown. The pink (and
back-slashed filling) and green (and slashed filling) lines and areas represent the SM theo-
retical estimates in which the acceptance of the dominant ggH contribution is modelled by
HRES and POWHEG V2, respectively. The subdominant component of the signal is denoted as
XH=VBF+VH and it is shown with the cross filled area separately. The bottom panel shows the
ratio of data and POWHEG V2 theoretical estimate to the HRES theoretical prediction.

To measure the inclusive cross section in the fiducial phase space, the differential measured
spectrum is integrated over p

H
T . In order to compute the contributions of the bin uncertain-

ties of the differential spectrum to the inclusive uncertainty, error propagation is performed
taking into account the covariance matrix of the six signal strengths. For the extrapolation of
this result to the fiducial phase space, the unfolding procedure is not needed, and the inclu-
sive measurement has only to be corrected for the fiducial phase space selection efficiency efid.
Dividing the measured number of events by the integrated luminosity and correcting for the
overall selection efficiency, which is estimated in simulation to be efid = 36.2%, the inclusive
fiducial sB, sfid, is computed to be:

sfid = 39 ± 8 (stat) ± 9 (syst) fb, (4)

in agreement within the uncertainties with the theoretical estimate of 48 ± 8 fb, computed inte-
grating the spectrum obtained with the POWHEG V2 program for the ggH process and includ-
ing the XH contribution.
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Figure 5: Correlation matrix among the p
H
T bins of the differential spectrum.

10 Summary
The cross section for Higgs boson production in pp collisions has been studied using the
H ! W+W� decay mode, followed by leptonic decays of the W bosons to an oppositely charged
electron-muon pair in the final state. Measurements have been performed using data from pp
collisions at a centre-of-mass energy of 8 TeV collected by the CMS experiment at the LHC and
corresponding to an integrated luminosity of 19.4 fb�1. The differential cross section has been
measured as a function of the Higgs boson transverse momentum in a fiducial phase space,
defined to match the experimental kinematic acceptance. An unfolding procedure has been
used to extrapolate the measured results to the fiducial phase space and to correct for the de-
tector effects. The measurements have been compared to SM theoretical estimations provided
by the HRES and POWHEG V2 generators, showing good agreement within the experimental
uncertainties. The inclusive production sB in the fiducial phase space has been measured to be
39 ± 8 (stat) ± 9 (syst) fb, consistent with the SM expectation.
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Correlation matrix of the pT bins:

⇢i ,j =
Vi ,j

�i�j
, V = covariance matrix
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Weighted Average of Correlated Data Points

123

�̂ =
NX

i=1

wiyi

~y = (y1, y2, ..., yn)Consider n data points yi with covariance matrix V:

One can calculate a weighted average λ by minimizing

�2(�) = (~y � ~�)TV�1(~y � ~�)
~� := (�,�, ...,�)

One obtains (here without calculation):

Variance results from error propagation:

wi =

Pn
j=1(V

�1)i ,jPn
k,l=1(V

�1)k,l

�2
�̂
= ~wTV ~w =

nX

i ,j=1

wiVijwj

Minimizing the χ2 gives the best linear unbiased 
estimate (BLUE) → linear unbiased estimator 
with the lowest variance

‣ BLUE combination may be 
biased if uncertainties not known 
or are estimated from measured 
values  

‣ Improvement: iterative approach 
(rescaling uncertainties based on 
previous iteration)
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Special Case:  
Weighted Average of Two Correlated Measurements 

124

V =

✓
�2
1 ⇢�1�2

⇢�1�2 �2
2

◆

V�1 =
1

1� ⇢2

 
1
�2
1

�⇢
�1�2

�⇢
�1�2

1
�2
2

!

�̂ = wy1 + (1� w)y2

w =
�2
2 � ⇢�1�2

�2
1 + �2

2 � 2⇢�1�2
V [�̂] = �2 =

(1� ⇢2)�2
1�

2
2

�2
1 + �2

2 � 2⇢�1�2

y1, y2

Consider two measurements with covariance matrix V (ρ = correlation coeff.):

Applying the formulas from the previous slide:

equivalently:

1

�2
=

1

1� ⇢2


1

�2
1

+
1

�2
2

� 2⇢

�1�2

�
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Another Approach To Least Squares Fits in Case 
of Correlated Systematic Uncertainties

125

Correlated systematic uncertainties can be taken into account with 
generalized χ2:

�2(~✓) = (~y � ~f (~x ; ~✓))TV�1(~y � ~f (~x ; ~✓)), V = Vstat|{z}
diagonal

+Vsys

Another approach (sometime called 'pull method'):

�2 =
nX

i=1

(yi + "�i ,sys � f (xi ; ~✓))2

�2
i ,stat

+ "2

penalty term 
("ε = systematic deviation in 
units of the standard deviation")

The pull method puts nuisance parameters on the same footing as other 
parameters. The penalty term is none other than a frequentist version of the 
Bayesian prior on the nuisance parameter.
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Bayesian approach to systematic uncertainties

"Bayesians lose no sleep over systematics" (lecture S. Oser)

126

Quantity of interest: , prior knowledge: θ π(θ)
Likelihood depends parameter  ("nuisance parameter")ν
We simply treat  and  as unknown parameters:θ ν

As we are only interested in , we marginalize by integrating over :θ ν

Prior knowledge on  often is the result of a calibration measurement.ν

P(✓) =

Z
P(✓, ⌫) d⌫

P(✓, ⌫|data) / L(data|✓, ⌫)⇡(✓, ⌫)
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Example of a Frequentist approach: 
Profile method

127

Uncertainty in the probability function for the data described by 
nuisance parameter :ν

If available, can include information on  from additional measurements :ν yi

Eliminate the nuisance parameter by using the profile likelihood:

: value of  which maximizes  for a given  ν L(θ, ν) θ

Lp(✓) = L(✓, bb⌫(✓))

bb⌫(✓)

L(✓, ⌫) =
Y

i ,j

p(xi , yj |✓, ⌫)

L(✓, ⌫) =
Y

i

p(xi |✓, ⌫)
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Profile likelihood ratio as test statistics

128

Let q be a test statistic and h(q | θ, ν) its distribution. The p-value 
depends on the nuisance parameter ν:

Independence of the nuisance parameter is achieved approximately by 
using the profile likelihood ratio as test statistic:

This is motivated by the fact that  approaches the  
distribution (with ndof = number of parameters of interest) for a large 
data sample (→ Wilks' theorem).

−2 ln λp(θ) χ2

p✓(⌫) =

1Z

qobs

h(q|✓, ⌫) dq

�p(✓) =
L(✓, bb⌫(✓))
L(b✓, b⌫)
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Decision trees
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Multivariate Analysis:  
An Early Example from Particle Physics

130

Signal: e+e− → W+W−

Background: e+e− → qqgg 
often 4 well separated hadron jets

4 less well separated hadron jets

←  input variables based on jet 
structure, event shape, ... 
none by itself gives much 
separation.

Neural network output:

(Garrido, Juste and Martinez, ALEPH 96-144)

G. Cowan, Lecture on Statistical data analysis 

https://www.pp.rhul.ac.uk/~cowan/stat/stat_6.pdf
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Multi-Variate Classification

131

Consider events which can be either signal or background events.

Each event is characterized by n observables:

~x = (x1, ..., xn) "feature vector"

Goal: classify events as signal or background in an optimal way.

This is usually done by mapping the feature vector to a single variable, i.e., 
to scalar test statistic:

A cut y > c to classify events as signal corresponds to selecting a 
potentially complicated hyper-surface in feature space. In general superior 
to classical "rectangular" cuts on the xi.

Rn ! R : y(~x)
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Classification and Regression

132

The codomain Y of the function y: X → Y can be a set of labels or classes 
or a continuous domain, e.g., ℝ

Binary classification: Y = {0, 1} e.g., signal or background

Multi-class classification Y = {c1, c2, ..., cn}

Y = finite set of labels   →   classification

Y = real numbers   →   regression

"All the impressive achievements of deep learning amount to just curve fitting" 
 
J. Pearl, Turing Award Winner 2011,  
https://www.quantamagazine.org/to-build-truly-intelligent-machines-teach-them-cause-and-effect-20180515/
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Classification: Different Approaches
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H0

rectangular cuts

linear

non linear

G. Cowan': 
https://www.pp.rhul.ac.uk/~cowan/stat_course.html

k-Nearest-Neighbor, 
Boosted Decision Trees, 
Random forests  
Multi-Layer Perceptrons, 
Support Vector Machines 
Deep Neural Networks,  
…
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Different Approaches to Classification

Neyman-Pearson lemma states that likelihood ratio provides an optimal test 
statistic for classification:
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y(~x) =
p(~x |S)
p(~x |B)

Problem: the underlying pdf's are almost never known explicitly.

1. Estimate signal and background pdf's and construct test statistic based on 
Neyman-Pearson lemma, e.g. Naïve Bayes classifier (= Likelihood classifier) 

2. Decision boundaries determined directly without approximating the pdf's 
(linear discriminants, decision trees, neural networks, …)

Two basic approaches:
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Decision Trees
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S/B
52/48

B
4/37

S/B
48/11

S/B
9/10

S
39/1

S
7/1

B
2/9

PMT Hits?
< 100 * 100

Energy?
< 0.2 GeV * 0.2 GeV

Radius?
< 500 cm * 500 cm

arXiv:physics/0508045v1

MiniBooNE: 1520 
photomultiplier signals, 
goal: separation of νe 
from νμ events

root node

branch node 
(node with further 
branching)

leaf node (no further branching)

Space of feature vectors split up into rectangular volumes, 
attributed to either signal or background
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Boosted Decision Trees and Random Forests
Drawback of decisions trees:  
very sensitive to statistical fluctuations in training sample → boosting 

136

Boosted decision trees: 
Continuously increase the weight of incorrectly identified events and build new 
trees; take weighted average 

Random forests: 
Build many independent trees from random subsets of the training sample; 
makes the decision more robust to missing data

Both show excellent performance and are easy to train  
(not much tuning needed)

Boosting is a general method of combining a set of classifiers (not necessarily 
decisions trees) into a new, more stable classifier with smaller error.
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Boosted Decision Trees: Idea
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12Helge Voss Graduierten-Kolleg, Freiburg,  11.-15. Mai 2009  ʊ Multivariate Data Analysis and Machine Learning 

Boosting

Training Sample
classifier 

C(0)(x)

Weighted Sample

re-weight
classifier 

C(1)(x)

Weighted Sample

re-weight
classifier 

C(2)(x)

Weighted Sample

re-weight

Weighted Sample

re-weight

classifier 
C(3)(x)

classifier 
C(m)(x)

ClassifierN
(i)

i
i

y(x) w C (x) ¦

H. Voss, Lecture: Graduierten-Kolleg, http://tmva.sourceforge.net/talks.shtml

Weight is increased if 
event was misclassified 
by the previous classifier

→ "Next classifier should 
pay more attention to 
misclassified events"

Popular example: 
AdaBoost  
(Freund, Schapire, 1997)

http://tmva.sourceforge.net/talks.shtml
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Practical Advice – Which Algorithm to Choose? 
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M. Kagan, https://indico.cern.ch/event/619370/

From Kaggle competitions:

Structured data: "High level" features that have meaning
‣ feature engineering + decision trees 
‣ Random forests 
‣ XGBoost

Unstructured data: "Low level" features, no individual meaning
‣ deep neural networks (DNN) 
‣ e.g. image classification: convolutional NN

require little or no preprocessing of the data

DNN have some impressive applications, but are they really the future? 
Geoffrey Hinton (DNN pioneer), 2017: "My view is throw it all away and start again" 

https://www.axios.com/artificial-intelligence-pioneer-says-we-need-to-start-over-1513305524-f619efbd-9db0-4947-a9b2-7a4c310a28fe.html

