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Deconvolution

2

Finite resolution of the detector 
smears the quantities we're 
interested in. 

https://en.wikipedia.org/wiki/Point_spread_function

Example: 
Smearing of a telescope image

Goal: 
smeared information  
→ original information

This is called deconvolution or 
unfolding

"Inverse problem"

Problem can be ill-posed in the 
sense that unfolded result can be 
very sensitive to small perturbations 
in the data
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To Unfold or Not to Unfold?
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[C. Pruneau,  
Data Analysis Techniques for Physical Scientists]

From S. Oser's lecture:

The most important advice I can give about deconvolution is “Don't”.  
 
It's a lot of work, and often produces biased or otherwise unsatisfactory 
results. Moreover it's often unnecessary. 

"Forward fitting" is much easier 
‣ Take theory prediction 
‣ Convolve it with the response of the detector 
‣ Compare smeared theory directly with the data
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When Unfolding Makes Sense
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1. Results from experiment A and B with different response function are to be 
compared 

2. It is too complicated to publish the response function of the detector along 
with the data 

‣ Detector response might be very complex, e.g., time dependent  

‣ Sometimes computer code reflecting the response would have to be published 

‣ Danger that future users don't use the filter correctly
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Examples
■ Multiplicity distributions P(Nch) 
‣ Measured multiplicity differs from true charged particle multiplicity due to 

detector effects (efficiency, fake hits, …) 
■ pT spectra, e.g., π0 spectrum measured with a calorimeter 
‣ finite energy resolution and shower overlaps in a calorimeter affect the pT of the 

reconstructed shower

5
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Example: multiplicity distributions in pp collisions arXiv:0912.0023

true N's contributing to 
measured N = 30

measured N's for a true N = 30
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Response Matrix (I)
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Z

⌦m

r(xm|xt) dxm = 1

Suppose that we deal with continues variables (e.g., transverse momentum) 

ft(xt) :  distribution of true values (normalized to unity)

:  distribution of measured values (normalized to unity)fm(xm)

fb(xm) :  distribution of background (normalized to unity)

Response function R:

probability (density) to observe xm given xtR(xm|xt) = r(xm|xt)⇥ "(xt)

"smearing" "efficiency"

By construction, one has
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Response Matrix (II)
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pj =

Z

bin j
dxt ft(xt), µj = µtot ⇥ pj

Further definitions:
:  number of true events

ntot

mtot

:  number of measured events
:  number of background eventsbtot

µtot = E [mtot], ⌫tot = E [ntot], �tot = E [btot]

It is practical to work with discrete bins. E.g., probability to find true in bin j:

Ignoring backgrounds, the measured number of entries in bin i is:

⌫i = µtot

Z

⌦t

dxt Prob(xm in i |true xt , detected)

⇥ Prob(detect xt)⇥ Prob(produce xt)

= µtot

Z

bin i
dxm

Z

⌦t

dxt r(xm|xt)"(xt)ft(xt)
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Response Matrix (III)
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⌫i = µtot

Z

bin i
dxm

MX

j=1

Z

bin j
dxt r(xm|xt)"(xt)ft(xt)

=
MX

j=1

Z

bin i
dxm

Z

bin j
dxt

r(xm|xt)"(xt)ft(xt)
µj/µtot

µj

⌫i =
MX

j=1

Rijµj

Further definitions:

This may be written as

with the components of the response matrix

Rij =

R
bin i dxm

R
bin j dxt r(xm|xt)"(xt)ft(xt)R

bin j dxt f (xt)
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Response Matrix (IV)
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NX

i=1

Rij = "j

⌫i =
MX

j=1

Rijµj + �i ~⌫ = R~µ+ ~�

Rij = Prob(observed in bin i |true in bin j)

In other words:

Obviously, summing the response matrix over i gives the efficiency:

In compact matrix form (including background):

Response matrix depends on ft(xt) which we want to know. However, if we 
make the bins small enough ft(xt) ≈ const. within a bin and drops from the ratio:

Rij =

R
bin i dxm

R
bin j dxt r(xm|xt)"(xt)ft(xt)R

bin j dxt f (xt)
⇡ 1

�xt,j

Z

bin i
dxm

Z

bin j
dxt r(xm|xt)"(xt)



Statistical Methods in Particle Physics WS 2017/18 | K. Reygers | 9. Unfolding

Unfolding by Inverting the Response Matrix (I)
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Replace     by     to  obtain and obvious estimator for the true distribution:

~̂µ = R�1(~n � ~�)

~⌫ = R~µ+ ~�

We have 

~⌫ ~n

This solution minimizes

�2(~µ) = (~⌫(~µ)� ~n)TV�1(~⌫(~µ)� ~n)

It can be shown that the covariance matrix of the solution is given by

Vi ,j = cov[ni , nj ]where

U = R�1V (R�1)T



Statistical Methods in Particle Physics WS 2017/18 | K. Reygers | 9. Unfolding

Unfolding by Inverting the Response Matrix (II)
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It can also be shown that matrix inversion is unbiased an has minimal variance.

true distribution solid line: ~µ

dashed line: 
sampled data 

estimate

~n

This sounds good … let's try it.

This looks like a disaster … unfolded distribution very different from the true one

Cowan, http://inspirehep.net/record/599644

from Poisson(ni , ⌫i )

~⌫ = R~µ ~̂µ = R�1~n
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Unfolding by Inverting the Response Matrix (III)
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Another example:

R =

0
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Same conclusion: we don't get the desired (smooth) answer
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What's Wrong with the Matrix Inversion Method? 
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Unbiased, minimum variance, actually also a ML estimator … all very nice!

The result is not wrong, it is just not desirable  
‣ Does not really look like the original distribution 
‣ Large correlation between bins

"Applying the response matrix R smears out fine structure  
→ applying R–1 creates (usually unwanted) structure"

More desirable solution by adding (smoothness) constraints.  
However, this will produce a bias.

The art of unfolding is to find an acceptable balance between bias and 
smoothness.
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Bin-by-Bin Method (I)
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Assume shape of true spectrum and determine correction factor for each bin 
(usually determined from Monte Carlo simulation):

µi = Ci (ni � �i ) Ci =
µMC
i

⌫MC
i

Works if smearing (bin-to-bin sharing) is negligible, only loss due to finite 
efficiency:

Rij ⇡ �ij"j

Obviously works, too, if MC = nature.

Used very often, but has issues …

Expectation value for corrected data:

E [µ̂i ] = CiE [ni � �i ] = Ci (⌫i � �i ) ⌘ Ci⌫
sig
i
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Bin-by-Bin Method (II)
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Inserting the Ci's one can determine the bias:

E [µ̂i ] =
µMC
i

⌫MC
i

⌫sigi =

 
µMC
i

⌫MC
i

� µi

⌫sigi

!
⌫sigi

| {z }
bias

+µi
no bias only if  
MC = nature

Covariance matrix of the corrected data (smearing fluctuations 
independent between bins)

Uij = cov[µ̂i, µ̂j] = CiCj cov[n
sig
i , nsigj ]

| {z }
0 for i 6=j

= C 2
i Var[n

sig
i ]�ij

Iterative bin-by-by method 
‣ Start with plausible guess of true spectrum 
‣ Apply correction to measurement 
‣ Generate new correction factors from corrected spectrum of previous iteration 
‣ And so on … usually a few iterations sufficient
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Regularized Unfolding
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Matrix inversion is the maximum likelihood solution:

Idea: accept solutions that are close to maximum likelihood estimate:

ln L(~µ) � ln L(~µmax)�� ln L(~µ)

Define a smoothness function S that gets bigger when the unfolded 
solution becomes smoother. 

The task then is to maximize

�(~µ) = ↵ ln L(~µ) + S(µ)

α depends on           , 
α → ∞ give ML solution

� ln ~µ smoothness function

Independent 
Poisson 
fluctuations:

ML estimator:ln L(~µ) =
MX

i=1

(ni ln ⌫i � ⌫i )
~̂⌫ = ~n

! ~̂µ = R�1(~n � ~�)
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Tikhonov Regularization

17

Measure of smoothness = mean square of k-th derivative of deconvoluted 
function f:

Minus sign makes S big when derivative is small

Tikhonov for k = 2 with log L =  -χ2/2: 

Implementation by A. Höcker, V. Kartvelishvili: Singular Value Decomposition 
(NIM A372 (1996) 469, hep-ph/9509307, TSVDUnfold in ROOT)

Minimizes      

Advice on how to choose τ in the paper    

S [f ] = �
Z

dx

✓
dk f

dkx

◆2

k = 1, 2, 3, ...

S(~µ) = �
M�2X

i=1

(�µi + 2µi+1 � µi+2)
2

�2(~µ) + ⌧
X

i

[(µi+1 � µi )� (µi � µi�1)]
2
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RooUnfold with SVD Algorithm
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Gaussian smearing, 
systematic translation, and 
variable inefficiency

Residuals Correlation 
matrix

RooUnfold with SVD algorithm

Ȥ2
bin=42

Ȥ2
cov=535

k = 30

Tim Adye - RAL RooUnfold 22

Tim Adye, Unfolding in HEP, https://indico.cern.ch/event/671301/contributions/2745801
http://hepunx.rl.ac.uk/~adye/software/unfold/RooUnfold.html
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Over- and Under-Regularized Unfolding 

19

Andreas Höcker, https://indico.cern.ch/event/634037/
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Data unfolding — example

22
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�8 W = 0.003
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�8 W = 0.0002

TSVUnfold @ ROOT

Best regularisation choice Under-regularisedOver-regularised

The parameter ~ regulates the strength of the damping:

• If ~ too small ® oscillations

• If ~ too large ® information in !i>j> is suppressed
(!i>j> becomes too “smooth” and will be biased towards !lm)

• The right choice captures the significant information and discards the rest

The parameter determines the strength of the regularization 
‣ τ too small → oscillations 
‣ τ too large → unfolded spectrum biased towards MC
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Regularization Based on Entropy (I)
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Shannon entropy of a discrete probably distribution:

all pi equal → maximum entropy (max. smoothness)
pi = 1, all others 0 → minimum entropy

Use entropy as regulation function:

This gives the distribution with the maximum entropy consistent within the 
selected tolerance with the ML solution

S(~µ) = H(~µ) = �
MX

i=1

µi

µtot
ln

µi

µtot

H = �
MX

i=1

pi ln pi

Entropy related to number of different ways μtot objects can be distributed to 
obtains histogram ⃗μ = (μ1, . . . , μM)

⌦(~µ) =
µtot!

µ1! · ... · µM !
ln⌦(~µ) ⇡ µtotH(~µ) 

Stirling’s approximation
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Relation of Maximum Entropy Regularization and 
Bayesian Approach

21

With a certain prior belief we obtain in the Bayesian approach:

Maximum entropy prior:

⇡(~µ) / ⌦(~µ) = exp(µtotH(~µ))

f (~µ|~n) / L(~n|~µ) · ⇡(~µ)

Logarithm of Bayesian posterior distribution:

ln f (~µ|~n) / ln L(~n|~µ) + ln⇡(~µ)

= ln L(~n|~µ) + µtotH(~µ)

We see: Bayesian approach = maximum likelihood with entropy regularization 
(with α = 1/μtot)
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Cross Entropy Regularization

22

Maximum entropy regularizations penalizes deviation from flat distribution.

In some situations that might be the right assumption.

But if we have prior knowledge that the true events approximately follow 
some distribution q, then want might want to use cross entropy:

K (f ; q) = �
MX

i=1

fi ln
fi

Mqi

If reference distribution is flat, this reduces to regular entropy.
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Bayesian Unfolding (I)

23

C1 C2
… CMC3

…E1 E2 E3 TEN

M causes

N effects

trash bin for 
undetected events

Causal network:

Response matrix:

Rji = P(Ej |Ci , I )

E [nj |µi ] = P(Ej |Ci , I ) · µi = Rji · µi

I: prior knowledge about 
probabilities of the causes Ci
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Bayesian Unfolding (II)
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Bayes theorem:

P(Ci |Ej , I ) =
P(Ej |Ci , I ) · P(Ci |I )PM

k=1 P(Ej |Ck , I ) · P(Ck |I )

We can write this as

✓ij := P(Ci |Ej , I ) =
Rji · P(Ci |I )PM

k=1 Rjk · P(Ck |I )

Estimate for number of true events in bin i given that we measure 
nj events in bin j:

µi |nj =
P(Ci |Ej , I ) · nj

"i
=

✓ij · nj
"i
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Bayesian Unfolding (III)
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Summing over all observed bins:

µi |~n =
1

"i

NX

j=1

✓ij · nj

"i =
NX

j=1

P(Ej |Ci , I ) =
NX

j=1

Rji

By definition we can write the efficiency as

Response matrix usually from Monte Carlo simulation. 
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Bayesian Unfolding (IV)

■ Choose prior distribution P(Ci,I) 
■ Often prior = measured distribution 
■ Update prior according to measured values 
■ iterate 
■ Limited number of iterations provides implicit regularization

26

This procedure is applied iteratively:

Shepp/Vardi 1982, Mülthei/Schorr 1986  
G. D'Agostini, A Multidimensional unfolding method based on Bayes' theorem'', 
Nucl. Instrum. Meth. A 362 (1995) 487 (see also arXiv:1010.0632) 
V. Blobel, Unfolding methods in high-energy physics experiments,  
https://cds.cern.ch/record/157405



Statistical Methods in Particle Physics WS 2017/18 | K. Reygers | 9. Unfolding

RooUnfold with Iterative Bayesian Algorithm
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Tim Adye, Unfolding in HEP, https://indico.cern.ch/event/671301/contributions/2745801
http://hepunx.rl.ac.uk/~adye/software/unfold/RooUnfold.html

RooUnfold with Bayes algorithm

Residuals Correlation 
matrix

Gaussian smearing, 
systematic translation, and 
variable inefficiency

Ȥ2
bin=47

Ȥ2
cov=9178

3 iterations

Tim Adye - RAL RooUnfold 21
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Which Method to Choose?

28

There is no "best" method. Depends on the analysis.

Main questions: 
How to choose regularization parameters? 
After how many iterations to stop in the iterative Bayesian unfolding?

Danger: Regularization and early stopping in iterative unfolding introduce a bias

Don't forget:  
it some cases it is most useful to publish folding matrix with the result

Stefan Schmitt, DESY  
http://www.desy.de/~sschmitt/talks/UnfoldStatSchool2014.pdf


