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Multi-Variate Classification

2

Consider events which can be either signal or background events.

Each event is characterized by n observables:

~x = (x1, ..., xn) "feature vector"

Goal: classify events as signal or background in an optimal way.

This is usually done by mapping the feature vector to a single variable, i.e., 
to scalar test statistic:

A cut y > c to classify events as signal corresponds to selecting a 
potentially complicated hyper-surface in feature space. In general superior 
to classical "rectangular" cuts on the xi.

Rn ! R : y(~x)

Problem closely related to machine learning (pattern recognition, data 
mining, … )
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Classification: Different Approaches

3

H0

rectangular cuts

linear

non linear

G. Cowan':  
https://www.pp.rhul.ac.uk/~cowan/stat_course.html

k-Nearest-Neighbor, 
Boosted Decision Trees,  
Multi-Layer Perceptrons,  
Support Vector Machines 
…
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Signal Probability Instead of Hard Decisions

Instead of a hard yes/no decision one can also define the probability of an 
event to be a signal event:

4

2.8 Getting help 11
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TMVA output for classifier: Likelihood
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Figure 4: Example plots for classifier output distributions for signal and background events from the academic
test sample. Shown are likelihood (upper left), PDE range search (upper right), Multilayer perceptron (MLP
– lower left) and boosted decision trees.

• TMVA tutorial: https://twiki.cern.ch/twiki/bin/view/TMVA.

• An up-to-date reference of all configuration options for the TMVA Factory, the fitters, and all
the MVA methods: http://tmva.sourceforge.net/optionRef.html.

• On request, the TMVA methods provide a help message with a brief description of the method,
and hints for improving the performance by tuning the available configuration options. The
message is printed when the option ”H” is added to the configuration string while booking
the method (switch o↵ by setting ”!H”). The very same help messages are also obtained by
clicking the “info” button on the top of the reference tables on the options reference web page:
http://tmva.sourceforge.net/optionRef.html.

• The web address of this Users Guide: http://tmva.sourceforge.net/docu/TMVAUsersGuide.pdf.

• The TMVA talk collection: http://tmva.sourceforge.net/talks.shtml.

Ps(y) ⌘ P(S |y) = p(y |S) · fs
p(y |S) · fs + p(y |B) · (1� fs)

, fs =
ns

ns + nb

Example: test statistic y for signal and background from a Multi-Layer 
Perceptron (MLP):

p(y |S)
p(y |B)

TMVA manual
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ROC Curve
Quality of the classification can be characterized by the receiver operating 
characteristic (ROC curve) 

5

12 3 Using TMVA

Signal efficiency
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Figure 5: Example for the background rejection versus signal e�ciency (“ROC curve”) obtained by cutting
on the classifier outputs for the events of the test sample.

• TMVA versions in ROOT releases: http://tmva.sourceforge.net/versionRef.html.

• Direct code views via ViewVC: http://tmva.svn.sourceforge.net/viewvc/tmva/trunk/TMVA.

• Class index of TMVA in ROOT: http://root.cern.ch/root/htmldoc/TMVA Index.html.

• Please send questions and/or report problems to the tmva-users mailing list:
http://sourceforge.net/mailarchive/forum.php?forum name=tmva-users (posting messages requires
prior subscription: https://lists.sourceforge.net/lists/listinfo/tmva-users).

3 Using TMVA

A typical TMVA classification or regression analysis consists of two independent phases: the training
phase, where the multivariate methods are trained, tested and evaluated, and an application phase,
where the chosen methods are applied to the concrete classification or regression problem they have
been trained for. An overview of the code flow for these two phases as implemented in the examples
TMVAClassification.C and TMVAClassificationApplication.C (for classification – see Sec. 2.5),
and TMVARegression.C and TMVARegressionApplication.C (for regression) are sketched in Fig. 7.
Multiclass classification does not di↵er much from two class classification from a technical point of
view and di↵erences will only be highlighted where neccessary.

In the training phase, the communication of the user with the data sets and the MVA methods
is performed via a Factory object, created at the beginning of the program. The TMVA Factory
provides member functions to specify the training and test data sets, to register the discriminating

good

better

1 – εB

εB: background 
efficiency
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Different Approaches to Classification
Neyman-Pearson lemma states that likelihood ratio provides an optimal test 
statistic for classification:

6

y(~x) =
p(~x |S)
p(~x |B)

Problem: the underlying pdf's are almost never known explicitly.

1. Estimate signal and background pdf's and construct test statistic based on 
Neyman-Pearson lemma, e.g. Naïve Bayes classifier (= Likelihood classifier) 

2. Decision boundaries determined directly without approximating the pdf's 
(linear discriminants, decision trees, neural networks, …)

Two  approaches:
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Supervised Machine Learning (I)

7

Bias-variance tradeoff 
‣ Classifiers with a small number of degrees of freedom are less prone to statistical 

fluctuations: different training samples would result in a similar classification boundaries 
("small variance") 

‣ However, if the data contain features that a model with few degrees of freedom cannot 
describe, a bias is introduced. In this case a classifier with more degrees of freedom 
would be better. 

‣ User has to find a good balance 

Supervised Machine Learning requires labeled training data, i.e., a training 
sample where for each event it is known whether it is a signal or background 
event 
‣ Decision boundary defined by minimizing a loss function ("training")
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Supervised Machine Learning (II)

8

Training, validation, and test sample 
‣ Decision boundary fixed with training sample 
‣ Performance on training sample becomes better with more iterations 
‣ Danger of overtraining: Statistical fluctuations of the training sample will be learnt 
‣ Validation sample = independent labeled data set not used for training  
→ check for overtraining 

‣ Sign of overtraining: performance on validation sample becomes worse  
→ Stop training when signs of overtraining are observed ("early stopping") 

‣ Performance: apply classifier to independent test sample 
‣ Often: test sample = validation sample (only small bias)
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Supervised Machine Learning (III)

9

Cross validation (efficient use of scarce training data) 
‣ Split training sample in k independent subset Tk of the full sample T 
‣ Train on T \ Tk resulting in k different classifiers 
‣ For each training event there is one classifier that didn't use this event for training 
‣ Validation results are then combined

Rule of thumb if training data not expensive 
‣ Training sample: 50% 
‣ Validation sample: 25% 
‣ Test sample: 25% 

often test sample = validation sample,  
i.e., training : validation/test = 50:50
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Estimating PDFs from Histograms?

10G. Cowan  iSTEP 2014, Beijing / Statistics for Particle Physics / Lecture 2 15 

Approximate LR from 2D-histograms 
Suppose problem has 2 variables.  Try using 2-D histograms: 

Approximate pdfs using N (x,y|s), N (x,y|b) in corresponding cells. 
But if we want M bins for each variable, then in n-dimensions we 
have Mn cells; can’t generate enough training data to populate. 

 → Histogram method usually not usable for n > 1 dimension. 

signal back- 
ground 

Consider 2d example:

approximate PDF by N(x , y |S) and N(x , y |B)

G. Cowan': https://www.pp.rhul.ac.uk/~cowan/stat_course.html

M bins per variable in d dimensions: Md cells  
→ hard to generate enough training data (often not practical for d > 1)
In general in machine learning, problems related to a large number of 
dimensions of the feature space are referred to as the "curse of dimensionality" 
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k-Nearest Neighbor Method (I)

11

k-NN classifier  
‣ Estimates probability density around the input vector 
‣            and             are approximated by the number of signal and background events in 

the training sample that lie in a small volume around the point

Algorithms finds k nearest neighbors:

k = ks + kb

Probability for the event to be of signal type:

ps(~x) =
ks(~x)

ks(~x) + kb(~x)

p(~x |S) p(~x |B)
~x
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k-Nearest Neighbor Method (II)

12

8.5 k-Nearest Neighbour (k-NN) Classifier 85
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Figure 14: Example for the k-nearest neighbour algorithm in a three-dimensional space (i.e., for three
discriminating input variables). The three plots are projections upon the two-dimensional coordinate planes.
The full (open) circles are the signal (background) events. The k-NN algorithm searches for 20 nearest points
in the nearest neighborhood (circle) of the query event, shown as a star. The nearest neighborhood counts 13
signal and 7 background points so that query event may be classified as a signal candidate.

Like (more or less) all TMVA classifiers, the k-nearest neighbour estimate su↵ers from statistical
fluctuations in the training data. The typically high variance of the k-NN response is mitigated by
adding a weight function that depends smoothly on the distance from a test event. The current
k-NN implementation uses a polynomial kernel

W (x) =

(
(1� |x|

3)3 if |x| < 1 ,

0 otherwise .
(59)

If Rk is the distance between the test event and the kth neighbour, the events are weighted according
to the formula:

WS(B) =

kS(B)X

i=1

W

✓
Ri

Rk

◆
, (60)

where kS(B) is number of the signal (background) events in the neighbourhood. The weighted signal
probability for the test event is then given by

PS =
WS

WS +WB

. (61)

The kernel use is switched on/o↵ by the option UseKernel.

Regression

The k-NN algorithm in TMVA also implements a simple multi-dimensional (multi-target) regression
model. For a test event, the algorithm finds the k-nearest neighbours using the input variables, where
each training event contains a regression value. The predicted regression value for the test event is
the weighted average of the regression values of the k-nearest neighbours, cf. Eq. (39) on page 70.

Simplest choice for distance 
measure in feature space is the 
Euclidean distance:

Better: take correlations between 
variables into account:

R = |~x � ~y |

R =
q

(~x � ~y)TV�1(~x � ~y)

V = covariance matrix

"Mahalanobis distance"

The k-NN classifier has best performance when the boundary that separates 
signal and background events has irregular features that cannot be easily 
approximated by parametric learning methods.

TMVA manual 
https://root.cern.ch/guides/tmva-manual
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Kernel Density Estimator (KDE) [Just mentioned briefly here]

13
Niklaus Berger – SMIPP – WS 2013 – Slide 17

Idea: Smear training data set to get an approximation to the PDFs

12.5. Kernel density estimators

x1

x2

Idea: Smear training data to get an estimate of the PDFs

Lecture Niklas Berger

K = ”Kernel”

Use, e.g., Gaussian kernel: K (~x) =
1

(2⇡)d/2
e�|~x|2/2 d = dimension of feature space

h = ”bandwidth” (smoothing parameter)
f̂h(~x) =

1

n

nX

i=1

Kh(~x � ~xi ) =
1

nh

nX

i=1

K (
~x � ~xi

h
)



Statistical Methods in Particle Physics WS 2017/18 | K. Reygers | 8. Multivariate Analysis

Gaussian KDE in 1 Dimension

14

G. Cowan  iSTEP 2014, Beijing / Statistics for Particle Physics / Lecture 2 43 

Gaussian KDE in 1-dimension (cont.) 

Place a kernel pdf (here a Gaussian) centred around each  
generated event weighted by 1/Nevent: 

Adaptive KDE: adjust width of kernel according to PDF (wide where pdf is low)

Advantage of KDE: no training!

G. Cowan': https://www.pp.rhul.ac.uk/~cowan/stat_course.html

Disadvantage of KDE:  need to sum of all training events to evaluate PDF, 
i.e., method can be slow



Statistical Methods in Particle Physics WS 2017/18 | K. Reygers | 8. Multivariate Analysis

Fisher Linear Discriminant

15

Linear discriminant is simple. Can still be optimal if amount of training data is 
limited. 

Ansatz for test statistic: y(~x) =
nX

i=1

wixi = ~wT~x

Choose parameters wi so that separation between signal and background 
distribution is maximum.

Fisher: maximize

23 Glen Cowan Multivariate Statistical Methods in Particle Physics

Ansatz:

→  Fisher:  maximize

Choose the parameters w1, ..., wn so that the pdfs
have maximum ‘separation’.  We want:

s b

y

f (y)
tb

large distance  between 
mean values, small widths

t
s

Linear test statistic
y x=∑

i=1

n

wi xi=
wT x

f  y∣s , f  y∣b

J  w=
s−b

2

s

2b

2

J(~w) =
(⌧s � ⌧b)2

⌃2
s + ⌃2

b

G. Cowan':  
https://www.pp.rhul.ac.uk/~cowan/stat_course.html

Need to define "separation".
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Fisher Linear Discriminant: Variable Definitions

16

G. Cowan':  
https://www.pp.rhul.ac.uk/~cowan/stat_course.html

µs,b
i =

Z
xi f (~x |Hs,b) d~x

V
s,b
ij =

Z
(xi � µs,b

i )(xj � µs,b
j ) f (~x |Hs,b) d~x

Mean and covariance for signal and background:

⌧s,b =

Z
y(~x)f (~x |Hs,b) d~x = ~wT~µs,b

⌃2
s,b =

Z
(y(~x)� ⌧s,b)

2
f (~x |Hs,b) d~x = ~wT

Vs,b~w

Mean and covariance of         for signal and background:y(~x)
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Fisher Linear Discriminant:  
Determining the Coefficients wi

17

G. Cowan':  
https://www.pp.rhul.ac.uk/~cowan/stat_course.html

Numerator of          :

⌃2
s + ⌃2

b =
nX

i ,j=1

wiwj (V
s + V b)ij ⌘ ~wTW ~w

J(~w)

J(~w)Denominator of          :

Maximize:

J(~w) =
~wTB ~w

~wTW ~w
=

separation between classes

separation within classes

(⌧s � ⌧b)
2 =

 
nX

i=1

wi (µ
s
i � µb

i )

!2

=
nX

i ,j=1

wiwj(µ
s
i � µb

i )(µ
s
j � µb

j )

⌘
nX

i ,j=1

wiwjBij = ~wTB ~w
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Fisher Linear Discriminant:  
Determining the Coefficients wi

18

G. Cowan':  
https://www.pp.rhul.ac.uk/~cowan/stat_course.html

@J

@wi
= 0

y(~x) = ~wT~x with ~w / W�1(~µs � ~µb)

Setting                  gives:            

linear decision boundary

Weight vector    can be interpreted as a 
direction in feature space on which the 
events are projected.

We obtain linear decision boundaries.

~w
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Fisher Linear Discriminant: Remarks

19

In case the signal and background pdfs              and              are both 
multivariate Gaussian with the same covariance but different means, the Fisher 
discriminant is

f (~x |Hs) f (~x |Hb)

y(~x) / ln
f (~x |Hs)

f (~x |Hb)

That is, in this case the Fisher discriminant is an optimal classifier according to 
the Neyman-Pearson lemma (as         is a monotonic function of the likelihood 
ratio)

y(~x)

Test statistic can be written as 

y(~x) = w0 +
nX

i=1

wixi

where events with y > 0 are classified as signal. Same functional form as for 
the perceptron (prototype of neural networks).
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Perceptron

20

Discriminant: y(~x) = h

 
w0 +

nX

i=1

wixi

!

The nonlinear, monotonic function h is called activation function.

Typical choices for h: 1

1 + e�x
(”sigmoid”), tanh x

x1

xn

y(~x)
h(
x)

x
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The Biological Inspiration: the Neuron

21

8.10 Artificial Neural Networks (nonlinear discriminant analysis) 99
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Figure 15: Multilayer perceptron with one hidden layer.

ylj

wl−11j
wl−12j..

.
yl−12
yl−11

wl−1njyl−1n

Σ

Output

Input

ρ

Figure 16: Single neuron j in layer ` with n input connections. The incoming connections carry a weight of

w
(l�1)
ij .

perceptron is the input layer, the last one the output layer, and all others are hidden layers. For
a classification problem with nvar input variables the input layer consists of nvar neurons that hold
the input values, x1, . . . , xnvar , and one neuron in the output layer that holds the output variable,
the neural net estimator yANN.

For a regression problem the network structure is similar, except that for multi-target regression
each of the targets is represented by one output neuron. A weight is associated to each directional
connection between the output of one neuron and the input of another neuron. When calculating
the input value to the response function of a neuron, the output values of all neurons connected to
the given neuron are multiplied with theses weights.

https://en.wikipedia.org/wiki/Neuron

Human brain: 
1011 neurons, each with on average 
7000 synaptic connections
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Feedforward Neural Network with One Hidden Layer

22

y(~x) = h

0

@w (2)
10 +

mX

j=1

w (2)
1j �j(~x)

1

A

y(~x)

�1(~x)

�m(~x)

superscripts indicates layer number

Straightforward to generalize to multiple hidden layers

�i (~x) = h

0

@w (1)
i0 +

nX

j=1

w (1)
ij xj

1

A
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Network Training

23

E (~w) =
1

2

NX

a=1

(y(~xa, ~w)� ta)
2 =

NX

a=1

Ea(~w)

~xa : training event, a = 1, ...,N

ta : correct label for training event a

e.g., ta = 1, 0 for signal and background, respectively 

Error function:

~w : vector containing all weights

Weights are determined by minimizing the error function.
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Backpropagation 

24

~w (⌧+1) = ~w (⌧) � ⌘rEa(~w
(⌧))

Start with an initial guess         for the weights an then update weights after 
each training event:

~w (0)

Let's write network output as follows:

Here we defined φ0 = x0 = 1 and the sums start from 0 to include the offsets.

Weights from input layer to hidden layer (→ further application of chain rule):

learning rate

Weights from hidden layer to output:

Ea =
1

2
(ya � ta)

2 ! @Ea

@w (2)
1j

= (ya � ta)h
0(u(~xa))

@u

@w (2)
1j

= (ya � ta)h
0(u(~xa))�j(~xa)

~xa ⌘ (xa,1, ..., xa,n)
@Ea

@w (1)
jk

= (ya � ta)h
0(u(~xa))w

(2)
1j h0 (vj(~xa)) xa,k

y(~x) = h(u(~x)) with u(~x) =
mX

j=0

w (2)
1j �j(~x), �j(~x) = h

 
nX

k=0

w (1)
jk xk

!
⌘ h (vj(~x))
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Neural Network Output and Decision Boundaries

25

P. Bhat, Multivariate Analysis Methods in Particle Physics, inspirehep.net/record/879273

NS61CH12-Bhat ARI 17 September 2011 7:17
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Figure 3
(a) A schematic representation of a three-layer feed-forward neural network (NN). (b) Distributions of NN
output (discriminant) trained on data shown in panel c (same data as in Figure 2). (c) Equi-probability
contours (decision boundaries) corresponding to cuts of 0.02, 0.1, 0.4, 0.8, and 0.95 on the NN output
shown in panel b, superposed on signal and background data distributions. The data points to the right of
each contour have NN output values above the displayed cut. (d ) Signal-probability surface as given by the
NN output, D(x1, x2) ∼ p(s|x1, x2), in the feature space.

3.5. Neural Networks
Feed-forward NNs (Figure 3a), also known as multilayer perceptrons (MLPs), are the most
popular and widely used multivariate methods. An MLP consists of an interconnected group of
neurons or nodes arranged in layers; each node processes the information it receives with an
activation (or transformation) function, then passes the result to the next layer of nodes. The
first layer, known as the input layer, receives the feature variables. This is followed by one or
more hidden layers of nodes. The last layer outputs the final response of the network. Each
interconnection is characterized by a weight, and each processing node may have a bias or a
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Example of Overtraining

26

Too many neurons/layers make a neural network too flexible 
→ overtraining  

training sample test sample

Network "learns" features that are merely 
statistical fluctuations in the training sample

G. Cowan: https://www.pp.rhul.ac.uk/~cowan/stat_course.html
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Monitoring Overtraining

27

Monitor fraction of misclassified events (or error function:)

er
ro

r r
at

e

flexibility (e.g., number 

of nodes/layers)

test sample

training sample

optimum = minimum of 
error rate for test sample

overtraining = 
increase of error rate

G. Cowan: 
https://www.pp.rhul.ac.uk/~cowan/stat_course.html
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Example: Identification of Events with Top-Quarks
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NS61CH12-Bhat ARI 17 September 2011 7:17

0 0.2 0.4 0.6 0.8 1

Background
Signal

DLB

Shaded = signal

0 50 100 150 0 0.1

0 0.5 1 1.5 0 0.5 1 1.52

0.2 0.3 0.4

Background
Signal

DNN

0 0.2 0.4 0.6 0.8 1

x1  = missing ET x2  = aplanarity

   x3    x4

Ev
en

ts
 (a

rb
itr

ar
y 

un
its

)

Ev
en

ts
 (a

rb
itr

ar
y 

un
its

)

a b

Figure 6
(a) Distributions of the discriminant variables x1, x2, x3, and x4 (see Reference 24 for definitions) used in the first direct precision
measurement of the top quark mass at DØ. (b) Distributions of the final multivariate discriminants. The filled histograms represent
signal; the unfilled ones represent background. All histogram areas are normalized to unity.

approximately 53%. Nonetheless, despite this technical disadvantage, DØ measured the top quark
mass with a precision approaching that of CDF by using multivariate techniques for separating
signal from background.

Two multivariate methods—a variant of the likelihood discriminant technique (naı̈ve Bayes)
and a feed-forward NN method—were used to compute a discriminant D ≡ p(top|x) for each
event. A fit of the data, based on a Bayesian method (59), to discrete sets of signal and back-
ground models in the [p(top|x), mfit] plane was used to extract the top quark mass (mfit is the
mass from a kinematic fit to the tt̄ hypothesis). Figure 6 shows the distributions of variables
and the discriminants. By combining the results of the fits from the two methods, DØ measured
mt = 173.3 ± 5.6 (stat.) ± 5.5 (syst.) GeV/c 2 (25), which was a factor of two better than the result
obtained with conventional methods and the same data set. This example underscores that even
very early in the life of an experiment, huge gains can be obtained through a judicious yet advanced
treatment of a few simple variables.

Most of the measurements of the top quark mass at CDF and DØ since this first successful
application of a multivariate approach have used some kind of multivariate method: NNs, the
matrix-element method, or the likelihood method. Currently, the measured world average top
quark mass is mt = 173.3 ± 1.1 GeV/c 2 (60).
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tt̄ ! W+bW�b̄ ! l⌫bqq̄b̄ likelihood method

neural netD0 experiment,  
plot from inspirehep.net/record/879273
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Deep Neural Networks

29
http://neuralnetworksanddeeplearning.com

Deep networks: many hidden layers with large number of neurons 

Challenges 
‣ Hard too train ("vanishing gradient 

problem") 
‣ Training slow 
‣ Risk of overtraining

Big progress in recent years 
‣ Interest in NN waned before ca. 2006 
‣ Milestone: paper by G. Hinton (2006): 

"learning for deep belief nets" 
‣ Image recognition, AlphaGo, … 
‣ Soon: self-driving cars, …
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Fun with Neural Nets in the Browser

30

http://playground.tensorflow.org
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Decision Trees (I)

31

S/B
52/48

B
4/37

S/B
48/11

S/B
9/10

S
39/1

S
7/1

B
2/9

PMT Hits?
< 100 ≥ 100

Energy?
< 0.2 GeV ≥ 0.2 GeV

Radius?
< 500 cm ≥ 500 cm

arXiv:physics/0508045v1

MiniBooNE: 1520 
photomultiplier signals, 
goal: separation of νe 
from νμ events

root node

branch node 
(node with further 
branching)

leaf node (no further branching)

Leaf nodes classify events as either signal or background
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Decision Trees (II)

32

Ann.Rev.Nucl.Part.Sci. 61 (2011) 281-309

Easy to interpret and visualize:  
Space of feature vectors split up into rectangular volumes  
(attributed to either signal or background)  

NS61CH12-Bhat ARI 17 September 2011 7:17
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Figure 5
(a) A schematic of a binary decision tree with two feature variables x1 and x2. (b) Illustration of the
corresponding partitions of the two-dimensional feature space. (c) Signal probability calculated as the ratio of
signal counts divided by the sum of signal and background counts in bins of two-dimensional histograms for
the data set shown in Figure 4. (d ) Signal probability approximated with five decision trees (DTs) (through
the use of AdaBoost) using the same data.

Note that, geometrically, the DT procedure amounts to recursively partitioning the feature
space into hypercubic regions or bins with edges aligned with the axes of the feature space.
Essentially, a DT creates M disjoint regions or a d-dimensional histogram with M bins of varying
bin size, and a response value is assigned to each bin. A DT, therefore, gives a piecewise constant
approximation to the function being modeled, say, the discriminant D(x). As the training data set
becomes arbitrarily large and as the bin sizes approach zero, the predictions of a DT approach
those of the target function, provided that the number of bins also grows arbitrarily large (but at
a rate slower than that of the data-set size).

The DT algorithm is applicable to discrimination of n classes, even though what I have de-
scribed is the binary DT method used in two-class signal/background discrimination. Figure 5
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How to build a decision tree in an optimal way?
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Finding Optimal Cuts

33

Separation btw. signal and background is often measured with the Gini index:

G = p(1� p)

Here p is the purity:

p =

P
signal wiP

signal wi +
P

background wi

wi = weight of event i

[usefulness of weights will 
become apparent soon]

Improvement in signal/background separation after splitting a set A into 
two sets B and C:

� = WAGA �WBGB �WCGC where WX =
X

X

wi
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Separation Measures

34

Misclassification rate: 1�max(p, 1� p)

Cross entropy: �p ln p � (1� p) ln(1� p)

Gini index: p(1� p)

p

[after Corrado Gini, used to measure income 
and wealth inequalities, 1912]

Splitting a node: examples

Node purity

Signal (background) event i with weight w i
s (w i

b
)

p =

P
i2signal

w
i

sP
i2signal

w i
s
+
P

j2bkg
w

j

b

Signal purity (= purity)
ps = p = s

s+b

Background purity
pb = b

s+b
= 1� ps = 1� p

Common impurity functions

misclassification error
= 1�max(p, 1� p)

(cross) entropy
= �

P
i=s,b pi log pi

Gini index signal purity
0 0.2 0.4 0.6 0.8 1

ar
bi
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ar

y 
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it

0
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Split criterion
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Also cross section (� s
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s+b
) and excess significance (� s

2

b
)

Yann Coadou (CPPM) — Boosted decision trees ESIPAP’16, Archamps, 9 February 2016 11/71
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Decision Tree Pruning

35

8.12 Boosted Decision and Regression Trees 109

Figure 18: Schematic view of a decision tree. Starting from the root node, a sequence of binary splits using
the discriminating variables xi is applied to the data. Each split uses the variable that at this node gives the
best separation between signal and background when being cut on. The same variable may thus be used at
several nodes, while others might not be used at all. The leaf nodes at the bottom end of the tree are labeled
“S” for signal and “B” for background depending on the majority of events that end up in the respective
nodes. For regression trees, the node splitting is performed on the variable that gives the maximum decrease
in the average squared error when attributing a constant value of the target variable as output of the node,
given by the average of the training events in the corresponding (leaf) node (see Sec. 8.12.3).

8.12.1 Booking options

The boosted decision (regression) treee (BDT) classifier is booked via the command:

factory->BookMethod( Types::kBDT, "BDT", "<options>" );

Code Example 50: Booking of the BDT classifier: the first argument is a predefined enumerator, the second
argument is a user-defined string identifier, and the third argument is the configuration options string.
Individual options are separated by a ’:’. See Sec. 3.1.5 for more information on the booking.

Several configuration options are available to customize the BDT classifier. They are summarized
in Option Tables 22 and 24 and described in more detail in Sec. 8.12.2.

When to stop growing a tree? 
‣ When all nodes are essentially pure? 
‣ Well, that's overfitting!

Pruning 
‣ Cut back fully grown tree to avoid 

overtraining 
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Boosted Decision Trees: Idea

36

Drawback of decisions trees:  
very sensitive to statistical fluctuations in training sample  

Solution: boosting 
‣ One tree → several trees ("forrest") 
‣ Trees are derived from the same training ensemble by reweighting events 
‣ Individual trees are then combined: weighted average of individual trees

Boosting is a general method of combining a set of classifiers (not necessarily 
decisions trees) into a new, more stable classifier with smaller error.

Popular example: AdaBoost (Freund, Schapire, 1997)
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AdaBoost (short for Adaptive Boosting)

37

Initial training sample

~x1, ...,~xn: multivariate event data

y1, ..., yn: true class labels, +1 or �1

w (1)
1 , ...,w (1)

n event weights

with equal weights normalized as
nX

i=1

w (1)
i = 1

Train first classifier f1:

f1(~xi ) > 0 classify as signal

f1(~xi ) < 0 classify as background
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Updating Events Weights

38

Define training sample k+1 from training sample k by updating weights:

w (k+1)
i = w (k)

i

e�↵k fk (~xi )yi/2

Zk

normalization factor so that 
i = event index

Weight is increased if event was misclassified by the previous classifier
→ "Next classifier should pay more attention to misclassified events"

At each step the classifier fk minimizes error rate

"k =
nX

i=1

w (k)
i I (yi fk(~xi )  0), I (X ) = 1 if X is true, 0 otherwise

nX

i=1

w (k)
i = 1
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Assigning the Classifier Score

39

Assign score to each classifier according to its error rate:

↵k = ln
1� "k
"k

Combined classifier (weighted average):

f (~x) =
KX

k=1

↵k fk(~x)

" 
KY

k=1

2
p
"k(1� "k)

It can be shown that the error rate of the combined classifier satisfies
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General Remarks on Multi-Variate Analyses

40

H. Voss, Multivariate Data Analysis and Machine Learning in High Energy Physics 
http://tmva.sourceforge.net/talks.shtml

Important: find good input variables for MVA methods  
‣ Good separation power between S and B 
‣ Little correlations among variables 
‣ No correlation with the parameters you try to measure in your signal sample! 

Pre-processing 
‣ Apply obvious variable transformations and let MVA method do the rest 
‣ Make use of obvious symmetries: if e.g. a particle production process is symmetric in 

polar angle θ use |cos θ| and not cos θ as input variable  
‣ It is generally useful to bring all input variables to a similar numerical range

MVA Methods 
‣ More effective than classic cut-based analyses  
‣ Take correlations of input variables into account
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Classifiers and Their Properties

41

H. Voss, Multivariate Data Analysis and Machine Learning in High Energy Physics 
http://tmva.sourceforge.net/talks.shtml

17Helge Voss Graduierten-Kolleg, Freiburg,  11.-15. Mai 2009  ― Multivariate Data Analysis and Machine Learning 

Summary of Classifiers and their Properties

The properties of the Function discriminant (FDA) depend on the chosen function A

Classifiers

Criteria
Cuts Likeli-

hood
PDERS
/ k-NN H-Matrix Fisher MLP BDT RuleFit SVM

☺

☺

/

.

.

.

.

/

Curse of 
dimensionality / ☺ / ☺

.

☺ . ☺

☺.☺

.

☺

.

Perfor-
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Speed

Robust
-ness

/

☺

/

.

/

☺

/

.

/

.

☺

Transparency

.

.

.

.

.

☺

☺

/ /

☺

☺

☺

/

☺

☺

☺

☺

☺

☺

☺

☺

//.

.
Weak input 
variables ☺ ☺ /

☺ ☺ .

no / linear 
correlations .
nonlinear 

correlations

Training

Response

Overtraining 

.

/

☺

☺

☺

/

☺

☺
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