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Multi-Variate Classification

Consider events which can be either signal or background events.

Each event is characterized by n observables:

X =(x1, ..., Xn) "feature vector"

Goal: classify events as signal or background in an optimal way.

This is usually done by mapping the feature vector to a single variable, i.e.,
to scalar test statistic:

R" - R: y(X)

A cut y > ¢ to classity events as signal corresponds to selecting a
potentially complicated hyper-surface in feature space. In general superior
to classical "rectangular® cuts on the x.

Problem closely related to machine learning (pattern recognition, data
mining, ... )
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Classification: Different Approaches

rectangular cuts non linear

k-Nearest-Neighbor,
Boosted Decision Trees,
Multi-Layer Perceptrons,
Support Vector Machines

G. Cowan':
https://www.pp.rhul.ac.uk/~cowan/stat_course.html
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Signal Probability Instead of Hard Decisions

Example: test statistic y for signal and background from a Multi-Layer
Perceptron (MLP):

TMVA output for classifier: MLP TMVA manual
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Instead of a hard yes/no decision one can also define the probability of an
event to be a signal event:

Ps(y) = P(Sly) = ply|S) - fs - n.

- p(ylS)- i+ p(yB)-(1—1) ns + N
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ROC Curve

Quality of the classification can be characterized by the receiver operating

characteristic (ROC curve)
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Different Approaches to Classification

Neyman-Pearson lemma states that likelihood ratio provides an optimal test
statistic for classification:
o p(X|S
vz = 22
p(x|B)

Problem: the underlying pdf's are almost never known explicitly.

Two approaches:

1. Estimate signal and background pdf's and construct test statistic based on
Neyman-Pearson lemma, e.g. Nalve Bayes classifier (= Likelihood classifier)

2. Decision boundaries determined directly without approximating the pdf's
(linear discriminants, decision trees, neural networks, ...)
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Supervised Machine Learning (l)

Supervised Machine Learning requires labeled training data, i.e., a training
sample where for each event it is known whether it is a signal or background
event

» Decision boundary defined by minimizing a loss function ("training")

Bias-variance tradeoftf

» Classifiers with a small number of degrees of freedom are less prone to statistical
fluctuations: different training samples would result in a similar classification boundaries
("small variance")

» However, if the data contain features that a model with few degrees of freedom cannot
describe, a bias is introduced. In this case a classifier with more degrees of freedom
would be better.

» User has to find a good balance
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Supervised Machine Learning (ll)

Training, validation, and test sample
» Decision boundary fixed with training sample
» Performance on training sample becomes better with more iterations
» Danger of overtraining: Statistical fluctuations of the training sample will be learnt

» Validation sample = independent labeled data set not used for training
— check for overtraining

»  Sign of overtraining: performance on validation sample becomes worse
— Stop training when signs of overtraining are observed ("early stopping”)

» Performance: apply classifier to independent test sample

» Often: test sample = validation sample (only small bias)
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Supervised Machine Learning (lll)

Rule of thumb If training data not expensive

» Training sample: 50%
» Validation sample: 25%

» Test sample: 25%

often test sample = validation sample,
.e., training : validation/test = 50:50

Cross validation (efficient use of scarce training data)

»  Split training sample in k independent subset T« of the full sample T

» Trainon T\ Tk resulting
» For each training event

» Validation results are th

In k different classifiers
there is one classifier that didn't use this event for training

en combined

Statistical Methods in Particle Physics WS 2017/18 | K. Reygers | 8. Multivariate Analysis

9



—stimating PDFs from Histograms®?

Consider 2d example:

G. Cowan': https://www.pp.rhul.ac.uk/~cowan/stat_course.html

> > o
signal |+ 550 Y
¥ :I"’;{.i “;‘ ) A I L O | ground
’ .t l..
g ? - .
> * 1

approximate PDF by N(x, y|S) and N(x, y|B)

M bins per variable in d dimensions: Md cells
— hard to generate enough training data (often not practical for d > 1)

In general in machine learning, problems related to a large number of

dimensions of the feature space are referred to as the "curse of dimensionality”
Statistical Methods in Particle Physics WS 2017/18 | K. Reygers | 8. Multivariate Analysis 10



k-Nearest Neighbor Method (l)

k-NN classifier
» Estimates probability density around the input vector

» p(X|S)and p(X|B) are approximated by the number of signal and background events in
the training sample that lie in a small volume around the point X

Algorithms finds k nearest neighbors:

k = ks + kg
Probabillity for the event to be of signal type:

ks(X)
ks(X) + kp(X)

ps()?) —
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k-Nearest Neighbor Method (lI)

. , , TMVA manual
Simplest choice for distance https://root.cern.ch/guides/tmva-manual
measure in feature space is the 1.5 o e

Euclidean distance:

R=IX-y

Better: take correlations between
variables into account:

R=1/(%~7)TV-1(z )

V = covariance matrix

"Mahalanobis distance”

The k-NN classifier has best performance when the boundary that separates
signal and background events has irregular features that cannot e easily
approximated by parametric learning methods.
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Kernel Density Estimator (KD E) [Just mentioned briefly here]

ldea: Smear training data to get an estimate of the PDFs

A 1 o 1 « X — X K =" Kernel”
fh(X) = — Kn(X — X)) = — K ’
W) n ; WX = %) nh ; ( h ) h = "bandwidth” (smoothing parameter)
. S 1 Iz . .
Use, e.g., Gaussian kernel:  K(X) = (2m)772 e—IX°/2 ¢ = dimension of feature space

Lecture Niklas Berger

>
X1
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Gaussian KDE in 1 Dimension

G. Cowan': https://www.pp.rhul.ac.uk/~cowan/stat_course.html

Adaptive KDE: adjust width of kernel according to PDF (wide where pdf is low)

Advantage of KDE: no training!

Disadvantage of KDE: need to sum of all training events to evaluate PDF,
..e., method can be slow
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Fisher Linear Discriminant

Linear discriminant is simple. Can still be optimal if amount of training data is
limited.

Ansatz for test statistic: ~ y(X) = » wix; = W'

Choose parameters w; so that separation between signal and background
distribution is maximum.

.
Need to define "separation". f ) ;

Fisher: maximize J(w) =

Y
G. Cowan';
https://www.pp.rhul.ac.uk/~cowan/stat_course.html
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Fisher Linear Discriminant: Variable Definitions

Mean and covariance for signal and background:
,u?’b — /X,' f()?|Hsb) dx

Vit = [ (= )05 — 1i3%) F(5|Hes) 0%

Mean and covariance of y(X) for signal and background:

Tsb — /y()?)f()?‘Hsb) d)? — W/Tﬁs,b

sb—/()/(X)_st) f(X|Hsb)dx—W va/

G. Cowan':
https://www.pp.rhul.ac.uk/~cowan/stat_course.html
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-Isher Linear Discriminant:
Determining the Coefficients wi;

Numerator of J(w) :

=1

(76 — )% = (Z wi (5 — uf-’)) = wiwi(f — ) (15 — 1)

ij=1
n
=2 = w' B
= wiw;B;; = w' Bw
ij=1
Denominator of J(w) :

ij=1
Maximize:
J() w!'Bw  separation between classes
W) = = — = : —
w! Ww separation within classes
G. Cowan':

https://www.pp.rhul.ac.uk/~cowan/stat_course.html
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-1sher Linear Discriminant:
Determining the Coefficients w;

Setting S—J — 0 gives:

I

y(X)=w'x  with woc W(jis — fip)

linear decision boundary

We obtain linear decision boundaries.

Weight vector w can be interpreted as a
direction in feature space on which the
events are projected.

G. Cowan':
https://www.pp.rhul.ac.uk/~cowan/stat_course.html
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Fisher Linear Discriminant: Remarks

In case the signal and background pdfs f(X|Hs) and f(X|Hp) are both
multivariate Gaussian with the same covariance but different means, the Fisher
discriminant is

f (X|Hs)

f(X|Hbp)

y(X) o In

That is, in this case the Fisher discriminant is an optimal classifier according to
the Neyman-Pearson lemma (as y(X) is a monotonic function of the likelihood
ratio)

Test statistic can be written as

y(X) = wy + Z Wi X;
i=1

where events with y > O are classified as signal. Same functional form as for
the perceptron (prototype of neural networks).
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Perceptron

Discriminant: y(R)=h|wo+ ) wx;
=1

The nonlinear, monotonic function h is called activation function.

. . 1 L.
Typical choices for h: T o ("sigmoid”), tanhx
X
X1 <
0.8
0.6
O y(X o
0.2
Xn
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The Biological Inspiration: the Neuron

Cell body
Axon Telodendria
/ﬁv
Nucleus | /
P Axon hillock Synaptic terminals
. ) ‘?‘ o .
< ~——__  Human brain:
Golgi apparatus 101" neurons, each with on average
Endoplasmic 7000 synaptic connections
reticulum ~
L WP
Mitochondrion \ \ Dendrite Input

/ k Dendritic branches

https://en.wikipedia.org/wiki/Neuron
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Feedforward Neural Network with One Hidden Layer

superscripts indicates layer number

%, /
6i(%) =h [ wi) +D wix
j=1
y(R)=h[wy +> w7 ()
\‘n J=1

hidden layer

Straightforward to generalize to multiple hidden layers
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Network Training

X, . training event, a=1,..., N

t, . correct label for training event a

\

e.g., ta = 1, O for signal and background, respectively

w : vector containing all weights

Error function:

Weights are determined by minimizing the error function.
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Sackpropagation

Start with an initial guess w'® for the weights an then update weights after
each training event:
7 — @) v, ()
I learning rate

Let's write network output as foIIOWS'
y(X) = h(u(X)) with wu(X Z W(2) = h ( Wj(kl)Xk) = h(vj(X))

Here we defined ¢o = xo = 1 and the sums start from O to include the offsets.

Weights from hidden layer to output:

1 OE ou
E, = - Ya — L3 : ? = Ya — h'
=6 = = b= W R

> (Ya — ta)h/(u()?a))gbj()?a)

Weights from input layer to hidden layer (— further application of chain rule):

OE,

o, (1) — (ya ta)h/(u(xa))w( )h/ (‘/j()?a))xa,k Xa = (Xa 1, -1 Xan)
Wik
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Neural Network Output and Decision Boundaries

P. Bhat, Multivariate Analysis Methods in Particle Physics, inspirehep.net/record/879273

a Input Hidden Output
layer layer layer

Xj hj O(x) = f(x,W)
C
BT T ;ﬁ
o e * Signal e
D « Background |~
202 ot st o2 O g g
L% -1-.:&. o 2/ — NN contours | -

5

decision 2 Ay
boundaries 5 . g
for different £
cuts on NN
output .
00 50 100

Variable x,
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—xample of Overtraining

Too many neurons/layers make a neural network too flexible
— overtraining

A G. Cowan: https://www.pp.rhul.ac.uk/~cowan/stat_course.html
> >

- training sample - test sample

Network "learns” features that are merely
statistical fluctuations in the training sample
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G. Cowan:

M on |tO ri N g Ove rt ral N | N g https://www.pp.rhul.ac.uk/~cowan/stat_course.ntml

Monitor fraction of misclassified events (or error function:)

optimum = minimum of
error rate for test sample

error rate

overtraining =
Increase of error rate

test sample

training sample
>

flexibility (e.g., number
of nodes/layers)
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-xample: Identification of Events with Top-Quarks

— _I_ — 7 -
tt - W"bW™ b — lvbqgb likelihood method
a b /
Shaded = signal

T I T T T T I T T T i E T T T T I I I L L L L E B 1 1 1 | 1 1 1 I 1 1 1 I T T I T T T _
_ 3 E :_ Signal _:
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s O 50 100 150 0 0.1 0.2 0.3 04 Y 0.2 0.4 0.6 0.8 1
b b
5 x1 = missing E; x, = aplanarity 5 D
E e
3 T I T T T T I T T T T I T T T T _ n T T T T I T T T T I T T T T 3 -—l T T I T I T I I —
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< ] ] c J
g . g X .
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: E 1 1 - l PO I T T T | | |
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Dnn
DO experiment, neural net

plot from inspirehep.net/record/879273
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Deep Ne

Deep networ

Jral Networks

KS: many hidden layers with large number of neurons

Challenges Big progress in recent years
» Hard too train ("vanishing gradient » Interest in NN waned before ca. 2006
problem”) » Milestone: paper by G. Hinton (2006):
» Training slow "learning for deep belief nets”
» Risk of overtraining » Image recognition, AlphaGo, ...

» Soon: self-driving cars, ...

) hidden layer 1  hidden layer 2 hidden layer 3
input layer

output layer

http://neuralnetworksanddeeplearning.com
Statistical Methods in Particle Physics WS 2017/18 | K. Reygers | 8. Multivariate Analysis 29



Fun with Neural Nets in the Browser

O Epoch Learning rate Activation Regularization Regularization rate Problem type
4
0 O, 251 0.03 v Tanh v v 0

None v Classification

DATA FEATURES + — 1 HIDDEN LAYER OUTPUT
Which dataset do Which properties do r * Test loss 0.000
you want to use? you want to feed in? Y — Training loss 0.000
6 neurons
X1 T — L
= S ——. ”’;“d’/ :
S P - - ,’,/,
~ > - " & ”
\\\ // ”’ " ,’////
X2 N pd T o’ S
| A4 - o
Ratio of training to /2\\{,«’ E ,o' / ///
test data: 50% (S~ S - 7S
° X2 /// vl ———— ——" ,/ g4
W 3 " Vi
/ - s’
- /
. // /, 'l‘ ’l, 7/ //
Noise: 0 S e ya
ch 4 /, " - ————— — ’ 4 //
s 7’ Pl ’_—’_ // /
: P ,—" ” /
Batch size: 1 XiX2 I e /
. _-‘~:::: ___________________ y /
‘~\\\ /,’ 6 5 4 -3 2 -1 0 1 2 3 4 5 6
—~
REGENERATE v/ TTTmee—
Colors shows
o ( o data, neuron and I I L
sin(X2) This is the output ) 1 0 1
O ONG NOUIDN. weight values.
Hover to see it
larger.

Show test data Discretize output

http://playground.tensorflow.org
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Decision Trees (l) arXiv:physics/0508045y

root node __

MiniBooNE Detector

> 100 branch node

PMT Hits?

(node with further
B branching)
4/37
<0.2 GeV >0.2 GeV

39/1

<500 cm z 500 cm MiniBooNE: 1520

photomultiplier signals,
goal: separation of ve
from v, events

Radius?

S B
7/1 2/9

/

leaf node (no further branching)

Leaf nodes classify events as either signal or background

Statistical Methods in Particle Physics WS 2017/18 | K. Reygers | 8. Multivariate Analysis

31



Decision Trees (ll) Ann.Rev.Nucl.Part.Sci. 61 (2011) 281-309

Easy to interpret and visualize:
Space of feature vectors split up into rectangular volumes
(attributed to either signal or background)

How to build a decision tree in an optimal way?
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Finding Optimal Cuts

Separation btw. signal and background is often measured with the Gini index:

G =p(1-p)

Here p is the purity:

> ional Wi w; = weight of event /
signa

P = | |
Zsigna| Wi = Zbackgmund Wi lusefulness of weights will
become apparent soon]

Improvement in signal/background separation after splitting a set A into
two sets B and C:

A = WAGA — WBGB — W(:GC where WX = ZW,‘
X
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Separation Measures

unit
o
N
(33

arbitrary
o
N

0.15

Split criterion

0.1 == Misclas. error

- Entropy

005 — Gini

II|IIII|IIII|IIII|IIII|I

| | | | | | | | | | | | | | | |
0 0.2 0.4 0.6 0.8 1

signal purity
\P
Cross entropy: —plnp—(1—p)In(l — p)
Gini index: p(1 — p) lafter Corrado Gini, used to measure income

and wealth inequalities, 1912]

Misclassification rate: 1 — max(p, 1 — p)
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Decision ITree Pruning

When to stop growing a tree”
» When all nodes are essentially pure?

» Well, that's overfitting!

Pruning

» Cut back fully grown tree to avoid
overtraining
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Boosted Decision Trees: |dea

Drawback of decisions trees:
very sensitive to statistical fluctuations in training sample

Solution: boosting
» One tree — several trees ("forrest”)
» Trees are derived from the same training ensemble by reweighting events

» Individual trees are then combined: weighted average of individual trees

Boosting is a general method of combining a set of classifiers (not necessarily
decisions trees) into a new, more stable classifier with smaller error.

Popular example: AdaBoost (Freund, Schapire, 1997)
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AdaBoost (short for Adaptive Boosting)

Initial training sample

X1, oeey Xn: multivariate event data
Vi, oo VYo true class labels, +1 or —1
Wl(l), W,Sl) event weights

with equal weights normalized as

i W,-(l) =1
i=1

Train first classifier f1:

fi(X;) >0 classify as signal
fi(X;) <0 classify as background
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Updating Events Weights

Define training sample k+1 from training sample k by updating weights:

—afi(Xi)yi/2

W = %) € 7

- \

: , k
normalization factor so that Z W,-( ) =1
=1

| = event index

n

Weight is increased if event was misclassified by the previous classifier
— "Next classifier should pay more attention to misclassified events”

At each step the classifier fx minimizes error rate

Ek = Z W,-(k)l(y,-fk(?,-) <0), I(X)=1if Xis true, 0 otherwise
i=1
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Assigning the Classifier Score

Assign score to each classifier according to its error rate:

1—€k

i = In
€k

Combined classifier (weighted average):
K
(%) =) (%)
k=1

It can be shown that the error rate of the combined classifier satisfies

e < H2\/5k(1 —8k)
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General Remarks on Multi-Variate Analyses

MVA Methods

» More effective than classic cut-based analyses

» Take correlations of input variables into account

Important: find good input variables for MVA methods
» Good separation power between S and B

» Little correlations among variables

» No correlation with the parameters you try to measure in your signal sample!

Pre-processing

»  Apply obvious variable transformations and let MVA method do the rest

» Make use of obvious symmetries: if e.g. a particle production process is symmetric in
polar angle 6 use |cos 6| and not cos 6 as input variable

» It is generally useful to bring all input variables to a similar numerical range

H. Voss, Multivariate Data Analysis and Machine Learning in High Energy Physics
http://tmva.sourceforge.net/talks.shtml
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Classifiers and Their

Properties

H. Voss, Multivariate Data Analysis and Machine Learning in High Energy Physics
http://tmva.sourceforge.net/talks.shtml

Classifiers

oriene Cuts ';]'gg'('j '7?(_ENRNS H-Matrix ~ Fisher BDT  RuleFit SVM
oror | oo | @ O © © © © @ © ©
T s | @ ® 0 @ @ © © © ¢
Training ® © © © © © 6 S &

Speed Response | © © O/ © © © 6 6 6
ooy | Overtraining © © © © © ® 6 S S
TlNes| o 0 & 0 © e e e e
ool L@ e @ 0 0. 0 0. 0. a
Transparency © © © © © ® 6 ® S
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