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Basics of relativistic hydrodynamics



QGP physics SS2017 | K. Reygers | 6. Space-time evolution of the QGP

Evidence for collective behavior in heavy-ion collisions

■ Shape of low-pT transverse 
momentum spectra for 
particles with different masses 

■ Azimuthal anisotropy of 
produced particles 

■ Source sizes from Hanbury 
Brown-Twiss correlations 

■ …

3
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Evidence for radial flow

■ Shape is different in pp and 
A-A 

■ Stronger effect for heavier 
particles
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Evidence for elliptic flow

5

Good explanation: 
Azimuthal variation of the flow 
velocity
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Basics of relativistic hydrodynamics

6

Standard thermodynamics: P, T, μ constant over the entire volume

Hydrodynamics assumes local thermodynamic equilibrium: P(xμ), T(xμ), μ(xμ)

Local thermodynamic equilibrium only possible if mean free path between two 
collisions much shorter than all characteristic scales of the system:

�mfp ⌧ L

This is the limit of non-viscous hydrodynamics.

4-velocity of a fluid element:

u = �(1, ~�), uµuµ = 1

� =
1q

1� ~�2

See e.g. Ollitrault,  
arXiv:0708.2433
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Number conservation

7

Mass conservation in nonrelativistic hydrodynamics:

@⇢

@t
+ ~r(⇢~v) = 0 [continuity equation]

Lorentz contraction in the relativistic case:

For a general 4-vector a we have:

⇢ ! n� = nu0

@(nu0)

@t
+ ~r(n~u) = 0The continuity equation then reads:

The conservation of n can be written more elegantly as

@µ(nu
µ) = 0

conserved quantity, 
e.g. baryon number

nu0

n~u

: baryon density
: baryon flux

covariant derivative contravariant derivative

@µ ⌘ @

@xµ
= (

@

@t
, ~r), @µ ⌘ @

@xµ
= (

@

@t
,�~r), @µa

µ = (
@

@t
, ~r) · (a0,~a) = @a0

@t
+ ~r~a
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Energy and momentum conservation

8

Analogous to the contravariant 4-vector Jμ = nuμ one can define conserved 
currents for the energy and the three moments components. These can be 
written as contravariant tensor:

Tµ⌫ ⌫ : component of the 4-momentum
µ : component of the associated current

: the energy density 
: density of the j-th component of the momentum, j = 1, 2, 3 
: energy flux along axis i 
: flux along axis i of the j-th component of the momentum  

T 00

T 0j

T i0

T ij

Examples: T 00 =
@E

@x@y@z
⌘ ", T 11 =

@px
@t@y@z

force in x direction acting on an 
surface Δy Δz perpendicular to 
the force → pressure 

Tµ⌫ =

✓
energy density momentum density

energy flux density momentum flux density

◆
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Equations of non-viscous hydrodynamics

9

For an arbitrary fluid velocity:  
(without derivation) gµ⌫ = diag(1,�1,�1,�1)

Energy, momentum and baryon number conservation then be written as

@µT
µ⌫ = 0

Tµ⌫ = ("+ P)uµu⌫ � Pgµ⌫

@µ(nu
µ) = 0

Energy-momentum tensor 
in the fluid rest frame: 

5 equations for 6  
unknowns:
(ux , uy , uz , ",P , nB)

Tµ⌫
R =

0

BB@

" 0 0 0
0 P 0 0
0 0 P 0
0 0 0 P

1

CCA

pressure 

rest frame:  
pressure is the same in all 
direction, constant energy  
density and momentum
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Ingredients of hydrodynamic models

■ Equation of state (EoS) needed to 
close the system:

10

■ Via the EoS hydrodynamics 
allows one to relate observables 
with QCD thermodynamics 

■ Initial conditions (ε(x, y, z)) 
‣ Glauber MC 
‣ Color glass condensate 

■ Transition to free-streaming 
particles 
‣ E.g. at given local temperature

P(", nB)

EOS I: ultra-relativistic gas P = ε/3
EOS H: resonance gas, P ≈ 0.15 ε
EOS Q: phase transition,  
             QGP ↔ resonance gas

Simple equations of state:
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Cooper-Frye freeze-out formula

11

normal vector to the 3d 
freeze-out hyper surface 
Σ in space-time defined 
e.g. by T = Tfo

Cooper, Frye, Phys. Rev. D10 (1974) 186 
Particle spectra from fluid motion:

local thermal distribution

In rest frame of the fluid cell: uµ = (1, 0, 0, 0) pµ · uµ = E

E
dN

d3p
=

1

2⇡pT

d3N

dpT dy d'
=

Z

⌃f

f (x , p)pµ d⌃µ

=
g

(2⇡)3

Z

⌃f

pµ d⌃µ

exp
⇣

pµ·uµ(x)�µ(x)
T (x)

⌘
± 1
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Longitudinal expansion: Bjorken's scaling solution (I)

12

The Bjorken model is a 1d 
hydrodynamic model (expansion only 
in z direction). The initial conditions 
correspond to the one which one 
would get from free streaming 
particles starting at (t, z) = (0, 0). 

⌧ = t/� = t
p

1� �2
z =

p
t2 � z2

proper time:

Initial conditions in the Bjorken model:

"(⌧0) = "0, uµ =
1

⌧0
(t, 0, 0, z) =

xµ

⌧0

uµ(⌧) =
xµ

⌧

preserved during the 
hydro evolution, i.e.,

initial energy density

In this case the equations of ideal 
hydrodynamics simplify to

d"

d⌧
+

"+ p

⌧
= 0
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Longitudinal expansion: Bjorken's scaling solution (II)

13

For an ideal gas of quarks and gluons, i.e., for 

" = 3p, " / T 4

this gives

"(⌧) = "0

✓
⌧

⌧0

◆�4/3

, T (⌧) = T0

✓
⌧

⌧0

◆�1/3

The temperature drops to the critical temperature at the proper time

⌧c = ⌧0

✓
T0

Tc

◆3

The QGP lifetime is therefore given by

�⌧QGP = ⌧c � ⌧0 = ⌧0

"✓
T0

Tc

◆3

� 1

#
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Mixed phase in the Bjorken model

14

Entropy conservation in ideal hydrodynamics leads in the case of the Bjorken 
model (independent of the equation of state) to

s(⌧) =
s0⌧0
⌧

actually independent of the EOS, 
in case of an the ideal QGP:

s =
"+ p

T
=

4

3

"

T
=

4

3

"0
T0

⌧0
⌧

If we consider a QGP/hadron gas phase transition we have a first oder phase 
transition and a mixed phase with temperature Tc. The entropy in the mixed 
phase is given by

s(⌧) = sHG(Tc)⇠(⌧) + sQGP(Tc)(1� ⇠(⌧)) =
s0⌧0
⌧

This equation determines the time dependence of ξ(τ) and the time τh at 
which the mixed phase vanishes:

⇠(⌧) =
1� ⌧c/⌧

1� gHG/gQGP

 ⌧h = ⌧c
gQGP

gHG

the hadron gas close 
to Tc can be described 
with gHG ≈ 12

ξ(τ):  fraction of fireball in hadron gas phase 
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Temperature evolution in the Bjorken model

15
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Transverse expansion

16

Transverse expansion of the fireball in a hydro model (temperature profile) 

2+1 d hydro: Bjorken flow in longitudinal direction

temperature in GeV

velocity vector
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Temperature Contours and Flow lines

17

flow lines indicate 
motion of fluid cells
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Hydrodynamic modeling of heavy-ion collisions:  
State of the art
■ Equation of state from lattice QCD 
■ (2+1)D or (3+1)D viscous hydrodynamics 
■ Fluctuating initial conditions (event-by-event hydro) 
■ Hydrodynamic evolution followed by hadronic cascade

18
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Initial conditions from gluon 
saturation models (I)

19
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Q2 = 200 GeV2

10-2 10-1

bb Saturation

Dilute system

Y 
= 

In
 1

/x

In Q2In Λ2
QCD

DGLAP

BFKL

In Q
2
s (
Y ) = λY

transverse size 
of the gluons: 1/Q2

1

2(N2
c � 1)

xG (x ,Q2
s )

⇡R2Q2
s

=
1

↵s(Q2
s )

Annu. Rev. Nucl. Part. Sci. 2010.60:463 

Growth of gluons saturates at an occupation 
number 1/αs. This defines a (semihard) scale 
Qs(x), i.e., a typical gluon transverse momentum.
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Initial conditions from gluon saturation models (II)
■ Color glass condensate: 

Effective field theory, which describes universal 
properties of saturated gluons in hadron wave 
functions  

■ CGC dynamics produces so-called glasma-field 
configurations at early times 
‣ Strong longitudinal chromoelectric and chromomagnetic 

fields screened on transverse distance scales 1/Qs.

20

Annu. Rev. Nucl. Part. Sci.  
2010.60:463 

MC Glauber 
initial condition

IP Glasma 
initial condition
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Spectra and Radial flow
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Comparison of π, K, p spectra with hydro models

22
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The blast-wave model: A Simple model to describe 
the effect of radial flow on particle spectra

23

Transverse velocity profile: �T (r) = �s

⇣ r

R

⌘n

Superposition of thermal sources with different radial velocities:

1

mT

dn

dmT
/

RZ

0

r dr mT I0

✓
pT sinh ⇢

T

◆
K1

✓
mT cosh ⇢

T

◆

⇢ := arctanh(�T ) ”transverse rapidity”

I0, K1 : modified Bessel functions

Schnedermann, Sollfrank, Heinz, 
Phys.Rev.C48:2462-2475,1993

Freeze-out at a 3d hyper-surface, 
typically instantaneous, e.g.: tf(r , z) =

q
⌧ 2f + z2
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Example: Radial Flow Velocity Profile from Blast-wave 
Fit to 2.76 TeV Pb-Pb Spectra (0-5%)

24

parameters: 
arXiv:1303.0737

h�T i =
R R
0

R 2⇡
0 rdrd'�T (r)

R R
0

R 2⇡
0 rdrd'

=
2

n + 2
�s

h�T i = 0.651, n = 0.712

! �s = 0.8
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Example: Pion and Proton pT Spectra from 
blast-wave model

25
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p T
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protons

Parameters for 0-5% most 
central Pb-Pb collisions at 
2.76 TeV, arXiv:1303.0737  

Larger pT kick for particles 
with higher mass: 
p = �source�sourcem + ”thermal”
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Local slope of mT spectra with radial flow

26

mT slopes with transverse flow for pions 
for fixed transverse expansion velocity βr 

lim
mt!1

d

dmT
ln

✓
1

mT

dn

dmT

◆
= � 1

T

s
1� �r

1 + �r

The apparent temperature, i.e., the inverse slope at high mT, is larger than the 
original temperature by a blue shift factor:

Te↵ = T

s
1 + �r

1� �r
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Blast-wave fit for CERN SPS data (NA49)

27
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Works well for K and p

For pions, the contribution from 
resonance decays at low pT and 
hard scattering at high pT 
probably explains the discrepancy
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T und ⟨β⟩ for different centralities at RHIC and the LHC

29

10% larger flow velocities in central collisions at the LHC than at RHIC
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Elliptic flow and higher flow harmonics
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Azimuthal distribution of produced particles

31

Fourier coefficients:

dN

d'
/ 1 + 2

1X

n=1

vn cos[n('� n)]

vn(pT , y) = hcos[n('� n)]i

v2 v3 v4 v5

elliptic flow triangular flow f (') = 1 + 2vn cos(n')
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Origin of odd flow components

■ v2 is related to the geometry of the overlap zone 
■ Higher moments result from fluctuations of the initial energy distribution 

32

Müller, Jacak, http://dx.doi.org/10.1126/science.1215901

http://dx.doi.org/10.1126/science.1215901
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Hydrodynamic models: v2/ε approx. constant

33
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Ideal hydrodynamics gives v2 ≈ 0.2 – 0-25 ε

εx: initial eccentricity 
of the participants
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How the vn are measured (1): 
Event plane method (more or less obsolete by now)

34

Qn =
X

k

e in'k = |Qn|e in n,rec = Qn,x + iQn,y

Event flow vector Qn 
e.g., measured at forward 
rapidities:

Event plane angle  
reconstructed in a given event:  n,rec =

1

n
atan2(Qn,y ,Qn,x)

Reconstructed event plane angle fluctuates around “true” reaction plane angle.  
The reconstructed vn is therefore corrected for the event plane resolution:

vn =
v rec
n

Rn
, v rec

n = hcos[n('� rec
n )]i, Rn = ”resolution correction”

What the event plane methods measures depends on the resolution 
which depends on the number of particles used in the event plane determination:

hv↵i1/↵ where 1  ↵  2

Therefore other methods are used today where possible.
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How the vn are measured (2): 
Cumulants

35

average over all particles within an event, 
followed by averaging over all events

cn{4} is a measure of genuine 4-particle correlations, i.e., it is insensitive to 
two-particle non-flow correlations. It can, however, still be influenced by 
higher-order non-flow contributions.

vn{2}2 := cn{2}, vn{4}4 := �cn{4}

two-particle 
correlations

if correlations are only due to collective flow 

hhe i2('1�'2)ii = hhe i2('1� RP�('2� RP))ii,
= hhe i2('1� RP)ihe�i2('2� RP)ii = hv2

2 i

Two-particle 
correlations:

Cumulants:
if correlations are only due 
to collective flow 

cn{2} ⌘
DD

e in('1�'2)
EE

=
⌦
v2
n

↵

cn{4} ⌘
DD

e in('1+'2�'3�'4)
EE

� 2
DD

e in('1�'2)
EE2

=
⌦
�v4

n

↵
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Non-flow effects

36

Not only flow leads to azimuthal correlations.  
Examples: resonance decays, jets, …

vn{2}2 = hv2
n i+ �n

Different methods have different sensitivities to nonflow effects. The 4-particle 
cumulant method is significantly less sensitive to nonflow effects than the  
2-particle cumulant method 

Example: 
v2 = 0, v2{2} > 0
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Elliptic flow of identified hadrons: 
Reproduced by viscous hydro with η/s = 0.2

37

Dependence of v2 on particle mass (“mass ordering”) is considered  
as strong indication for hydrodynamic space-time evolution

final results: arXiv:1405.4632 
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Viscosity

38

Pitch drop experiment, started in 
Queensland, Australia in 1927

https://en.wikipedia.org/wiki/Pitch_drop_experiment

Meaningful comparison of 
different fluids: η/s

https://en.wikipedia.org/wiki/Pitch_drop_experiment
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Shear and bulk viscosity

39

Shear viscosity

Bulk viscosity

Acts against buildup of flow 
anisotropies (v2, v3, v4, v5, ,..)

Acts against buildup of radial flow
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Higher flow harmonics are particularly sensitive to η/s

40

Hydrodynamics of QCD 331

the recent calculations using the so-called IP-Glasma [17] and EKRT [18]
initialisations reproduce both the fluctuations and the average values of v2,
v3 and v4 [18, 19], making these approaches very promising.

Fig. 2. An example of the positions of interacting nuclei in MC-Glauber model.

Figure taken from Ref. [20] and reprinted with permission.
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Fig. 3. Ratio of the anisotropy coefficients of charged hadrons in viscous calculation

to the coefficients in ideal fluid calculation [14]. Figure taken from Ref. [6], courtesy

to Bjoern Schenke.

Major uncertainty in extracting η/s from data: uncertainty of initial conditions 
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η/s from comparison to data

41
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arXiv:1209.6330

(⌘/s)QGP ⇡ 0.2 = 2.5⇥ 1

4⇡
(20% stat. err., 50% syst. err.)

Current status (Pb-Pb at √sNN = 2.76 TeV): arXiv:1301.2826
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Universal aspects of the underlying physics

■ Strongly-interacting degenerate gas of fermionic 
6Li atoms at 0.1 μK 

■ Cigar-shaped cloud initially trapped by a laser 
field 

■ Anisotropic expansion upon abruptly turning off 
the trap: Elliptic flow! 

■ η/s can be extracted: 

42
John Thomas, https://www.physics.ncsu.edu/jet/research/stronginter/index.html

(⌘/s)6Li gas ⇡ 0.4 = 5⇥ 1

4⇡

[PhD thesis Chenglin Cao]

The ultimate goal is to unveil the universal physical 
laws governing seemingly different physical systems 
(with temperature scales differing by 19 order of 
magnitude)

https://www.physics.ncsu.edu/jet/research/stronginter/index.html
https://www.physics.ncsu.edu/jet/theses/pdf/Cao.pdf
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Temperature-dependence of η/s for different gases

43

η/s appears to be minimal 
at a phase transition

QGP is a candidate for 
being the most perfect fluid

Conjectured lower bound 
from string theory

⌘/s|KSS =
1

4⇡
⇡ 0.08

Kovtun, Son, Starinets,  
Phys.Rev.Lett. 94 (2005) 111601

in natural units 

⌘/s|KSS =
~

4⇡kB
SI units:
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D meson v2 in Pb-Pb:  
Heavy quarks seem to flow, too!

44
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ALICE

Given their large mass, it is not obvious that charm quarks  
take part in the collective expansion of the medium 
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Collective flow in small systems?
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Collectivity in small systems:  
2-particle correlation in pp at √s = 7 TeV

46
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No indication for collective effects in minimum bias pp collisions at 7 TeV

yield per trigger particle 
divided by uncorrelated 
(mixed-event) 
background
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Radial flow in p-Pb?
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Results of blast-wave fits in p-Pb
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ALICE, 1307.6796 
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Collectivity in small systems:  
Two-particle correlations in Pb-Pb collisions
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Collectivity in small systems:  
Two-particle correlations in high-multiplicity pp and p-Pb
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Comparison of v2 in Pb-Pb and p-Pb for the same 
track multiplicity

51

■ v2{8} measured: v2 in p-Pb is a genuine multi-particle effect 
■ v2 in p-Pb only slightly smaller than in Pb-Pb

CMS, arXiv:1502.05382v2 
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Collectivity in small systems:  
Mass ordering in p-Pb collisions
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v2 from fit of two-particle correlation, jet-like correlation removed by  
taking the difference between central and peripheral p-Pb collisions

Consistent with hydrodynamic expansion of the medium als in p-Pb
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Elliptic flow not only in high multiplicity pp collisions?
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[Need to sort out apparent disagreement with CMS]
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Summary/questions space-time evolution

■ Hydrodynamic models provide an economic description of many 
observables (spectra, flow) 

■ Shear viscosity / entropy density ratio in Pb-Pb at √sNN = 2.76 TeV from 
comparing hydrodynamic models to data:
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■ Appropriate theoretical treatment of thermalization and matching to 
hydrodynamics? 
‣ Strong coupling or weak coupling approach? 
‣ Weak coupling: Applicable at asymptotic energies, but still useful at current √sNN  
‣ Strong coupling (string/gauge theory duality), see e.g. arXiv:1501.04952:  

Fast thermalization of the order of 1/T, but too much stopping? 
■ Does one need hydrodynamics to explain collective effects in small system 

(pp, p-Pb)?


