Quark-Gluon Plasma Physics

5. Statistical Model and Strangeness

Prof. Dr. Klaus Reygers Heidelberg University SS 2017

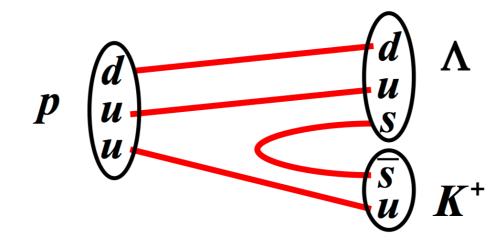
Strangeness production in hadronic interactions

Particles with strange quarks:

"hidden strangeness" $K^{+} = (u\bar{s}), K^{-} = (\bar{u}s), K^{0} = (d\bar{s}), \bar{K}^{0} = (\bar{d}s), \phi = (s\bar{s}),$ $\Lambda = (uds), \ \Sigma = (qqs), \ \Xi = (qss), \ \Omega^- = (sss)$

Creation in collisions of hadrons:

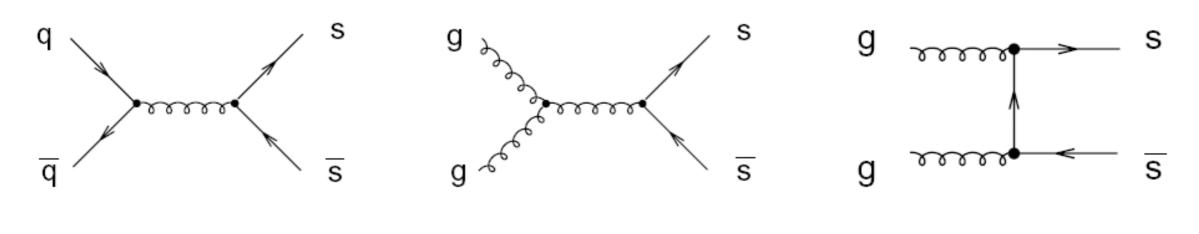
Example 1:
$$p + p \rightarrow p + K^+ + \Lambda$$
, $Q = m_{\Lambda} + m_{K+} - m_p \approx 670 \text{ MeV}$



associated production of strangeness

Example 2:
$$p + p \rightarrow p + p + \Lambda + \bar{\Lambda}$$
, $Q = 2m_{\Lambda} \approx 2230 \text{ MeV}$

Strangeness production in the QGP

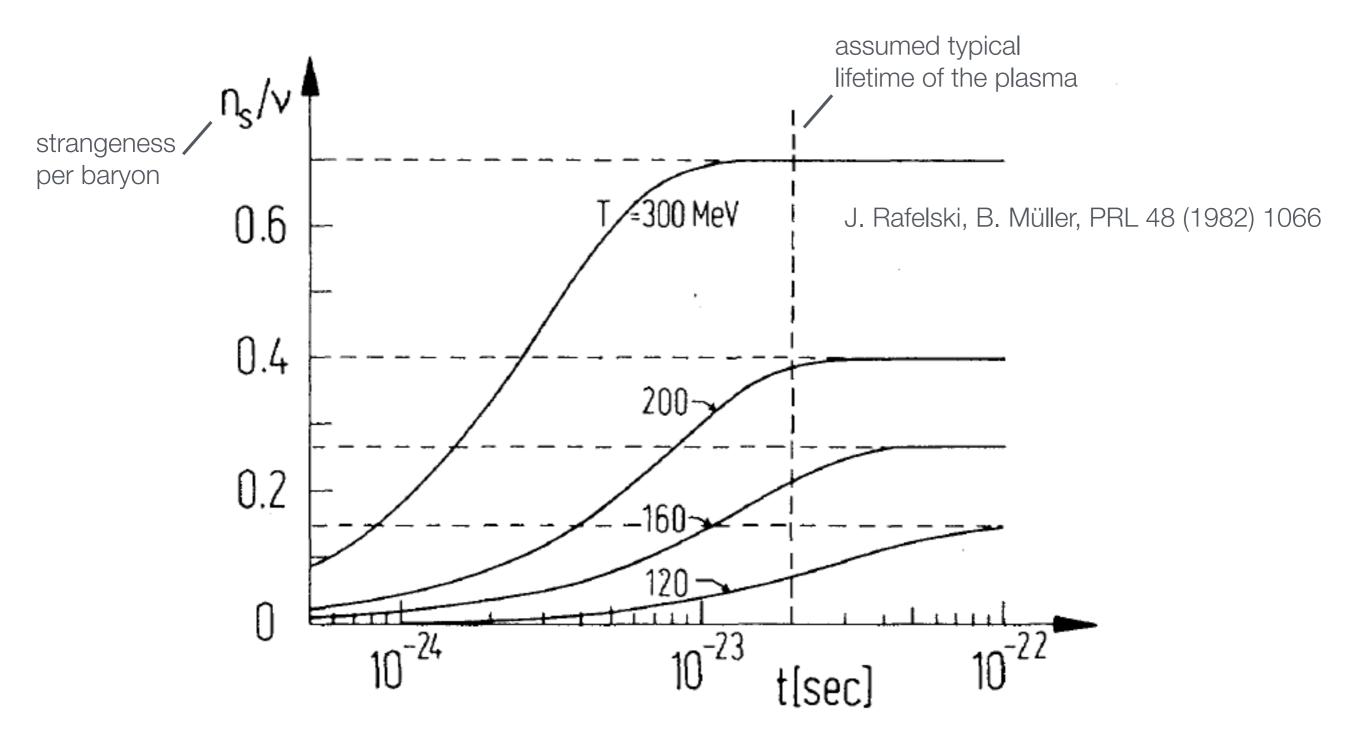


$$Q_{\rm QGP} pprox 2m_s pprox 200 \,{
m MeV}$$

Q value in the QGP significantly lower than in hadronic interactions

This reflects the difference between the current quarks mass (QGP) and the constituent quark mass (chiral symmetry breaking)

Strangeness enhancement: One of the earliest proposed QGP signals



Strangeness equilibration was expected to be sufficiently fast

Quark composition of the ideal QGP

Particle densities for a non-interacting massive gas of fermions (upper sign)/bosons (lower sign):

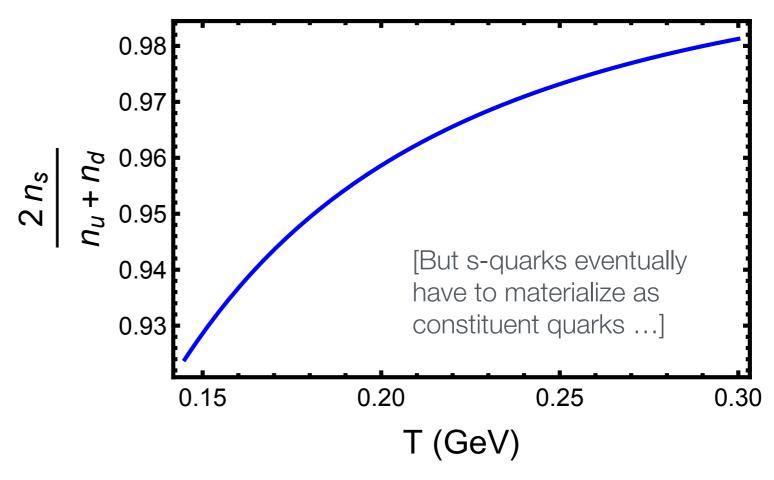
$$n_i = g_i \frac{4\pi}{(2\pi)^3} \int_0^\infty \frac{p^2 \, \mathrm{d}p}{\exp\left(\frac{\sqrt{p^2 + m^2} - \mu}{T}\right) \pm 1} = \frac{g_i}{2\pi^2} m^2 T \sum_{k=1}^\infty \frac{(\mp 1)^{k+1}}{k} \lambda^k K_2\left(\frac{km}{T}\right)$$

$$\downarrow 1$$
upper sign: fermions, lower sign: bosons

Quarks: fermions ("upper sign"), $m_u = 2.2$ MeV, $m_d = 4.7$ MeV, $m_s = 96$ MeV,

In a QGP with $\mu = 0$ and 150 < T < 300 MeV:

$$\frac{2(n_s + n_{\bar{s}})}{n_u + n_{\bar{u}} + n_d + n_{\bar{d}}} \approx 0.92 - 0.98$$



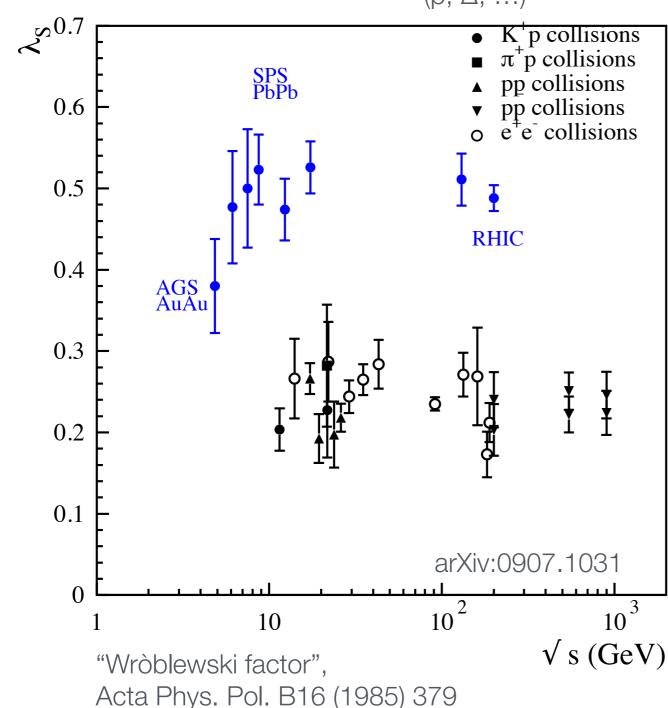
"Boltzmann approximation"

(neglect "±1"): first term of the sum

Fraction of strange quarks: A+A vs. e+e-, πp, and pp

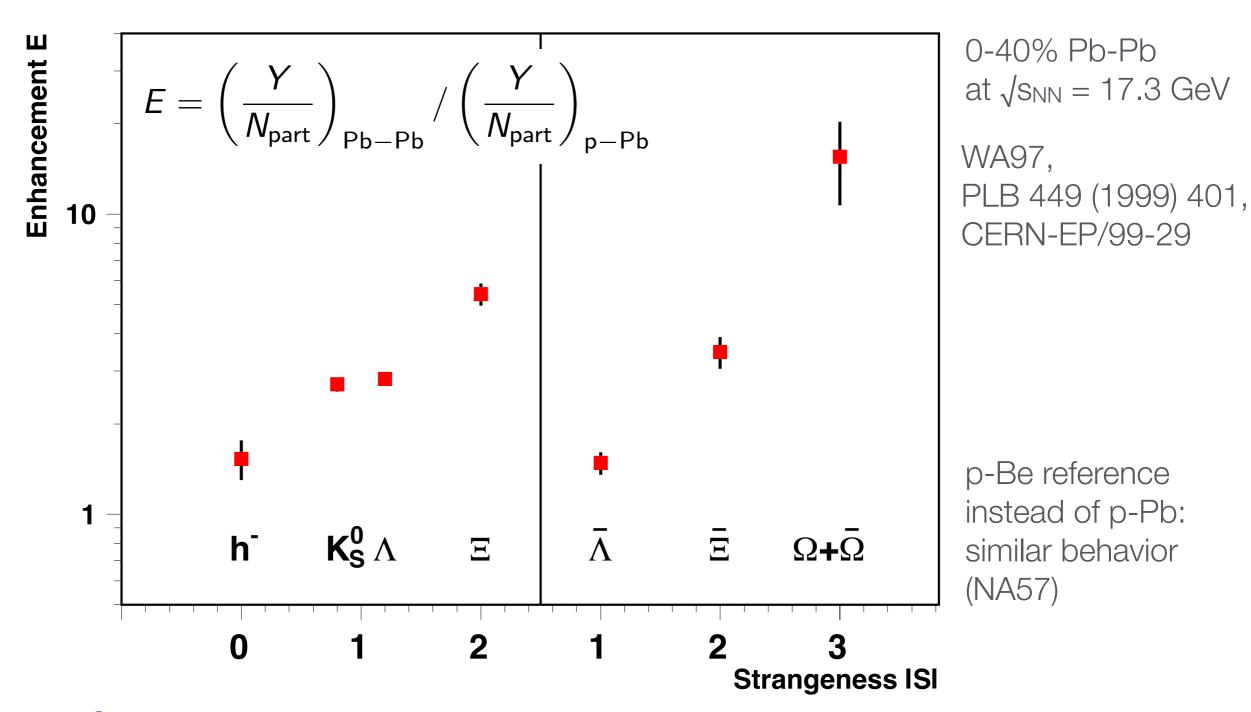
$$\lambda_s = \frac{2\langle s\bar{s}\rangle}{\langle u\bar{u}\rangle + \langle d\bar{d}\rangle}$$

ratio of newly created valence quark pairs before strong decays $(\rho, \Delta, ...)$



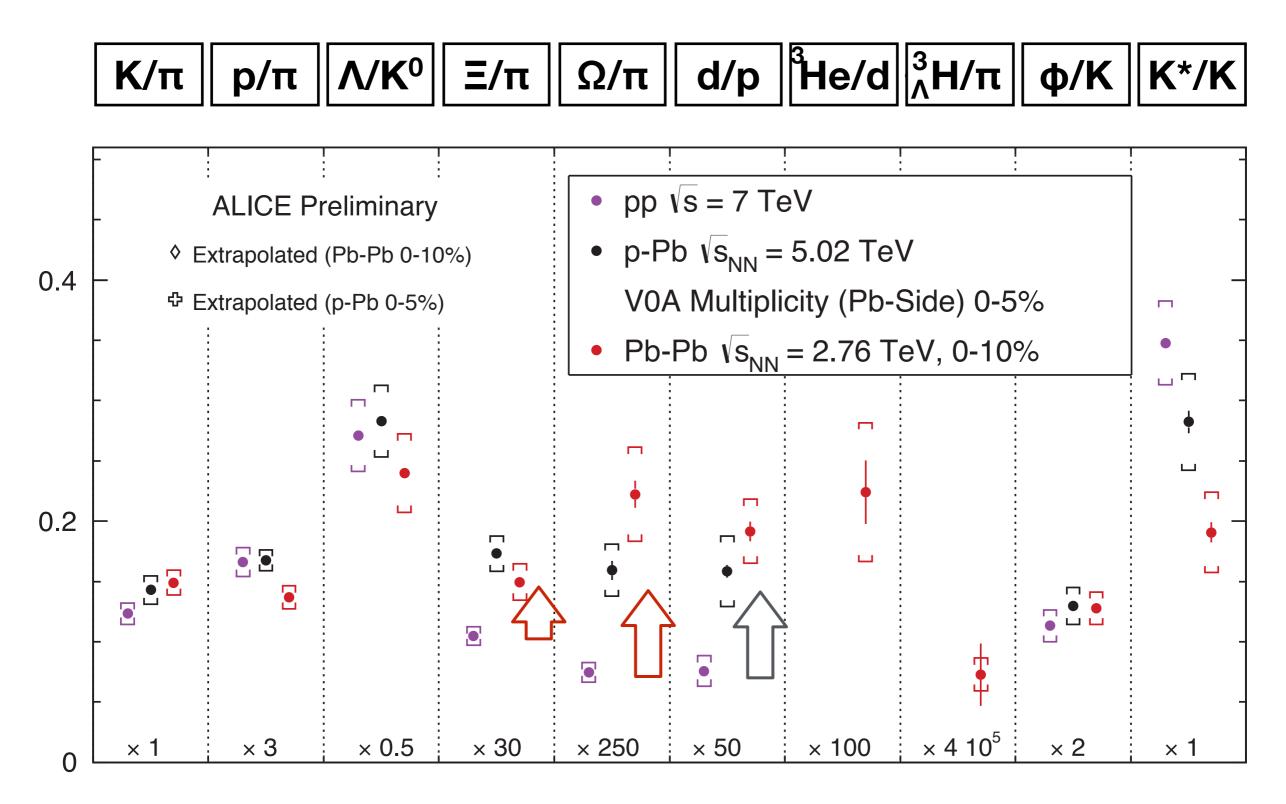
Strangeness indeed enhanced in nucleus-nucleus collisions relative to e+e-, πp, and pp collisions

Strangeness Enhancement in Pb-Pb relative to p-Pb at √s_{NN} = 17.3 GeV



Strangeness enhancement increases with s quark contents (up to factor 17 for the Ω baryon)

Ξ/π and Ω/π enhancement in Pb-Pb at $\sqrt{s_{NN}} = 2.76$ TeV



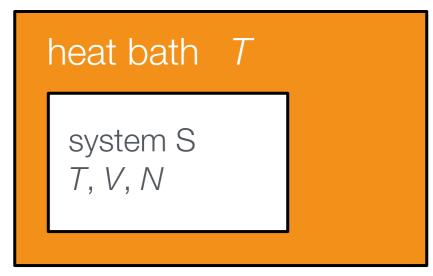
Interestingly, ϕ/π very similar in pp, p-Pb, and Pb-Pb

Particle yields from the hadron resonance gas

- Idea: Freeze-out of the QGP creates an equilibrated hadron resonance gas
- The HRG then freezes out with a characteristic temperature T_{ch} close to T_{c} which determines the yields of different particle species
- What is the appropriate statistical ensemble for the theoretical treatment?

canonical ensemble:

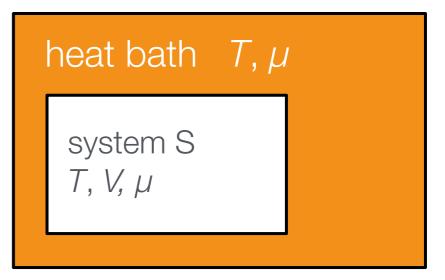
N and V fixed, energy E of the system fluctuates $(E_s + E_b = E, T \text{ is given})$



pp collisions, strangeness locally conserved

grand-canonical ensemble:

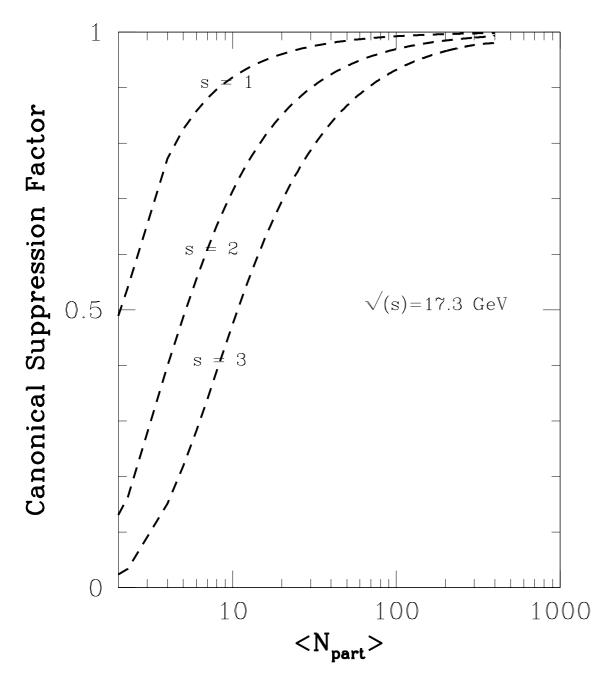
V fixed, energy E and particle number N fluctuate (T, μ given)



central A-A collisions, local strangeness fluctuations possible, "there is a medium"

Braun-Munzinger, Redlich, Stachel, nucl-th/0304013v1

Grand canonical ensemble: Large volume limit of the canonical treatment



A. Tounsi, K. Redlich, hep-ph/0111159

Canonical suppression factor F_s :

$$n_K^C = n_K^{GC} \cdot F_S$$
$$F_S = \frac{I_K(2n_K^{GC}V)}{I_0(2n_K^{GC}V)}$$

 n_K : Density of particles with strangeness K = |S|, S = -1, -2, -3

 I_n : Modified Bessel function of the first kind

Already at moderately central Pb-Pb collisions the grand canonical ansatz is justified

Statistical model

(hadron gas, grand canonical ensemble)

Partition function (particle species i):

In
$$Z_i = \frac{Vg_i}{2\pi^2} \int_0^\infty \pm p^2 dp \ln(1 \pm \exp(-(E_i - \mu_i)/T))$$

"-" for bosons, "+" for fermions

Particle densities:

$$n_i = N/V = -\frac{T}{V} \frac{\partial \ln Z_i}{\partial \mu} = \frac{g_i}{2\pi^2} \int_0^{\infty} \frac{p^2 \, \mathrm{d}p}{\exp((E_i - \mu_i)/T) \pm 1}$$

For every conserved quantum number there is a chemical potential:

$$\mu_i = \mu_B B_i + \mu_S S_i + \mu_{I_3} I_{3,i}$$

Use conservation laws to constrain V, μ_s , μ_l

$$V, \mu_s, \mu_{I_3}$$

$$\sum_{i} n_{i}S_{i} = 0 \qquad \rightarrow \qquad \mu_{s}$$

$$\sum_{i} n_{i} S_{i} = 0 \rightarrow \mu_{s}$$

$$V \sum_{i} n_{i} I_{3,i} = \frac{Z - N}{2} \rightarrow \mu_{I_{3}}$$

$$V \sum_{i} n_{i} B_{i} = Z + N \rightarrow \mu_{B}$$

$$V\sum_{i}n_{i}B_{i}=Z+N$$
 \rightarrow μ_{B}

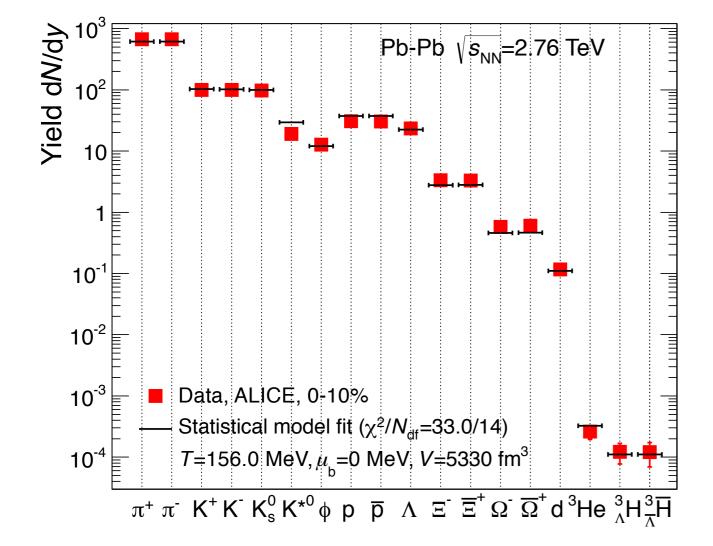
Only two parameters left
$$(T, \mu_B)$$

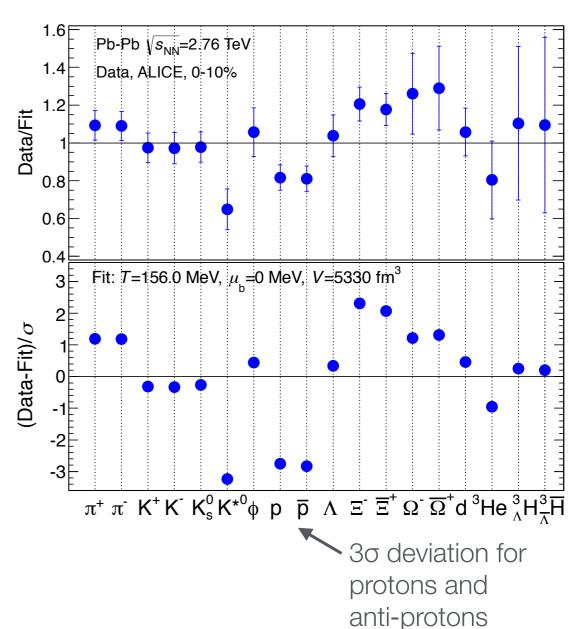
Example: Boltzmann approximation
$$n(\bar{p})/n(p) = \exp(-2\mu_B/T)$$

 \rightarrow determine (T, μ_B) for different √s_{NN} from fits to data

χ² fit of the statistical models to LHC data

Andronic, Braun-Munzinger, Stachel arXiv:1106.632, arXiv:1210.7724, arXiv:1311.4662, talk A. Andronic Trento

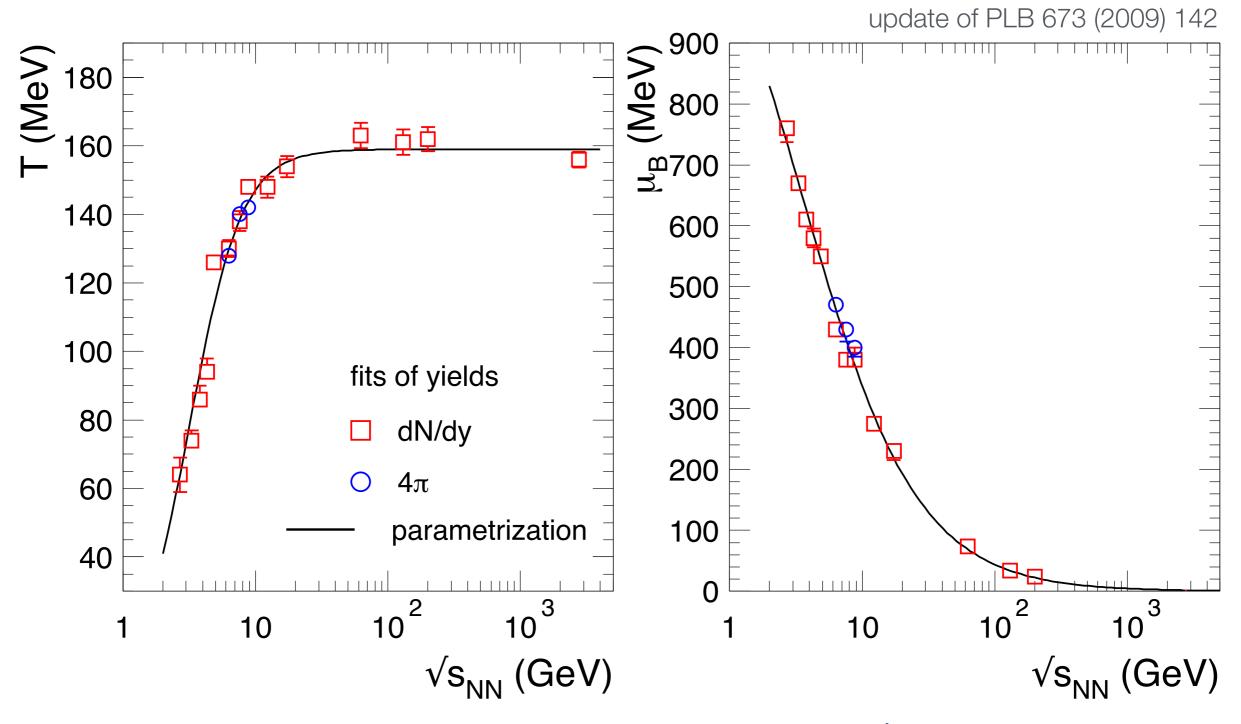




Statistical yields for primaries + feed-down from strong decay, e.g., $\rho \rightarrow \pi^+\pi^-$, $\eta \rightarrow \pi^+\pi^-\pi^0$, $\varphi \rightarrow K^+K^-$

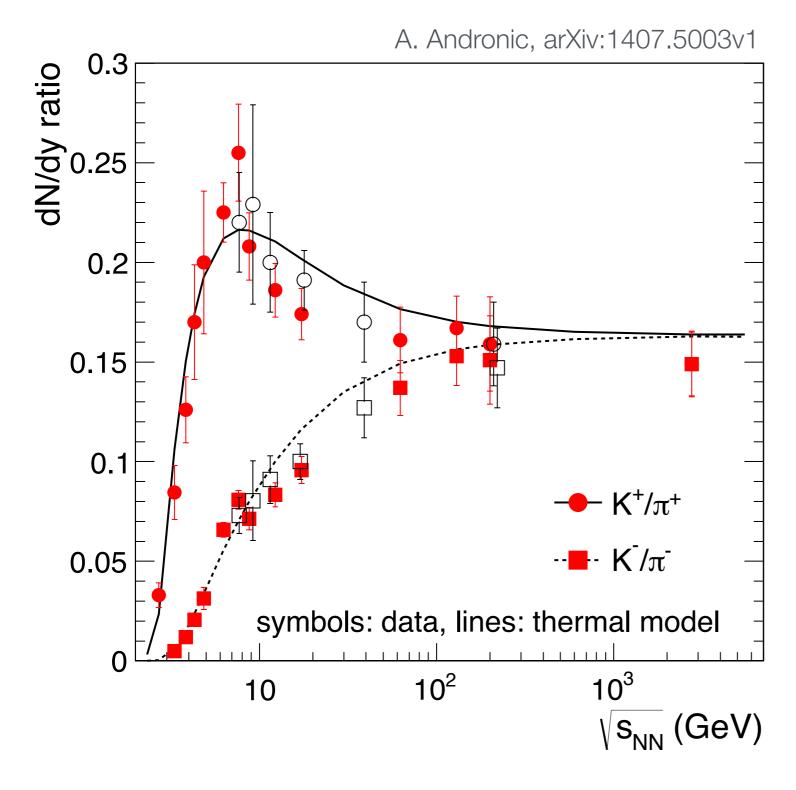
- Overall good agreement with data
- $T = 156 \pm 1.5 \text{ MeV}$, $\mu_B = 0 \pm 2 \text{ MeV}$, $V = 5330 \pm 400 \text{ fm}^3$

$\sqrt{s_{NN}}$ dependence of T and μ_B



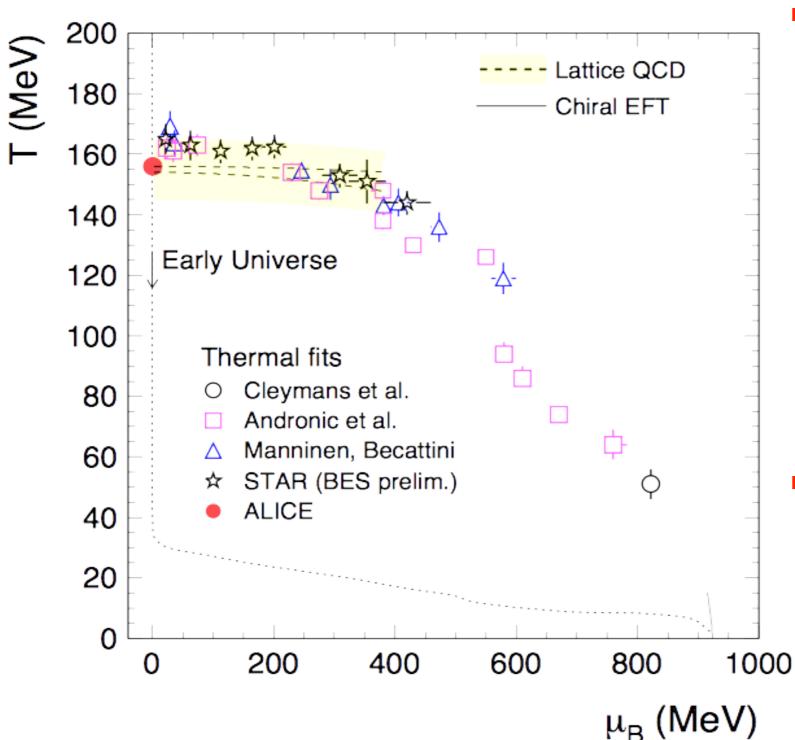
- Smooth evolution of T and μ_B with $\sqrt{s_{NN}}$
- T reaches limiting value of $T_{lim} = 159 \pm 2$ MeV

K/π ratio vs. √s_{NN}



- Maximum in K+/π+ ("the horn")
 was discussed as a signal for
 the onset of deconfinement at
 √s_{NN} ≈ a few GeV
- However, in the GC statistical model the structure can be reproduced with T, µ_B that vary smoothly with √s_{NN}

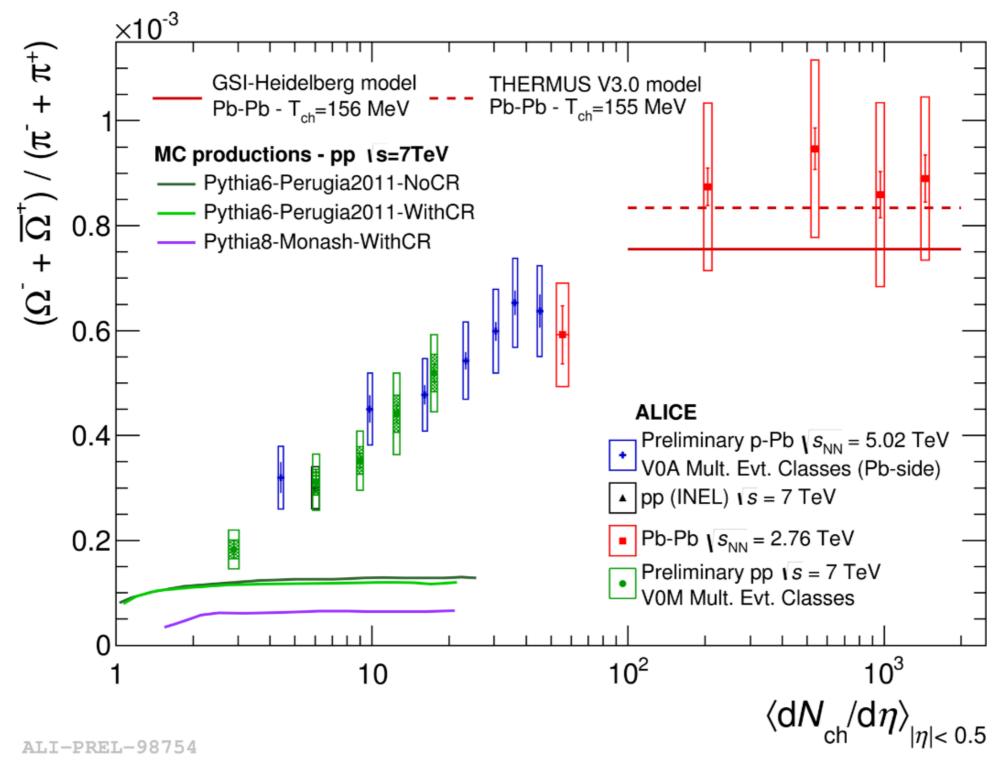
Freeze-out points for $\sqrt{s_{NN}} \approx 10$ GeV from thermal model fits coincide with T_c from lattice calculations



- What is the origin of equilibrium particle yields?
 - General property of the QCD hadronization process ("particle born into equilibrium")
 - Or does the hadron gas thermalizes via particle scattering after the transition?
- Possible mechanism for fast thermalization after the transition: multi-hadron scattering resulting from high particle densities

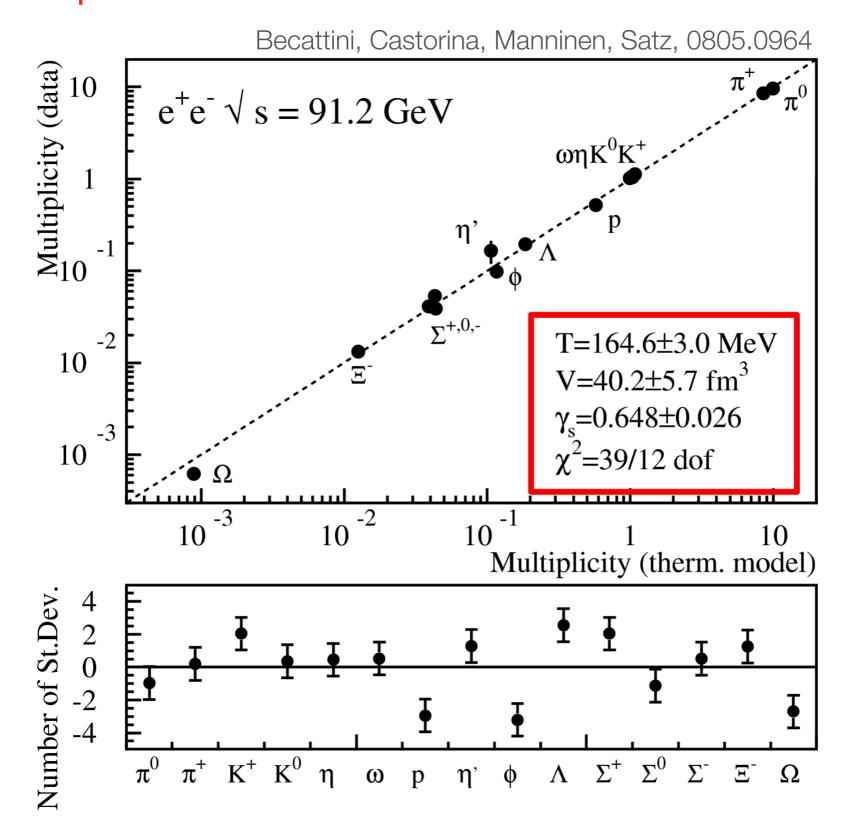
Braun-Munzinger, Stachel, Wetterich, PLB 596 (2004) 61

Strangeness enhancement already in small systems: Multiplicity dependence of Ω/π in pp, p-Pb, and Pb-Pb



Significant increase in Ω/π with $dN_{ch}/d\eta$ already in pp and p-Pb

Even yields in e+e- are not so far from chemical equilibrium



Statistical model + phenomenological factor $\gamma_s < 1$, reducing hadron yields by γ_s^N where N is the number of strange quarks (or antiquarks)

T not so different from the one in central A+A

Summary/questions strangeness

- Strangeness is enhanced in A-A collisions relative to e+e- and pp
- LHC: Strangeness enhancement in high-multiplicity pp collisions approaches the enhancement in Pb-Pb
- Origin of the strangeness enhancement?
 - Collisional equilibration?
 - Or "born into equilibrium"?
 - Strange quark coalescence ("recombination")?
 - Or something else?
- Strangeness provides important information and probably points to QGP formation
 - ▶ But why does the statistical approach also work to some degree in e+e- where no QGP is expected?
 - Better understanding of the mechanisms of strangeness enhancement is needed