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Quantum statistics: Occupation number

�2

For n identical particles, the wave function                                      

must be an even (odd) function under interchange of any pair of coordinates for 
bosons (ferminon)

 (~r1, ...,~rn)

n-body wave function:  
symmetrize (→ bosons) or antisymmetrize (→ fermion) product of n single-
particle wave functions

n↵ =

(
0, 1, 2, ...,1 for bosons,

0, 1 for fermions.

Occupation number

label for single-particle state

We have X

↵

n↵ = n
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Average occupation number in thermal equilibrium
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Average occupation number of single-particle state α:

where the fugacity z defines the chemical potential μ:

� =
1

kT

z = e�µ

n↵ =
1

z�1e�E↵ ± 1
+ : Fermi, � : Bose

=
1

e
E↵�µ

kT ± 1

Chemical potential μ controls average particle number of the system
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Number of states

�4

Number of states between momentum p and p+dp  
(each state occupies a volume h3 in phase space): 

dN =
V

h3
4⇡p2dp

number of states
physical volume

volume of a spherical shell with radius p 
and thickness dp in momentum space 
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Degeneracy for gluons and quarks
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n↵ =
g

e
E↵�µ

kT ± 1

Gluons (spin-1 bosons):

Quarks (spin 1/2 fermions):

Occupation number:

gg = 8color ⇥ 2spin = 16

gq = gquark + ganti-quark

= 2⇥ gquark

= 2⇥ 2spin ⇥ 2flavor ⇥ 3color = 24



QGP physics SS2017 | K. Reygers | 4.  Thermodynamics of the QGP

Non-interacting gluon gas

�6

Gluons (μ = 0), Bose-Einstein distribution (mgluon = 0 → E = p):

ng = gg
4⇡

(2⇡)3

1Z

0

dE
E 2

eE/T � 1
, "g = gg

4⇡

(2⇡)3

1Z

0

dE
E 3

eE/T � 1
(~ = k = 1)

Solution:

"g = gg
⇡2

30
T 4, pg =

1

3
"g , ng =

gg
⇡2

⇣(3)T 3

energy density: pressure: gluon density:

ζ(3) = 1.20205

Example: T = 200MeV, gq = 16 ) ng = 2.03 gluons/fm3
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Non-interaction gas of massless quarks and antiquarks
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Quark density (Fermi-Dirac distribution, massless quarks, i.e., E = p):

nq(µq) =
Nq

V
= gq

4⇡

(2⇡)3

1Z

0

dE
E 2

e(E�µq)/T + 1
(~ = k = 1)

no analytic solution for μq ≠ 0 

pair creation: q + q̄ � radiation

→ only the difference of the quark and antiquark density is fixed
µq + µq̄ = 0

For antiquarks we thus obtain:

nq̄(µq) = gq̄
4⇡

(2⇡)3

1Z

0

dE
E 2

e(E+µq)/T + 1
(~ = k = 1)

→
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Non-interacting quark gas with μ = 0
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Quark density  
(μq = 0): nq = nq̄ =

gq
2⇡2

3

2
⇣(3)T 3

Total energy of the quarks (E = p for massless quarks):

E =

1Z

0

E dNq

Energy density and pressure (μq = 0):

"q =
Eq

V
=

7

8
gq

⇡2

30
T 4, pq =

1

3
"q

T = 200MeV, gq = 18 ) nq = nq̄ = 1.71/fm3Example:

(identical result 
for antiquarks)
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Non-interacting QGP at μ = 0
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Pressure and energy density in a quark-gluon plasma at μ = 0 without particle 
interactions:

pQGP =

✓
gg +

7

8
(gq + gq̄)

◆
⇡2

90
T 4,

=

8
>>><

>>>:

37
⇡2

90
T 4 for u, d

47.5
⇡2

90
T 4 for u, d , s

"QGP = 3pQGP

=

8
>>><

>>>:

37
⇡2

30
T 4 for u, d

47.5
⇡2

30
T 4 for u, d , s

Example:

T = 200MeV, two active quark flavors ) "id. gasQGP = 2.55 GeV/fm3
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Bag Model
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■ Build confinement and asymptotic freedom 
into simple phenomenological model 

■ Hadron = „bag“ filled with massless quarks 
■ Two kinds of vacuum 
‣ Normal QCD vacuum outside of the bag 
‣ Perturbative QCD vacuum within the bag

A. Chodos et al., Phys. Rev. D10 (1974) 2599 
T. DeGrand et al. Phys. Rev. D12 (1975) 2060

Energy density in the bag is higher than in the vacuum: "pert � "vacuum =: B

Energy of N quarks in a bag of radius R: E =
2.04N

R
+

4

3
⇡R3B

kinetic energy of N particles  
in a sphere of radius RCondition for stability: dE/dR = 0 (minimum): 

B1/4 =

✓
2.04N

4⇡

◆1/4 1

R
N=3,R=0.8 fm) B1/4 = 206MeV (~ = c = 1)

q

q
q

perturbative QCD vacuum

normal QCD vacuum
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Critical temperature for an ideal QGP with μ = 0
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Modeling the complicated aspects of the QCD vacuum with one number:

"QCD vac.
QGP = "QGP +B E = TS � pV (µ = 0)

) p + " = TspQCD vac.
QGP = pQGP �B

So we have (here: HG = massless pion gas → g = 3 [3 species, π+,π–,π0]):
pHG = 3aT 4

pQCD vac.
QGP = 37aT 4 � B

"HG = 9aT 4

"QCD vac.
QGP = 111aT 4 + B

a =
⇡2

90

Gibbs criterion for the phase transition:

pHG(Tc) = pQCD vac.

QGP
(Tc) ) Tc =

✓
B

34a

◆1/4

⇡ 150MeV

Phase transition in the bag model is of first order. Latent heat:
"QCD vac.

QGP
(Tc)� "HG(Tc) = 102aT 4

c + B = 4B
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Ideal QGP with with μ = 0:  
Pressure, energy density, and entropy vs. T

�12
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QGP with μ ≠ 0: Entropy
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Entropy density:

dE = TdS � pdV (µ = 0) ) dS

dV
= s =

"+ p

T
=

4p

T

Ratio entropy density QGP / massless pion gas:

sQGP = 148aT 3, sHG = 12aT 3 ) sQGP

sHG

⇡ 12.3

s⇡
n⇡

=
12⇡2/90 · T 3

g⇡ · 1.202/⇡2 · T 3
= 3.6

sq
nq

= 1.4,
sg
ng

= 1.2

Entropy per particle:

Massless pion gas:

Idel QGP:

Large increase in volume at QGP → pion 
gas transition! (entropy conservation)
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QGP with μ ≠ 0:  
Energy and particle number density of quarks
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For a solution in closed form can be found for µq 6= 0 "q + "q̄
but not separately for "q and "q̄ Chin, PL 78B (1978) 552: 

"q + "q̄ = gq ⇥
 
7⇡2

120
T 4 +

µ2
q

4
T 2 +

µ4
q

8⇡2

!

Accordingly one finds for the quark density:

nq � nq̄ = gq ⇥
 
µq

6
T 2 +

µ3
q

6⇡2

!

From this the net baryon density can be determined as (for gq = 12):  

nB =
nq � nq̄

3
=

2µq

3
T 2 +

2µ3
q

3⇡2
=

2µB

9
T 2 +

2µ3
B

81⇡2
(µB = 3µq)
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QGP with μ ≠ 0:  
Energy and particle number density of quarks
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Energy density in a QGP with μ ≠ 0 (without particle interactions):  

"QGP = "q + "q̄ + "g =
37⇡2

30
T 4 + 3µ2

qT
2 +

3µ4
q

2⇡2

Condition for QGP stability:

pQGP =
1

3
"QGP

!
= B ) Tc(µq)

Condition for QGP:  
QGP-pressure ≥ pressure of 
the QCD-vacuum (similar, but 
not identical, to the previous 
condition pHG = pQGP)

Critical temperature / quark potential:  

Tc(µq = 0) =

✓
90B

37⇡2

◆1/4 µc
q(T = 0) = (2⇡2B)1/4 = 0.43GeV

ncB(T = 0) =
2

3⇡2
(2⇡2B)3/4

= 0.72 fm�3 ⇡ 5⇥ nnucleus

Possibly reached 
in neutron stars (?)
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QGP with μ ≠ 0:  
Phase Diagram of the non-Interacting QGP
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"c = 0.7GeV/fm3

hadron gas

quark-gluon plasma

condition: pQGP = B

µb = 3 · µquark
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Lattice QCD
■ Formulated in 1974 (K. Wilson), 

numerical Monte Carlo calculations 
started ca. 1980 (M. Creutz) 

■ First-principles non-perturbative 
calculation 

■ Benefitted from huge increase in 
computing power 

■ QCD thermodynamics on the lattice 
‣ So far restricted to µB ≈ 0 
‣ Two major groups (HotQCD coll., 

Wuppertal-Budapest coll.), results agree 
■ To be done:  
‣ Lattice QCD for finite baryon number 
‣ Transport properties of the QGP 
‣ Clarify existence and location of critical 

endpoint (CEP)

�17

Example of a machine for lattice QCD: 
JUGENE in Jülich (294,912 processor 
cores, ~ 1 PetaFLOPS)

quarks

gluons
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Lattice QCD correctly describes 
mass spectrum of hadrons

�18

S. Dürr, Z.Fodor et al.,  
Budapest-Marseille–Wuppertal Coll., 
Science 322 (2008) 1225
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Lattice QCD: 
Nature of the transition vs. quark mass

■ Nature of the transition 
depends on quark 
masses 

■ Infinitely heavy quarks 
(pure gauge) 
‣ First order phase 

transition 
‣ Tc ≈ 270 MeV 

■ Cross over transition for 
physical quark masses

�19

14 H.-T. Ding, F. Karsch and S. Mukherjee
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Fig. 3. A sketch of the nature of the QCD transition as functions of the two degenerate light (up
and down) quarks with masses, mu,d ⌘ ml, and a heavier strange quark with mass, ms, at zero
baryon chemical potential.

known to be first order.65,66 Recent lattice QCD studies67,68 with improved actions
suggest that the extent of this first order region is quite small, i.e. limited to
ml = ms . m

phys

s
/270 where m

phys

s
is the physical value of the strange quark mass.

An additional ingredient in the discussion of the order of the transition in the
chiral limit arises from the role of the axial anomaly. The nature of the chiral
transition for the massless Nf = 2 theory , i.e. for ml ! 0 and ms ! 1, depends
on the magnitude of the axial UA(1) symmetry breaking. If this remains significant
close to the transition temperature then the relevant symmetry becomes isomorphic
to that of the 3-d O(4) spin model and the transition is expected to be second order
belonging to that universality class.10,69 However, if UA(1) symmetry breaking
becomes negligible near the chiral transition temperature, the relevant symmetry
becomes isomorphic to O(2) ⇥ O(4) and the transition be either first order10 or
second order.70,71 In the intermediate quark mass region there is no true phase
transition, rather a crossover takes place from the hadronic to the quark-gluon
plasma phase.

All the first order regions are separated from the crossover region by lines of
second order phase transitions belonging to the 3-d Z(2) universality class. The
first order region for the Nf = 2 + 1 case, the second order Z(2) line separating
the Nf = 2 + 1 first order and the crossover regions and the second order O(4) line
for the Nf = 2 case are supposed to meet at a tri-critical point characterized by a
certain value of the strange quark mass, m

tric

s
. Although, it is well established that

in the real world, i.e. for the physical values of the quark masses, the transition
is a crossover,61,72 the location of the physical point with respect to m

tric

s
has not

been established and even m
tric

s
! 1 cannot be ruled out. More specifically, it

Ding, Karsch, Mukherjee, arXiv:1504.05274
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Pressure, energy and entropy density from lattice QCD

■ (2+1) flavor QCD 
‣ two light quarks (u,d)  

+ 1 heavier quark (s) 
■ Results extrapolated to 

continuum limit 
■ Pseudo-critical temperature 

for chiral crossover transition 
‣ Tc = (154 ± 9) MeV 
‣ εc ≈ (0.34 ± 0.16) GeV/fm3 

■ Hadron resonance gas 
(HRG) agrees with lattice 
results for T < Tc 

■ State-of-the art hydro calc’s 
use equation of from lattice 
QCD

�20

26 H.-T. Ding, F. Karsch and S. Mukherjee
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Fig. 10. (Left) Comparison of the trace anomaly (✏ � 3P )/T
4, pressure and entropy density

calculated with the HISQ (colored)114 and stout (grey)113 discretization schemes for staggered
fermions. (Right) Continuum extrapolated results for pressure, energy density and entropy den-
sity obtained with the HISQ action.114 Solid lines on the low temperature side correspond to
results obtained from hadron resonance gas (HRG) model calculations. The dashed line at high
temperatures shows the result for a non-interacting quark-gluon gas.

This allows to reconstruct the energy density as well as the entropy density s/T
3 =

(✏ + P )/T
4.

The determination of thermodynamic quantities in QCD is a parameter free
calculation. All input parameters needed in the calculation, e.g. the quark masses
(mu = md, ms) and the relation between the lattice cut-o↵, a, and the bare gauge
coupling, � = 6/g

2, are determined through calculations at zero temperature. Like-
wise, there is only a single independent thermodynamic observable that is calculated
in a lattice QCD calculation, for instance the trace anomaly, ⇥µµ(T ). All other bulk
thermodynamic observables are obtained from ⇥µµ(T ) through standard thermo-
dynamic relations. In Fig. 10 (left) we show recent results for the trace anomaly
of (2+1)-flavor QCD113,114 obtained with two di↵erent discretization schemes by
two di↵erent groups. The results are extrapolated to the continuum limit and are
obtained with a strange quark mass tuned to its physical value and light quark
masses that di↵er slightly (ms/ml = 27113 and 20114). The right hand panel in this
figure shows results for the pressure, energy density and entropy density obtained
from the trace anomaly by using Eqs. 39 and 40.

Also shown in Fig. 10 are results obtained from a hadron resonance gas (HRG)
model calculation of bulk thermodynamics. As can be seen this describes the QCD
equation of state quite well also in the transition region, although it may be noted
that the HRG calculations yield results for all observables that are at the lower error
band of the current QCD results. It has been speculated that this may indicate
contributions from additional, experimentally not yet observed resonances which
could contribute to the thermodynamics.115 Indeed evidence for the contribution
of a large number of strange baryons has recently been found in lattice QCD calcu-
lations of conserved charge fluctuations116 (see also the discussion in Section 5 and
7).

arXiv:1504.05274
for three quark 
flavors (u, d, s)
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Speed of sound

�21

28 H.-T. Ding, F. Karsch and S. Mukherjee
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Fig. 12. The velocity of sound in (2+1)-flavor QCD (left) and the specific heat CV /T
4 together

with the two components (see Eq. 42) contributing to it (right). Solid black lines in the low and
high temperature regions show the corresponding hadron resonance gas (HRG) and non-interacting
quark-gluon gas results, respectively.

critical behavior of energy density fluctuations close to a critical point. This may
be understood114 from the temperature dependence of the two terms contribut-
ing to CV /T

3. The dominant singular contribution arises from the temperature
derivative of ✏/T

4, which has a peak. This, however, is overwhelmed by the large
energy density contribution at high temperature which reflects the liberation of
many partonic degrees of freedom. Furthermore, even in the chiral limit, where
QCD is expected to have a second order phase transition belonging to the uni-
versality class of 3-d, O(4) symmetric spin models, the specific heat will not di-
verge as the relevant critical exponent ↵ ' �0.2 that controls its singular behavior,
CV /T

3
⇠ (|T � Tc|/Tc)�↵ + const., is negative for this universality class (see Ta-

ble 1). The speed of sound will therefore stay non-zero at Tc also in the chiral limit.

4.2. The QCD equation of state at non-vanishing chemical potential

In Section 3 we have discussed lattice QCD results on the dependence of the QCD
crossover temperature on the baryon chemical potential and its relation to the
freeze-out temperatures determined in heavy ion experiments. These experiments,
in particular the beam energy scan program performed at RHIC, will probe prop-
erties of strong-interaction matter at non-vanishing baryon chemical potential in
the temperature range 0.9 . T/Tc . 2 and 0 . µB/T . 3, with Tc denoting
the crossover temperature at µB = 0. For the hydrodynamic modeling of matter
in this (T, µB) regime it thus is of importance to also know the equation of state
at non-vanishing µB/T . As direct numerical calculations at non-zero µB are not
yet possible, a viable approach is to analyze the equation of state using a Taylor
expansion in terms of chemical potentials117,118 as given in Eq. 18. In this way
some results for the EoS at non-zero baryon chemical potential have already been
obtained on coarse lattices.40,41,118,119 Continuum extrapolated results for Taylor

c2s =
dp

d"
=

dp/dT

d"/dT
=

s

CV

arXiv:1504.05274

specific heat

entropy density
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Lattice QCD vs. perturbation theory

Lattice QCD agrees with 
perturbation theory (HLT) 
for T > 400 MeV
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THERMODYNAMICS OF STRONG-INTERACTION MATTER FROM LATTICE QCD 31
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Fig. 15. Comparison of the (2+1)-flavor calculation114 of the trace anomaly (left) and pressure
(right) with HTL and EQCD (dashed line) calculations. The black line corresponds to the HTL
calculation24 with renormalization scale µ = 2⇡T . Note that this solid line would move up for the
trace anomaly and move down for the pressure if the scale µ in HTL is reduced.

T [MeV]

χ9 /χB
24

B

Fig. 16. The ratio of quartic and quadratic net-baryon number fluctuations versus temperature.
The left hand panel shows temperature ranges in which HRG and resummed perturbative calcu-
lations, respectively, provide good approximations to lattice QCD results. The right hand panel
shows the result from a HTL-resummed calculations.24

quark rather than gluon contributions seem to approach perturbative behavior ear-
lier, it still is evident that agreement with lattice QCD results on the 10% level only
is possible for T & (250�300) MeV. In general the temperature range Tc  T  2 Tc

is highly non-perturbative and obviously not accessible to hadronic model calcula-
tions. This is highlighted in the left hand panel of Fig. 16. We will discuss in the
following sections properties of strong-interaction matter in this temperature range.

5. Fluctuations of conserved charges

Proximity of a second order criticality, such as the O(4) chiral phase transition
or the QCD critical point, is universally manifested through long-range correla-
tions at all length scales, resulting in increased fluctuations of the order parameter.

arXiv:1504.05274
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Summary QCD thermodynamics

■ Toy model based on treating the QGP as a bag in the QCD vacuum filled 
with an ideal gas of quarks and gluons provides some intuitive insights into 
the phase diagram 

■ For T = 400 MeV the energy density of an ideal gas is only 20% above the 
lattice QCD results 

■ Lattice QCD results 
‣ For physical quark masses the transition at μB = 0 is a crossover 
‣ Chiral symmetry transition coincides with deconfinement transition 
‣ Pseudo-critical temperature and energy density 
‣ Tc = (154 ± 9) MeV 
‣ εc ≈ (0.34 ± 0.16) GeV/fm3 

■ Not covered, but interesting: Thermodynamic fluctuations, especially 
fluctuations of conserved quantities (charge Q, baryon number B, …) 
‣ Measured via susceptibilities on the lattice, experimentally accessible

�23


