QGP Physics – from Fixed Target to LHC

1. Introduction
To set the stage: picture of one central collision of two Pb nuclei at the LHC observed by ALICE in the central barrel

about 3000 tracks of charged particles

how to measure these: lecture on detectors in particle physics

Physics of these collisions – what to learn from this picture: this lecture
Outline

1. Introduction
2. Kinematic Variables
3. Thermodynamics of the QGP
 3.1 QGP in the MIT Bag Model
 3.2 Lattice Results
4. Basics of NN and AA Collisions
5. Statistical Model and Strangeness
6. Space-time Evolution of the QGP
 6.1 Bjorken Picture, energy density
 6.2 Spectra and radial flow
 6.3 Hydrodynamics and azimuthal correlations
7. HBT
8. Hard Scattering, Jets and Jet Quenching
9. J/Psi and Quarkonia
10. Thermal Photons and Dileptons
Central collisions of two lead nuclei at the LHC at a center-of-mass energy of 2.76 TeV per nucleon-nucleon pair measured with the ALICE experiment.

Lecturers / Dates
Quark-Gluon Plasma Physics: from fixed target to the LHC (SS 2015)
Prof. Dr. Johanna Stachel, Prof. Dr. Klaus Reygers
INF 226 (KIP), SR 3.402, Friday, 11:15 – 12:45
first lecture: Friday, April 24 (i.e. no lecture on April 17)
ECTS points for this lecture: 2

Contents, schedule, and slides will be made available on this webpage.
We have assembled a list of textbooks on quark-gluon plasma and heavy-ion physics for these lectures.

Audience
This lecture gives an introduction into ultra-relativistic heavy-ion collisions and the physics of the quark-gluon plasma. It is aimed at Bachelor, Master, and Diploma students as well as graduate students. Knowledge on the level of "Experimentalphysik V" (PEPS) is sufficient for this basic introduction.

http://www.physi.uni-heidelberg.de/~reygers/lectures/2015/qgp/qgp_lecture_ss2015.html
Books (I)

Wong, Introduction to High-Energy Heavy-Ion Collisions, World Scientific, 1994 (→ Link)

Csernai, Introduction to Relativistic Heavy-Ion Collisions, 1994

this book is now freely available as pdf (→ Link)

Shuryak, The QCD vacuum, hadrons, and superdense matter, World Scientific, 2004 (→ Link)
Books (II)

Yagi, Hatsuda, Miake, Quark-Gluon Plasma, Cambridge University Press, 2005 (→ Link)

Vogt, Ultrarelativistic Heavy-Ion Collisions, Elsevier, 2007 (→ Link)

Florkowski, Phenomenology of Ultra-Relativistic Heavy Ion Collisions, World Scientific, 2010 (→ Link)
Books (III)

free download available (→ Link)
Reminder: fundamental components of matter

Quarks are bound by strong interaction into Hadrons

Mesons

Baryons

Quark–antiquark

3 valence quarks

mass scale set by constituent quark masses

(u,d=300 MeV)

due to breaking of chiral symmetry

Reminder: fundamental components of matter

Quarks are bound by strong interaction into Hadrons

Mesons

Baryons

Quark–antiquark

3 valence quarks

mass scale set by constituent quark masses

(u,d=300 MeV)

due to breaking of chiral symmetry
Strongly interacting matter described by QCD

Quarks carry electric charge, color charge (1 of 3 possible), and several other quantum numbers. They interact strongly by exchange of colored gluons (8 different gluons from 3 colors and 3 anticolors).

Because gluons are colored, QCD is very different from QED (see lectures 'standard model' and 'quantum field theory').

QCD is non-Abelian field theory of Young Mills type (1973 Fritzsch, Gell-Mann, Wess).

Quarks are confined in hadrons, trying to pull them apart, the interaction becomes stronger.

QED:

\[V(r) \propto \frac{\alpha}{r} \]

QCD:

\[V(r) \approx -\frac{4\alpha_s(r)}{3r} + kr \]
Strongly interacting matter described by QCD

at large momentum transfer or at small distances quarks are asymptotically free

formed independently in 1973 by
D.J. Gross, F. Wilczek, Phys. Rev. Lett. 30 (1973) 1343
H.D. Politzer, Phys. Rev. Lett. 30 (1973) 1346

Physics Nobel Prize 2004

\(a_s \) drops with increasing \(q^2 \)

or decreasing \(r \)
Running coupling constants

in QED vacuum polarization leads to increase of coupling constant a with decreasing r running slow (1/128 at 58.5 GeV)

in QCD the opposite: colored gluons spread out color charge leading to anti-shielding decrease of coupling constant a_s with decreasing r or increasing momentum transfer q

Summary of measurement of a_s a function of energy scale Q
Phase diagram of strongly interacting matter

at low temperature and normal density
colored quarks and gluons are bound in colorless hadrons - confinement
chiral symmetry is spontaneously broken (generating e.g. 99% of proton mass)
1973 QCD (Gross, Politzer, Wilczek) asymptotic freedom at small distances and high momentum

at high temperature and/or high density
quarks and gluons freed from confinement
-> new state of strongly interacting matter
initial idea: in asymptotically free regime exists weakly interacting quark matter

actually already 1974 speculations by T.D.Lee and G.C.Wick that disturbing the vacuum could lead to abnormal dense states of nuclear matter

Fig. 1. Schematic phase diagram of hadronic matter. \(\rho_B \) is the density of baryonic number. Quarks are confined in phase I and unconfined in phase II.
Estimate of critical temperature for deconfinement

First estimate by Polyakov 1978
at $T=0$, energy in a color string
with string tension

$$ E_{q\bar{q}} = \sigma r $$

$$ \sigma \approx 1 \text{GeV/fm} $$

for $T > 0$, free energy of string

$$ F_{q\bar{q}}(L) = E_{q\bar{q}}(L) - TS(L) $$

$$ = \sigma L - T \ln N(L) = (\sigma - \frac{T}{a \ln 5}) L = \sigma_{\text{eff}} L $$

with the number of string configurations

5 directions to go with typical stepsize a

and typical string thickness $a = 0.3 \text{ fm}$

critical temperature reached when $\sigma_{\text{eff}} = 0$

$$ \rightarrow T_c = \frac{1 \text{ GeV}}{0.3 \text{ fm}} \cdot \frac{0.3 \text{ fm}}{\text{fm ln} 5} = 185 \text{ MeV} $$

J. Stachel. K. Reygers | QGP physics SS2015 | 1. Introduction
already in 1965, R. Hagedorn argued that there is a maximum temperature for hadronic matter based on the increasing density of hadronic states with increasing energy (Suppl. Nuovo Cim. 3 (1965) 147)

the **statistical bootstrap model**: strongly interacting particle form resonances (3,4,5,...\(n\)) and those may combine to form new resonances only low-lying ones experimentally known

assume for density of states as function of mass: \(\rho_m \propto (m_0^2 + m^2)^{-5/4} \exp(m/b)\)

the energy density of a hadron gas becomes

\[
\epsilon(T) = \sum_{m_\pi}^M \epsilon(m, T) + \int_{M}^{\infty} \epsilon(m, T) \rho(m) dm
\]

but for large masses \(m > M\) \(\epsilon(m, T) \propto \exp(-m/T)\)

implying that integral diverges for \(T > b\)
Best estimate of Hagedorn temperature is still evolving

Known hadronic spectrum in 1997

Fit to integrated density of states as of PDG2008

$$\int_{FIT}(m) = \log_{10}\left(\int_0^m \frac{c}{(x^2 + m_0^2)^{5/4}} e^{x/T_H} dx\right)$$

All hadrons $T_H = 177.086$, $c = 18726.494$, range: 300 – 2200 MeV

Limiting temperature of hadron gas about 180 MeV – close to deconfinement estimate
the Quark-Gluon Plasma

Note: this is not in the asymptotically free region of QCD, a_s not small at $T=200$ MeV, typical kinetic energy for nonrelativistic particle $3/2 kT = 300$ MeV, for relativistic particle $3 kT = 600$ MeV

even in tails of Maxwell distribution $a_s = 0.2-03$

first perturbative corrections to ideal gas already early
Baym/Chin 1976, Shuryak 1978

by 1980 new phase was called Quark-Gluon Plasma (QGP):
excitations are quark and gluon quasiparticles plus collective 'plasmon' modes similar to usual QED plasma of ions and electrons
Critical density for deconfinement transition

Baryon density in normal nuclear matter with $r_0 = 1.15$ fm

$$\rho_0 = \frac{A}{4\pi/3R^3} = \frac{1}{4\pi/3r_0^3} \approx 0.16/fm^3$$

When nuclei are compressed, eventually nucleons start to overlap

Remember: charge radius of the nucleon $r_n = 0.8$ fm

$$\rightarrow \rho_c = \frac{1}{4\pi/3r_n^3} \approx 0.47/fm^3 = 3\rho_0$$

In fact, this is a bit too low

Will see later, that in order for quark-gluon bubble to sustain the vacuum pressure from the outside minimally $4r_0$ is needed
better knowledge of
critical temperature at zero net baryon density
nature of phase transition
(see chapter 4)

phase diagram at finite net baryon density (chemical potential):
phase transition may change in nature
possible critical end point
expect rich phase structure

later we will see experimental data points
in this phase diagram!
(see chapter 5)
Reise zum Urknall
returning to the big bang

10^{-4} \text{ sec} \quad 3 \text{ min}

13.7 \text{ million years}

Quark-Gluon
Plasma
nucleons
nuclei
atoms
today

big
bang

nature

experiment
Tracing Back the Big Bang

Hubble expansion

formation of galaxies

cosmic microwave radiation

matter dominated

quark hadron phase transition

nucleo-synthesis

quark-gluon matter

electroweak phase transition
How to make the Quark Gluon Plasma in Experiments

Collisions of heavy atomic nuclei

to bring in as much energy as possible,
to spread this energy over a large volume and many particles

1974 Bear mountain workshop 'BeV/nucleon collisions of heavy ions'
T.D.Lee “we should investigate … phenomena by distributing high energy or high nucleon density over a relatively large volume”
focussed largely on astrophysical implications
gradual build-up of momentum, various conferences, quantitative estimate of energy needed

1983 long range plan for nuclear physics in US: realization that the just abandoned pp collider project at Brookhaven could be turned into a nuclear collider inexpensively

first step realized: 1-2 GeV/c per nucleon beams from SuperHILAC into Bevalac at Berkeley in 1984
1986 beams of oxygen/silicon/sulfur in Brookhaven AGS and CERN SPS
1992/1994 beams of gold/lead
2000 gold – gold collisions in RHIC
2010 lead – lead collisions in LHC
What matters: the energy available in the c.m. system

energy in the c.m. system (brief reminder)
beam of nucleus A on stationary target nucleus of equal mass number A

\[E_{cm} = A m_n \sqrt{2 + 2\gamma} \]

due to baryon number conservation energy available to heat system and produce new particles

\[E^*_{cm} = E_{cm} - 2A m_n = A m_n (\sqrt{2 + 2\gamma} - 2) \]

beam of nucleus A colliding with equal energy and mass beam

\[E_{cm} = A m_n 2\gamma \]

and

\[E^*_{cm} = A m_n (2\gamma - 2) \]

but: at high energies nuclei become transparent, i.e. they do not stop each other completely in the c.m. system
from experiment we know: they loose about 85% of their energy, rest travels on
AGS : 1986 - 2000
• Si and Au ; up to $\sqrt{s} = 5$ GeV /nucl pair
 $E_{cm}^* = 600$ GeV - 1000 prod. hadrons

RHIC : 2000
• Au ; up to $\sqrt{s} = 200$ GeV /nucl pair
 $E_{cm}^* = 40$ TeV - 7500 prod. hadrons

SPS : 1986 - 2003
• S and Pb ; up to $\sqrt{s} = 20$ GeV/nucl pair
 $E_{cm}^* = 3200$ GeV - 2500 prod. hadrons

LHC : starting 2009
• Pb ; up to $\sqrt{s} = 5.5$ TeV/nucl pair
 $E_{cm}^* = 570$ TeV - 26000 prod. hadrons
Brookhaven AGS 1986 - 2000

tandems inject beams via booster synchrotron into AGS
circumference 1 km, warm magnets
max momentum 29 A/Z GeV/c = 5.6 GeV per nucleon pair in Au

Experiments E802/866
E810
E814/E877
E864
E917

max momentum 450 A/Z per nucleon pair in lead

WA80/98, WA97→NA57
RHIC: Relativistic Heavy Ion Collider at BNL
2000 - ...

circumference 3.83 km, 2 independent rings, superconducting
max energy $Z \times 500 \text{ GeV} = 200 \text{ GeV}$ per nucleon pair in Au
= 40 TeV

luminosity in Au-Au: $2 \times 10^{26} \text{ cm}^{-2} \text{ s}^{-1}$

2 large and 2 smaller (already completed) experiments
CERN: Large Hadron Collider (LHC) – 2009 - ...

- **p+p-collisions:**
 - $\sqrt{s} = 14$ TeV (sofar 8 TeV)
 - Collision rate: 800 MHz

- **Pb+Pb collisions:**
 - $\sqrt{s} = 208 \times 5.5$ TeV max.
 - (sofar 2.76 TeV)
 - Collision rate: 10 kHz

- Circumference: 27 km
- B-field: 8 T, supercond.
- 50-100 m below ground
GSI-Zukunftsprojekt: FAIR

Aktuell verfügbare Teilchenstrahlen:
Z = 1 – 92 (Protonen bis Uran) bis zu 2 GeV/Nukleon

In Zukunft:
100 – 1000-fache Strahlintensitäten, Z = -1 – 92 (Protonen bis Uran, Antiprotonen), bis zu 12 (35) GeV/Nukleon

2016 Baubeginn
2024 Fertigstellung
At a special seminar on 10 February, spokespersons from the experiments on CERN’s Heavy Ion programme presented compelling evidence for the existence of a new state of matter in which quarks, instead of being bound up into more complex particles such as protons and neutrons, are liberated to roam freely.
BNL press release April 2005:
RHIC Scientists Serve Up “Perfect“ Liquid

New state of matter more remarkable than predicted – raising many new questions

in central AuAu collisions at RHIC $\sqrt{s} = 38$ TeV
about 7500 hadrons produced (BRAHMS)
about three times as many as at CERN SPS
Minkowski diagram in time t and long. coord. z, proper time $t = \sqrt{\text{ct}^2 - z^2}$ collision at $t=0$, before nuclei approach each other with speed-of-light

1$^{\text{st}}$ stage: liberation of quarks and gluons
time scale order 0.1 fm/c

2$^{\text{nd}}$ stage: equilibration of quarks and gluons, at end QGP

3$^{\text{rd}}$ stage: expansion and cooling of QGP

$T \propto \tau^{-1/3}$

4$^{\text{th}}$ stage: hadronization when T_c is reached

5$^{\text{th}}$ stage: expansion of hadron gas

6$^{\text{th}}$ stage: freeze-out = momentum distributions are frozen in