

Hydrodynamical Model and Shear Viscosity from Black Holes (η/s from AdS/CFT)

Klaus Reygers / Kai Schweda Physikalisches Institut University of Heidelberg

Space-time evolution

Plot: courtesy of R. Stock.

• **QGP life time** 10 fm/c $\approx 3 \cdot 10^{-23}$ s

thermalization time

0.2 fm/c ≈ $7 \cdot 10^{-25}$ s → hydrodynamical expansion until freeze-out simplest model: only longitudinal expansion, 1d → Bjorken model

• collision time $2R/\gamma = 0.005 \text{ fm/c}$ $\approx 2 \cdot 10^{-26} \text{ s}$

Hydrodynamical model description

Some basic concepts

Relativistic Hydrodynamics (I)

The energy-momentum tensor $T^{\mu\upsilon}$ is the four-momentum component in the μ direction per three-dimensional surface area perpendicular to the ν direction.

$$\begin{split} \Delta \mathbf{p} &= (\Delta E, \Delta p_x, \Delta p_y, \Delta p_z) \\ \Delta \mathbf{x} &= (\Delta t, \Delta x, \Delta y, \Delta z) \\ \mu &= \nu = 0 : \ T_R^{00} = \frac{\Delta E}{\Delta x \Delta y \Delta z} = \frac{\Delta E}{\Delta V} = \varepsilon \\ \mu &= \nu = 1 : \quad T_R^{11} = \frac{\Delta p_x}{\Delta t \Delta y \Delta z} \quad \text{force in } \mathbf{x} \\ \Delta y \Delta z \text{ perpositive} \end{split}$$

force in x direction acting on a surface $\Delta y \Delta z$ perpendicular to the force \rightarrow pressure

$$T^{\mu\nu} = \begin{pmatrix} \text{energy density} & \text{energy flux density} \\ \text{momentum density} & \text{momentum flux density} \end{pmatrix} \equiv \begin{pmatrix} \varepsilon & \vec{j}_{\varepsilon} \\ \vec{g} & \Pi \end{pmatrix}$$

Relativistic Hydrodynamics (II)

Isotropy in the fluid rest implies that

the energy flux T^{0j} and the momentum density T^{j0} vanish and that $\Pi^{ij} = P \ \delta_{ij}$

$$T_R^{\mu\nu} = \begin{pmatrix} \varepsilon & 0 & 0 & 0 \\ 0 & P & 0 & 0 \\ 0 & 0 & P & 0 \\ 0 & 0 & 0 & P \end{pmatrix}$$

Off-diagonal elements \neq 0 in case of viscous

hydrodynamics, not considered here

 \rightarrow ideal (perfect) fluid.

See also Ollitrault, arXiv:0708.2433.

Relativistic Hydrodynamics (III)

Energy-momentum tensor (in case of local thermalization) after Lorentz transformation to the lab frame:

$$\begin{split} T^{\mu\nu} &= \left(\varepsilon + P\right) u^{\mu} u^{\nu} - P \, g^{\mu\nu} & \text{metric tensor diag(1,-1,-1,-1)} \\ \text{Energy density} & \text{4-velocity:} u^{\mu} = \mathrm{d} x^{\mu}/\mathrm{d} \tau \\ \text{and pressure in} & = \gamma(1,\vec{v}) \end{split}$$

Energy and momentum conservation:

$$\begin{array}{ll} \partial_{\mu}T^{\mu\nu} = 0, \quad \nu = 0, \dots, 3\\ \partial_{\mu} = (\frac{\partial}{\partial t}, \vec{\nabla}) & \qquad \text{in components:} \end{array} \begin{cases} \begin{array}{l} \frac{\partial}{\partial t}\varepsilon + \vec{\nabla}\vec{j}_{\varepsilon} = 0 \ (\text{energy conservation})\\ \frac{\partial}{\partial t}g_i + \nabla_j \Pi_{ij} = 0 \ (\text{momentum conservation}) \end{array} \end{cases}$$

Conserved quantities, e.g., baryon number:

 $j_B^{\mu}(x) = n_B(x) u^{\mu}(x), \qquad \partial_{\mu} j_B^{\mu}(x) = 0 \quad \Leftrightarrow \quad \frac{\partial}{\partial t} N_{\rm B} + \vec{\nabla} (N_{\rm B} \vec{v}) = 0$

continuity equation

 $N_{\rm B} = \gamma n_{\rm B}$

Ingredients of Hydro - models

Equation of motion and baryon

number conservation:

 $\partial_{\mu}T^{\mu\nu} = 0, \quad \partial_{\mu}j^{\mu}_{\mathbf{B}}(x) = 0$

- 5 equations for 6 unknowns: $(u_x, u_y, u_z, \varepsilon, P, n_{
 m B})$
- Equation of state: $P(arepsilon, n_{
 m B})$
- (needed to close the system)
- Initial conditions,

e.g., from Glauber calculation

• Freeze-out condition, fluid \rightarrow hadrons

EOS I: ultra-relativistic gas $P = \epsilon/3$ EOS H: resonance gas, $P \approx 0.15 \epsilon$ EOS Q: phase transition, $QGP \Leftrightarrow$ resonance gas

LHC: Identified particle spectra

Initial conditions fixed by pion abundance

Protons overestimated

Annihilation of protons and anti-protons in the hadron phase ?

Elliptic flow in Hydro - models

Au+Au at b = 7 fm $3.2 \text{ fm}/c \ (\epsilon_x = 0.160, \ \epsilon_p = 0.114)$ 4.0 fm/c ($\epsilon_x = 0.127, \epsilon_p = 0.141$) 5.6 fm/c ($\epsilon_x = 0.067, \epsilon_p = 0.147$) 8.0 fm/c ($\epsilon_x = 0.003, \epsilon_p = 0.123$)

Elliptic flow is "selfquenching": The cause of elliptic flow, the initial spacial anisotropy, decreases as the momentum anisotropy increases

Anisotropy in momentum space

Ulrich Heinz, Peter Kolb, arXiv:nucl-th/0305084

In hydrodynamic models the momentum anisotropy develops in the early (QGP)phase of the collision. Thermalization times of less than 1 fm/c are needed to describe the data.

Cold atomic gases

200 000 Li-6 atoms in an highly anisotropic trap (aspect ratio 29:1) Very strong interactions between atoms (Feshbach resonance) Once the atoms are released the one observed a flow pattern similar to elliptic flow in heavyion collisions

Lesson III

- First results from ALICE at LHC show large increase in
- energy density (factor 2-3 compared to RHIC)
- longer life-time of qgp
- larger collective flow effects
- anisotropic flow comparable to ultra-low viscosity
- triangular flow sensitive to initial energy density fluctuations and viscosity/entropy ratio
- Hydrodynamical model provides framework to characterize QGP, i.e. equation of state, viscosity/entropy ratio

Shear Viscosity from Black Holes (η/s from Ads/CFT)

What is this all about ?

General Considerations

- Strong coupling \rightarrow quantum effects large
- Use AdS/CFT correspondence
- Holographic duality: relate string theory of higher dimension to 4-d gauge theory on the boundary
- Limit of strong coupling: string theory → classical gravity (GR)

Parallel Plate Capacitor

Source: http://www.britannica.com

- Bulk: 3-d space between plates
- Fluctuations of the field in the bulk induce fluctuations of electric charges on the surface (boundary)
- Correlations of surface charges correlated to bulk field

AdS/CFT correspondence

- Maldacena conjecture: string theory and conformal QFT mathematically equivalent
- String theory: 10 dimensions
- E.g. Anti-de-Sitter Space (AdS) in 5dim + 5dim background
- Conformal field theory lives on 4dim boundary of 5dim AdS
- String theory becomes classical GR at boundary

Viscosity

Source: wikipedia

- Viscosity is a measure of a fluid resisting to flow
- 'Fluid with smaller viscosity makes bigger splash'
- Due to friction between neighbouring particle of a fluid moving at different velocity
- Temperature dependent !
- Shear viscosity, bulk viscosity, ...
- Symbol: η
- Unit: Pa s

Viscosity: some numbers

	Т(К)	μ (Pa s)
Air	291.15	18.27 x 10 ⁻⁶
Water	293	1 x 10 ⁻³
Honey	293	2 - 10
Peanut butter	293	250
Pitch	293	2.3 x 10 ⁸
QGP	2 000 000 000 000	gargantuan

Source: wikipedia

Pitch drop experiment University of Queensland

- Running since 83 years
- After 3 years of consolidation
- 8 drops fell so far
- No-one ever saw a drop falling
- 9th drop is about to fall

Black Hole

Source: http://media.photobucket.com

- Black hole, mass M
- Temp. $T = \frac{\hbar c^3}{8\pi GMk_B}$
- Entropy $S = A/4 \cdot (k_B c^3/Ghbar)$
 - A: area of horizon of boundary
- Physics of the interior region projected onto boundary: hologram

Holographic Principle

- Conjectured by 't Hooft
- Quantum gravity in (d+1) dimensions ⇔
 equivalent theory living on d-dimensional boundary
 ⇒ holographic dual

AdS/CFT Correspondence

- Fields that propagate in the bulk have well defined values at asymptotic infinity (boundary)
- Asymptotic values behave like field and coupling at the boundary
- Anti-de Sitter spacetime: negative curvature
- Holographic duals are sometimes gauge theories
- E.g. $AdS_5 \Leftrightarrow N=4$ Super Yang-Mills

AdS₅×S₅ Geometry

- AdS₅: 5 dimensional Anti-de-Sitter space
- Infinitesimal line element

$$ds^{2} = \frac{r^{2}}{L^{2}}(-dt^{2} + dx^{2}) + \frac{L^{2}}{r^{2}}dr^{2} + L^{2}d\Omega_{5}^{2}$$

S₅: 5 dimensional sphere, neglect

- r: radial coordinate
- R = const.: 3+1 dim. flat Minkowski space
- $R \rightarrow \infty$: boundary
- L: curvature radius

AdS₅×S₅ Geometry, cont'ed

$$ds^{2} = \frac{r^{2}}{L^{2}}(-dt^{2} + dx^{2}) + \frac{L^{2}}{r^{2}}dr^{2}$$

- Require L >> I_s, (classical approx.)
- 't Hooft coupling: $\lambda = g^2_{YM}N_c$

•
$$(L/I_s)^4 = \lambda$$

• Classical approx. works at strong coupling

AdS₅×S₅ Geometry, cont'ed

• Rewrite for AdS₅ black hole

$$ds^{2} = \frac{(\pi TL)^{2}}{u}(-(1-u^{2})dt^{2} + dx^{2}) + \frac{L^{2}}{4u^{2}(1-u^{2})}du^{2}$$

- $u = (r_0/r), r_0$: Schwarzschild (horizon) radius
- Horizon at u = 1
- Boundary limit: $u = \varepsilon$, then $\varepsilon \rightarrow 0$

Ask the AdS/CFT Dictionary...

Source: Physics Today, p29, May 2010

- η from T^{µv} (Kubo's formula)
- $T^{\mu\nu}$ corresponds to graviton $h^{\mu\nu}$
- Graviton is disturbance in $g_{\mu\nu}$
- Graviton at boundary propagates in the bulk and is scattered back
- Cross section \propto surface A
- Entropy s \propto surface A
- η /s does not depend on A

KSS bound on η /s

$$\frac{\eta}{s} \ge \frac{1}{4\pi} \cdot \frac{\hbar}{k_B} \left\{ 1 + \frac{15\zeta(3)}{\lambda^{3/2}} + \ldots \right\}$$

Ctarsjeidel reppteration bound

from string theory $\frac{\eta}{s} = \frac{1}{4\pi} \cdot \frac{\hbar}{k_B} \left(1 - \frac{1}{2N_C} \right)$

Potentially lower bound from SU(2)

Some remarks

- Relativistic fluid, but bound does not depend on speed of light
- N=4 Super Yang-Mills is **not** QCD
- N_c = 3, not large
- No confinement
- Quarks are massless
- However, details might not matter too much, system driven by temperature and degrees of freedom

Non-ideal Hydro-dynamics

M.Luzum and R. Romatschke, PRC 78 034915 (2008); P. Romatschke, arXiv:0902.3663.

- Spectra and flow
 reproduced by ideal
 hydrodynamics calcs.
- Shear viscosity to entropy density ratio close to AdS/CFT bound
- viscosity leads to decrease in v_2 , ultralow viscosity sufficient to describe data
- Hydro-limit exceeded at LHC ?

$\eta \ from experiments$

- η huge, but also entropy s huge
- QGP close to conjectured bound → `prefect liquid'
- Cold atom gases (T = 10⁻⁷ K) have very similar properties, e,g, collective flow, etc.

References

- T. Schaefer and D. Teaney, Rep. Prog. Phys. 72 (2009), 126001, p22-26.
- P.K. Kovtun, D.T. Son, and A.O. Starinets, Phys. Rev. Lett. 94 (2005) 111601.
- J.M. Maldacena, TASI 2003 Lectures on AdS/CFT correspondence, arXiv:hep-th/0309246.
- C.V. Johnson and P. Steinberg, Physics Today (May 2010) 29.

Lesson IV

- shear viscosity / entropy density (η /s) ultralow in QGP
- however, shear viscosty AND entropy density large in QGP, only ratio becomes small !
- close to the conjectured bound from AdS/CFT correspondence
- common features of many-body systems (QGP vs ultra-cold atomic gases) over 20 orders of magnitude in temperature