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Hand-in solutions by 14:00, 15. December 2013

Please send your solutions to obrandt@kip.uni-heidelberg.de by 15.12.2013, 14:00, punc-
tually. Make sure that you use SMIPP:Exercise09 as subject line. If plots are requested, please
include print statements to produce pdf files in your code, and provide the plots separately. Plea-
se add comments to your source code explaining the steps. Test macros and programs before
sending them off...

1 Properties of the χ2-test and the KS-test

In this Problem, we want to study the properties of the χ2-test and of the KS-test for the cases
of limited and large statistics, and in presence of systematic uncertainties. We do this using a
powerful tool pseudo-experiments which is widely used in particle physics in order to evaluate
the performance of a given data analysis technique. Tests using ensembles of pseudo-experiments
are based on the idea that one applies the data analysis technique not to data but to simulated
pseudo-data, which is generated based on MC simulations, while treating it exactly like data
otherwise.

1.1 Pseudo-experiments with statistical uncertainties only

To start, download from the website the file ex_9_1_input.root. It is based on the example
of Problem 8.2 from the last Problem Sheet. First, we focus on the histograms hsig and hbgr.
As we have verified in 8.2 that these two histograms describe the data adequately, we construct
the data template for our pseudo-data distribution by adding those two histograms to give
htpl. In the next step, we generate a pseudo-experiment by generating the distribution hpse1

by independently Poisson-fluctuating the contents of the individual bins of htpl and setting
the bin contents of hpse1 accordingly. Note that, depending on the version of ROOT, you
may need to call the TH1::Sumw2() method in order for the errors on the bins of hpse1 to be
recalculated to reflect the set bin contents. This way to construct our pseudo-experiment assumes
that there are no systematic uncertainties which could make our simulations behave differently
from data, and any possible differences are purely statistical. Now we can use hpse1 as pseudo-
data and do our tests from 8.2 to check the hypothesis that it is modelled adequately by the
sum of hsig and hbgr. Generate 1000 pseudo-experiments following this prescription and please
provide the plots of the first 3 of them (hpsei.pdf, i = 1, 2, 3) as a cross check. For each of the
pseudo-experiments, determine χ2/D.o.F., χ2-probability and the KS-probability, and plot their



distributions (ex_8_1_1_chisq.pdf,ex_8_1_1_chipr.pdf, and ex_8_1_1_kspr.pdf). What do
you expect for the mean of the former? Do your findings match the expectation? What can you
say about the latter two?
We now proceed to the case where we have the same underlying distribution, but limited
statistics. To counter this, the signal and background histograms are adjusted to have wi-
der bins: hsiglo and hbgrlo. Again, generate 1000 pseudo-experiments and plot the first 3
of them (hpseloi.pdf, i = 1, 2, 3). Test the hypothesis that hpseloi are described by the
sum of hsiglo and hbgrlo. What do you expect now for the χ2/D.o.F. in terms of mean
and width, compared to the above case of high statistics? Check this by plotting χ2/D.o.F.
for the 1000 pseudo-experiments. Similarly, plot the χ2-probability and the KS-probability
(ex_8_1_1_lochisq.pdf,ex_8_1_1_lochipr.pdf, and ex_8_1_1_lokspr.pdf).

1.2 Pseudo-experiments with flat systematic uncertainties

Now we consider the case that we have a systematic uncertainty which affects the yield of the
background. For simplicity, we assume that this effect is equidistributed in mγγ . This is reflected
in hbgrsys. We assume that the signal distribuion hsig is not affected. Construct again 1000
pseudo-experiments which represent how data would look like if the background simulations
were affected by this systematic uncertainty, i.e. by creating the signal+background template
from the sum hsig and hbgrsys. As this is a systematic uncertainty, we are not allowed to
change the hypothesis we are testing, i.e. that our (pseudo-)data is described by the sum of
hsig and hbgr (note that this is the background distribution w/o systematic uncertainties!).
Like above, determine the χ2/D.o.F., χ2-probability and the KS-probability, and plot their
distributions (ex_8_1_2_chisq.pdf,ex_8_1_2_chipr.pdf, and ex_8_1_2_kspr.pdf). Interpret
these three plots, in particularly focusing on the χ2-probability and the KS-probability. What
is the advantage of KS-probability?
The above findings can be generalised to the case of non-flat systematic uncertainties, however,
qualitatively it is the same, and so will not be treated in this Problem.
(ex_8_1.C/.py)

2 Minmisation of correlated parameters with MINUIT

Minimisation problems of − lnL or a χ2 expression to extract physics parameters given a specific
model are very common in particle physics. The underlying tool which used by ROOT to do
this is the MINUIT routine, which was written back in the 70’ies, but turned out to be good
enough to be still alive (albeit wrapped to be accessible in C++ or, recently, re-coded in C).
For example, when fitting some datasets to some TF1 MINUIT can be used. In the following,
we will learn to use MINUIT stand-alone, as it is much faster than via the TF1/TF2 interface
and versatile (i.e. not limited to one or two free parameters etc). As an example, we will use the
combination of two measurements, where some uncertainties are fully correlated and some are
not. In such a case, the correct treatment of such correlations is important, as failure to do so
can lead to biased results.

2.1 W mass measurement at LEP

At the LEP accelerator at CERN the mass of the W boson was measured in two different
channels:

e+e− → W+W− → q1q2q3q4

e+e− → W+W− → `νq1q2



The experimental signature in the detector for the first channel with four quarks are four recon-
structed jets. The second kind of reaction is identified by a lepton (electron or muon) and two
jets. The neutrino is not detected. The measured W masses are:

4 jets channel : mW = (80457± 30± 11± 47± 17± 17) MeV

lepton + 2 jets channel : mW = (80448± 33± 12± 0± 19± 17) MeV.

The first two uncertainties are the statistical and systematic experimental uncertainties. They
are uncorrelated. The third uncertainty is an uncertainty from theory only present in the four jets
channel. The fourth uncertainty is 100% correlated because it comes from a common theoretical
model. Also the last uncertainty which originates from the LEP accelerator is fully, i.e. 100%
correlated between both measurements.
Construct a covariance matrix taking into account all uncertainties and their correlations. Use
this covariance matrix to define a χ2 expression containing the average W mass m̄W as a free
parameter. Determine m̄W and its uncertainty by minimizing the χ2 expression with the TMinuit
class (ex_9_2_1.C/.py). This can be done by e.g.:

TMinuit* minuit = new TMinuit(numberOfParameters) ;

// Define parameters

// identifier, name, start value, step width, bounds

minuit->DefineParameter(0, "m", 80000, 50, 0, 0) ;

// tell Minuit which function to use

minuit->SetFCN(&FCN) ;

// run minimisation and error calculation

minuit->Migrad() ;

// get fitted parameters and error

minuit->GetParameter(0, par, sigma) ;

Note that the function to be minimised, FCN, has to follow the following prototype:

void fcn(Int_t& npar, Double_t* gin, Double_t& f, Double_t* par, Int_t iflag);

This is the meaning of the variables:
npar number of free parameters involved in minimisation
gin computed gradient values (optional)
f function to be minimised
par vector of constant and variable parameters
flag to switch between several actions of FCN

For further reference about MINUIT, the TMinuit class description on the ROOT website is
a good idea for first-pass information, details can be found in the CERNLIB documentation
online:
wwwinfo.cern.ch/asdoc/minuit/minmain.html.

2.2 Analytical solution

Because the minimization of the χ2 expression in Problem 9.2.1 is a linear problem, it can be
solved analytically. Determine m̄W and its error analytically and compare them to the result of
Problem 9.2.1.

2.3 Calculate the individual uncertainties for combination

Estimate the contributions from statistical, systematic, theoretical and accelerator-based uncer-
tainties to the uncertainty of the combined W mass measurement. Use the quadratic difference
between the total uncertainty and the uncertainty calculated with a covariance matrix where
one component is removed.
(ex_9_2_3.C/.py)
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