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Hand-in solutions by 14:00, 1. December 2013

Please send your solutions to obrandt@kip.uni-heidelberg.de by 1.12.2013, 14:00, punctually.
Make sure that you use SMIPP:Exercise07 as subject line. Please hand in your solutions as
C++ code this time, and put your programme for all of 7.1-7.4 into one single .C file using the
provided base template, in order to guarantee some structural similarity of the solutions. If plots
are requested, please include print statements to produce pdf files in your code, and provide the
plots separately. In contrast to previous problem sheets, please use the histogram names from
the template to print the canvas (cf. example in template). Please also write the histograms
into a .root file (cf. example in template), which can be practical. Please add comments to your
source code explaining the steps. Test macros and programs before sending them off...

The calorimeter is the core instrument of practially any elementary particle physics experiment,
which is used to measure the energies of incident particles via the electromagnetic and possibly
strong interactions with the detector material. This measurement is typically performed by de-
tecting the scintillation light which is induced by those interactions inside the detector material.
The detection is typically performed by photomultiplier tubes (PMT), which use the photoelec-
tric effect to generate primary electrons from the incident scintillations photons, and multiplying
them to an electronically measurable signal via a cascade between stages of the PMT (hence the
name). For example, the hadronic calorimeter of the ATLAS experiment uses such a detection
principle. In this problem sheet, we will simulate the operation of such a device.

Focusing electrode Photomultiplier (PMT) 

Scintillator 

High energy 
photon Low energy photons 

Dynode 

Connector  
pins Electrons Anode 

Ionization track 

Primary 
electron 

Photocathode 

Abbildung 1: Schematic drawing of a PMT alongside an electron castcade.



A schematic drawing of a PMT alongside an electron castcade is given Fig. 1. A photon strikes
the photocathode, where there is a certain probability for it to eject an electron (called a pho-
toelectron). The photoelectron is accelerated in an electric field towards an electrode (called
dynode). In the collision with the first dynode, the photoelectron can liberate further electrons.
These are accelerated towards the second dynode, where more electrons are produced. This con-
tinues through a series of stages until the electrons produced at the final dynode are collected.
The number of electrons produced at the i-th dynode for each incoming electron can be modeled
as a Poisson variable ni with mean value νi, which in general can be different for each stage.
Suppose the photomultiplier has N dynodes. The number of electrons nout produced at the final
stage for a single incident photoelectron has an expectation value

v̄out = E(nout) =
N∏
i=1

νi . (1)

Further information on photomultipliers can be found in [1], [2].

1 One electron in a PMT with six dynodes

Write a Monte Carlo program to determine the distribution of the number of electrons nout at
the end of N = 6 dynodes produced by a single initial photoelectron.
For this, generate Poisson random numbers with the ROOT function Random::Poisson(nu)

with ν = 3.0 for each dynode. Run the program to simulate the passage of M = 10000 initial
photoelectrons, one-by-one, through the PMT. Track the number of photoelectrons being emitted
after each dynode stage with a histogram and, in particular, the number emitted from the final
stage, nout. Estimate the sample mean and variance using

n̄out =
1

M

M∑
i=1

nout,i (2)

and

V (nout) =
1

M − 1

M∑
i=1

(nout,i − n̄out)
2 . (3)

Compare the sample mean to the value from Eq. 1. Compare the sample SD σ(nout) to the value
that one would obtain from a Poisson-distributed variable with mean νout. Form Eq. 3 in such a
way that one loop is sufficient to calculate it. Explain qualitatively why the standard deviation
of nout from the variance in Eq. 3 is much larger than in the Poisson case.

2 Improving the resolution of single photoelectrons

Ideally, one would like the standard deviation of n̄out to be as small as possible in order to
determine as accurately as possible the number of photoelectrons emitted from the cathode (and
thus estimate the number of photons entering the detector). In some experimental applications,
one would like to have the SD small enough to distinguish between one single and a pair of
photoelectrons. Therefore one tries to have a relative resolution, i.e. the ratio of the SD to the
mean, of less than unity. One way of achieving this is to increase the mean number of electrons
produced at the first dynode. This can be done either by increasing the accelerating electric
field, or by using a dynode metal with a low work function, i.e. a high probability for secondary
electron emission.
Repeat the simulation from Exercise 7.1 while increasing the mean number of electrons emitted
by the first dynode to ν1 = 6.0. Estimate the ratio of the standard deviation to the mean of



nout for both values of ν1. Explain qualitatively why this gives a better resolution than in the
case with equal νi. Why does this not help much to increase the gain of the dynodes in the later
stages of the PMT?

3 Correlation of nout to the number of photoelectrons in the first
dynode

Show that the mean of nout is proportional to the number of electrons emitted by the first
dynode. Use profile histograms (TProfile) to show this. How many electrons are emitted per
electron at the first dynode?
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Template code

// Ex 7.x.x: simulate a PMT

// Statistical Methods in Particle physics WS 2013

//

// Nomen Nominandum

// nomen.nominandum@stud.uni-heidelberg.de

#include <cmath>

#include <iostream>

#include <TRandom3.h>

#include <TFile.h>

#include <TCanvas.h>

#include <TH1D.h>

#include <TProfile.h>

TRandom3 rnd ;

// here go the helper methods to be called from ex_7() at the bottom

// trace one photoelectron through a photomultiplier

//

// returns number of electrons after last dynode

// ndynodes number of dynodes

// nus mean number of emitted el. per incoming el. (per dynode)

// n number of el. after each dynode

unsigned long pmt(unsigned ndynodes, double nus[], unsigned long n[]) {

// trace one photoelectron through the PMT

}

// trace electrons through a photomultiplier (M experiments)

//

// nu1 Poisson mean of first dynode

// nurest Poisson mean of other dynodes

// ndynodes number of dynodes



// M number of experiments

// histos array of pointers to histograms (if 0, don’t try to fill)

// (for number of electrons after each dynode)

// hprof pointer to profile histogram of number of el. after first

// dynode vs number of el. after last dynode

// (if 0, don’t try to fill)

void dynodes6( double nu1, double nurest, unsigned ndynodes

, unsigned M, TH1D** histos, TProfile* hprof

) {

// set up array of poisson means for each dynode

double nus[ndynodes] ;

for( int i=0 ; i!=ndynodes ; ++i ) nus[i] = nurest ;

nus[0] = nu1 ;

// array of electrons after each dynode

unsigned long n[ndynodes] ;

// do M experiments, fill histograms, calculate mean and variance

// print mean and variance

return ;

}

// main program

int ex_7() {

// open file to store resulting histograms

TFile file("ex_7.root", "RECREATE") ;

TCanvas* cnv = new TCanvas( "cnv", "cnv", 300, 300 ) ;

// first, do exercise 7.1 to 7.3

// use a for loop to simulate the two values of nu1

for( int nu1=3 ; nu1<=6 ; nu1+=3 ) {

// array of histograms, one for each dynode

TH1D* histos[6] ;

for( int i=0 ; i!=6 ; ++i ) {

histos[i] = new TH1D( Form("nu%dn%02d", nu1, i + 1)

, Form("number of el. after dynode %i (#nu_{1}=%d)", i + 1, nu1)

, 50., -0.5, double(25 + i*1000) - 0.5

) ;

}

// profile histogram: number of el. after first dynode vs number of

// el. after last (for ex. 7.3)

TProfile* hprof = new TProfile( Form("nu%dn1vsnlast", nu1)

, Form("number of el. after 1st dynode vs. "

"number of el. after last (#nu_{1}=%d)", nu1)

, 20, -0.5, 19.5

) ;

// ok, trace 10000 photoelectrons through the PMT, recording the results

dynodes6( double(nu1), 3., 6, 10000, histos, hprof ) ;

// print, write and delete histograms

hprof->Write() ;

hprof->Draw() ;

cnv->Print( Form("%s.pdf", hprof->GetName()) ) ;//histo name for printing

delete hprof ;

for( int i=0 ; i!=6 ; ++i ) {

histos[i]->Write() ;

delete histos[i] ;

}



}

// now comes exercise 7.4

//TH1D *hpmt12 = new TH1D("pmt12", "Number of electrons after 12 dynodes",

// 100, 0., 5e6) ;

//// use 10000 photoelectrons entering our 12 dynode PMT

//for (unsigned iex = 0 ; iex < 10000 ; ++iex)

// hpmt12->Fill(dynodes12()) ;

//// and write the histogram to the output file

//hpmt12->Write() ;

//delete hpmt12 ;

//// close file

//file.Close() ;

// end main successfully (note: return meaningful error code otherwise)

return 0 ;

}
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