
Kirchhoff-Insitut für Physik Winter semester 2013-14
Physikalisches Insitut KIP CIP Pool (1.401)

Exercises for Statistical Methods in Particle Physics
http://www.physi.uni-heidelberg.de/~nberger/teaching/ws13/statistics/statistics.php

Dr. Niklaus Berger (nberger@physi.uni-heidelberg.de)
Dr. Oleg Brandt (obrandt@kip.uni-heidelberg.de)

Exercise 4: The Central Limit Theorem and
applied MC simulation

4. November 2013
Hand-in solutions by 14:00, 11. November 2013

Please send your solutions to obrandt@kip.uni-heidelberg.de by 11.11.2013, 14:00. Make
sure that you use SMIPP:Exercise04 as subject line. Please put each macro into one separate
.C or .py file, which can easily be tested (i.e. executable via e.g. root -l my_code.C. Note
that for this to work, the main method of the macro has to be called with the same name as
the macro, i.e. void my_code(<some optional arguments>)). If plots are requested, please
include print statements to produce pdf files in your code, and provide the plots separately.
Please add comments to your source code explaining the steps – try to think of somebody who
is not familiar with the course should be able to understand easily from your source code what
each part of it is there for. Test macros and programs before sending them off...

1 Central Limit Theorem

Measurements can acquire uncertainties form many different sources. Usually, it is assumed that
the uncertainties follow a Gaussian distribution. This is justified by the Central Limit Theorem.
It states that the sum of N independent variables taken from the same distribution converges
to a Gaussian distribution when N →∞. Note that the variance has to be defined for the single
distribution.

1.1 The uniform distribution

In this part of the exercise, we study the Central Limit Theorem using a sample of uniformly
distributed random numbers. Write a programme that:

• generates uniform random numbers on the interval [0, 5],

• plots the distribution of the average of k random numbers with 2 ≤ k ≤ 20 (10,000 times
for each k),

• fits a Gaussian to the distribution for each k,

• and plots the mean and the sigma parameter of the Gaussian versus k.

For how many averaged random numbers does the distribution look like a genuine Gaussian?
Note:
A Gaussian fit to a distribution can be performed in ROOT by defining the TF1 object
with the formula string parameter, i.e. the second parameter, set to "GAUS", and calling the
Fit(<name of TF1>,<parameters>) method of the object that one wants to fit, i.e. in this case
a TH1.
(Please hand in your code called ex 4 1 1.C/.py and provide plots titled ex 4 1 1.pdf)

1.2 The Breit-Wigner distribution

The Breit-Wigner distribution is often used in particle physics, as it describes the invariant mass
of a decaying particle. In mathematical terms, the Breit-Wigner distribution is a special case of
the Cauchy PDF given by:

f(x) =
1
π

1
1 + x2

.

• Show (analytically) that for a uniformly distrubted r in [0, 1]

x(r) = tan[π(r − 1
2

)]

follows the Cauchy distribution.

• Using the above result write a macro to generate 10,000 Cauchy-distributed random num-
bers and plot them in a histogram.

• Modify your macro from before to generate repeated experiments each consisting of k
independent Cauchy distributed values for e.g. k = 10. For each sample, compute the
sample mean x̄ = 1

k

∑n
i=1 xi. Compare the histogram of x̄ with the original histogram of x.

Does it agree with what you would expect from the Central Limit Theorem? Interpret the
result!

(Please hand in your code called ex 4 1 2.C/.py and provide plots titled ex 4 1 2.pdf)

2 MC simulation of a muon beam

The Paul Scherrer Institute (PSI) in Switzerland provides the most intense continuous muon
beams in the world. These beams are created by shooting over 2 mA of 590 MeV/c protons at a
4 cm thick carbon target. In the p−C interactions, many pions are generated and then stopped
in the target. Charged pions decay mostly to a muon and a muon (anti)neutrino, π+ → µ+νµ
and π− → µ−ν̄µ. These are the muons used in the experiments. In the coordinate frame where
the pion is at rest, the muons will have a fixed momentum of pmax = 29.79 MeV/c defined by
the two-body pion decay. Muons traversing the target material will lose some energy, thus the
highest momentum muons tend to come from the target surface. In fact, the muon intensity
behaves as

I(p) =
{
I0 · p3.5 if 0 < p < pmax

0 otherwise
, (1)

where I0 is an (arbitrary) normalization factor.

2.1 The ideal muon beam

For the simulation of the future µ → eee experiment at PSI, we would like to generate muons
with the momentum distribution given by Eq. 1. Generate 100’000 muon momenta using the
transformation method and fill them into a histogram with appropriate binning. (Please hand
in your code called ex 4 2 1.C/.py and provide plots titled ex 4 2 1.pdf)

2.2 Towards a realistic muon beam

In reality, the sharp edge at pmax = 29.79 MeV/c is washed out because many pions are not
perfectly at rest in the target. The resulting distribution is the intensity from the above problem
(Iideal) convoluted with a Gaussian distribution

Ireal(p) =
∫ +∞

−∞
Iideal(τ) · g(p− τ)dτ =

∫ +∞

−∞
g(τ) · Iideal(p− τ)dτ (2)

where g(x) is the Gaussian or normal distribution,

g(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2

In our example, the width σ of the distribution happens to be a convenient 1 MeV/c and the
center µ is conveniently at 0. The integral in Equation 2 has no analytical solution, so we will
approximate it numerically by a sum (using the fact that the normal distribution falls off rather
rapidly): ∫ +∞

−∞
g(τ) · f(x− τ)dτ ≈

∑a
τ=−a g(τ)f(x− τ)∑a

τ=−a g(τ)
,

where a is chosen as a few units of σ of the normal distribution (typically, 3 is a reasonably good
choice) and the steps of τ are chosen to be small enough. Write a function that implements this
convolution starting from a function implementing a normal distribution with a σ of 1 MeV/c
and a mean of 0 MeV/c (does not need to be normalised) and a function implementing Iideal.
In native (C++) ROOT, these functions should have prototypes of the form

double myFunction(double* x, double* par) {
p = x[0] ;
parameter0 = par[0] ;
parameter1 = par[1] ;
...
return result ;

}

where x is an array of the running variable (of length 1 our in case of a onedimensional function)
and par is an array of the function parameters. In Python, everything is somewhat simpler due
to implicit typing:

def myFunction(x, par):
p = x[0]
parameter0 = par[0]
parameter1 = par[1]

...
return result

These functions can then be used in TF1 objects to draw the function.

TF1 * rootfunction = new TF1("myFunction",myFunction,0,30,2) ;
rootfunction->SetParameter(0,1.3) ;
rootfunction->SetParameter(1,2.7) ;
rootfunction->Draw() ;

where the arguments to the constructor are name, the actual function, the lower and up-
per edges of the function range and the number of parameters, which can then be set via
SetParameter(index, value). Determine the number of steps needed for τ by drawing the func-
tion and increasing the number until you obtain a smooth behaviour.
(Please hand in your code called ex 4 2 2.C/.py and provide plots titled ex 4 2 2.pdf)

2.3 The realistic muon beam

Use the hit-and-miss method to generate 100’000 muons with the distribution obtained in the
last problem in the range from 0 to 35 MeV/c. Plot the resulting distribution. Count how many
random numbers you need per generated muon. Could this be made more efficient? How (without
implementation)?
(Please hand in your code called ex 4 2 3.C/.py and provide plots titled ex 4 2 3.pdf)

	Central Limit Theorem
	The uniform distribution
	The Breit-Wigner distribution

	MC simulation of a muon beam
	The ideal muon beam
	Towards a realistic muon beam
	The realistic muon beam

