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Replace analytical
calculations by

random sampling

Usually with a computer



47 Mersenne Twister

uint32 t MT[624];
uint32 t index = 0;

vold initialize generator (int seed) {
index = 0;
MT[0] = seed;
for (int 1 = 1; 1 < 624; i++) {
MT[1i] = MT[i-1]1*1664525 + 1013904223;

}

vold extract number () {
if (index == 0) {
generate numbers () ;
}
uint32 t y = MT[index];
y =y ~ (y>>11);
y =V (y<<7 & 2636928640);
y =y ~ (y<<15 & 4022730752);
y =y "~ (y>>18);
index = (index + 1) % 624;
return y;

Create a length 624 array to
store the state of the
generator

initialize the generator with a
seed,

then fill array using linear
congruential generator

Cet a tempered number -
recreate the index after 624
numbers have been used

Bit wise exclusive or with
shifted y and some "magical’

numbers

Increase index
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Mersenne Twister

void generate numbers() { Generate a new array of

for(int 1 = 0; 1 < 624; 1i++ { numbers
uint32 t y = (MT[i] & 0x80000000) ; Get bit 31 of MT[i]
+ (MT[(1i+1) % 624] & OxTLfffffff); and bits 30 to 0 of MT[i+1]
MT[1] = MT[(i+397) % 624]"(y>>1); Mix numbers...
if((y $ 2) !'= 0) {
MT[1] = MT[1i] ~ 2567483615; If y is odd, do an exclusive or
} with yet another number
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Mersenne Twister

vold generate numbers () {
for(int 1 = 0; 1 < 624; 1i++ {
uint32 t y = (MT[1] & 0x80000000) ;

+ (MT[(i+1) % 624] & Ox7fffffff);

MT[ (1+397) % 624]" (y>>1);
) —

= MT[1] ©~ 2567483615;

. Passes almost all tests for randomness
- Has a very long period of 2"%%°7 - 1 (= 4 - 10%"")

+ Is implemented in TRandom3 and what you should use

- Gives you a uniform distribution - basis for everything else

Generate a new array of
numbers

Get bit 31 of MTTi]

and bits 30 to 0 of MT[i+1]

Mix numbers...

If y is odd, do an exclusive or
with yet another number
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4.7 Monte Carlo for Particle Physics

Usually we want to know an efhiciency e
- If we produce N _reactions of a certain type, how many of them do we see (N_, )

+ This is essentially a Monte Carlo integration:

| 00E(Q2,0)o(w)dwdd
o/Ldt

where Q) denotes the phase space for the reaction and © "everything” that can happen
in the detector. Often the cross-section o is also calculated via MC integration.

O

+ The integral over Q) gets three dimensions per final state particle, @ is of exteremely high
dimension (and will never have a closed form)
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4.8 Full Example: Measurement of the
branching fractions J/v > mmn® and ¥’ >

+ Most abundant hadronic decay of the J/¥, but strongly suppressed in ¥' decay
+ Why? Not understood....

+ Start studies by measuring branching fractions precisely
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Need a lot of charmonium




The Beijing Electron-Positron Collider |l

7" Collide e'e” in T-charm region

First collisions:
March 2008

Luminosity reached!:
> 5 x 10°* cm™s”

(8 x CESRc, 45 x BEPC)
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The Beijing Spectrometer ||

Excellent tracking and
calorimetry:

5C Magnet

Csl Calorimeter
Tracks:

Beam Pipe o Jp =0.58% @1 GeV/c

Drift Chamber

4 Photons:

RPC Muon

Detector Read-out at up to 6 KHz
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Data!

At the time of this measurement (2010),
BES Il had collected:
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First hadronic event, July 2008
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Monte Carlo Simulation: Initial State

7" Centre of mass system is slightly

boosted - have to take that into
account
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Always check...

Here use J/¥ - uy as a cross-check channel

. Muons have fixed momentum in the J/V¥
rest frame

. In the lab frame - not so much

. Apply boost

[GeV]

1.05

1.045

1.04

1.035

momentum

u

1.03

1.025

1.02
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Always check...

Here use J/¥ - uy as a cross-check channel

. Muons have fixed momentum in the J/V¥

rest frame

In the lab frame - not so much

Apply boost

boost)

energy loss in the detector

And all is fine (if you applied the correct

Actually not - momenta slightly too low -

[GeV]
:
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1.04

1.035

momentum

u
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Generate physics process
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. No good model for the hardonic part
available (that is why we are doing the
measurement in the first place...)

. Generate various processes:
- Flat three particle phase space
- Phase space for two pions coming from
a vector resonance (a p)
- And a simulation involving a p(770)
peak structure

+ Using the EvtGen software package
gives you 4-vectors for the final
state particles (1", T and two
~ photons from the ?)

L
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Have particles interact with the detector: Geant

Use the Geant4 software package - contains the collected community knowledge of
particle interactions with matter - implemented as Monte Carlo

. Need a model of the detector geometry:
- Where is there material? What is it exactly made of?
- How do the magnetic fields look?
- Where are there active elements?

- This will never be perfect: cables, cable ties,
details of the mechanics, exact isotopic
composition of things ...
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Have particles interact with the detector: Geant

Need to make a lot of choices for physics models
+ Down to which range should secondary particles be created? tracked?

+ How to treat Coulomb scattering in material? Scattering by scattering or with a multiple
scattering parametrization?

. How to treat showers? Create and track all secondaries or parametrize? How about
hadronic interactions?

+ Should optical photons be generated and tracked in a scintillator?

- What to do with (thermal) neutrons?

Allinvolve a trade-off between computing time and precision
- after all we want to generate millions of events.

Often minutes of computing time per event even
with simplified models

Niklaus




Simulate detector response

. Geant4 will give e.g. energy deposit in a drift cham-
ber gas or number of photons in a scintillator

. We need to provide a model of charge (light) collec-
tion, amplifier response, electronics response, noise
etc.

. Also very important: Model of detector defects -
broken channels, misalignment etc.

. Output should be similar to real data, with the differ-
ence that we know what we started with

. Can then run the same reconstruction algorithms
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And then compare with data
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And keep comparing...

Events

x10°

L —&— Data

L H — Inc. MC
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300 . [ ] I(r:]gﬁxiuBn?Data
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1
o // “

0.2 0.4

+ Keep fixing the simulation, cleaning up
the data and removing bugs from the

code until you have “reasonable
agreement’

- Remaining differences enter the
“systematic error” - more discussion later

E.. [GeV]

50~

—e— Data

— |nc. MC BG
- Continuum Data

RhopiMC

/
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As often as possible, use data input

Here data input was used:
+ For the continuum background (e*e” > mmm® without aJ/¥) by detuning the beam

+ For the dynamics of the decay..
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Kinematic re-weighting

m(rnrt”)* [GeV]

m(rtrt”)* [GeV]

Cenerated Dalitz-
distribution (p(770))
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distribution

Data Dalitz-

m(n'1°)? [GeV]
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20
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Kinematic re-weighting
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+ Get back "true” distribution
. Only works if there are data events

. Corrections for totally inefficient regions
need to come from model

m(r 1) [GeV]

Nsel L NBG L NBG

BF = continuum resonance
Ny " €trig - BF(mY — 77)

Niklaus Berger — SMIPP — WS 2013 - Slide 25




Results
The |
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And the Dalitz Plots... - the puzzle is still puzzling

m(rm”)” [GeV]

m(r'1’)? [GeV] m(r'1°)? [GeV]
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4.9 Monte Carlo for LHC
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Monte Carlo for LHC

+ Randomly draw partons from the protons
according to parton density functions
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Monte Carlo for LHC

+ Randomly draw partons from the protons
according to parton density functions

+ Usually have a matrix element for the hard
process(es) - generate phase space and
use accept/reject
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Monte Carlo for LHC

+ Randomly draw partons from the protons
according to parton density functions

+ Usually have a matrix element for the hard
process(es) - generate phase space and
use accept/reject

+ Almost everything can radiate gluons -
generate them via MC
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Monte Carlo for LHC

+ Randomly draw partons from the protons
according to parton density functions

+ Usually have a matrix element for the hard
process(es) - generate phase space and
use accept/reject

. Almost everything can radiate gluons - -

NeY
generate them via MC . Qb Cq, )/
pC . oy K
, : 1 S A ‘ ¢
. And in the end everything has to be ESuion Y% /"i/w~>.w%9j

colour-neutral hadrons; usually use L T Ty
\*-”/ ey
Pythia MC code to simulate that

¥ a%vle
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Pileup

Many collisions at the same time

. Also have to simulate these pile-up
events

. Simulation uses
minutes/event
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