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Recap of Lecture I: Kolmogorov Axioms

Ingredients:

. Set S of outcomes of the experiment (sample space)

. Subsets A, B... of S (technically need to form a 2-Algebra)

. Mapping into the real numbers P(A) called the Probability

Kolmogorov Axioms:

orallAc S, P(A) >0
()=

fANB=0 PAUB) = P(A) + P(B)
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Recap of Lecture |: Bayes Theorem




Part |I:
Catalogue of
Probability Density Functions
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P (i p) = ('Q) p* (1-p)™

- Mean:

E[x] =np

. Variance:

V[x] =np(1-p)

Plot source: Wikipedia
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Binomial Distribution: Application

+ n particles cross the Device Under Test (DUT)

y
z
X

Efficiency measurement:

. DUT has an efficiency to detect a particle of p

. Average number of hits seen in DUT xisn p

+ Results of many experiments will follow a binomial distribution - use corresponding error
bars

+ Do NOT use counting errors on n and x and perform error propagation
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Rare events

. Take limit of binomial distribution for
n-—-»
p->0
with n p fixed to v

. "Rare events” with constant rate
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2.2. Poisson Distribution
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- Mean: E[x]=v

- Variance:  V[x]=v
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Poisson Distribution: Application

Any counting experiment with rare events will have results that are Poisson distributed:
. v=0 [ Ldt expected number of events given luminosity and cross-section
- Number of entries in a histogram bin

+ Number of cosmic rays passing through you per second (what is v?)
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Many rare events

. Look at Poisson distribution for
v>> 1]

- Many "Rare events” with constant rate

+ (and almost every other large N limit...)
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2.3. Normal (Gaussian) Distribution
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Central limit theorem

The arithmetic mean of a sufficiently large number of uncorrelat-
ed random variables drawn from a distribution with well defined
mean and well defined and finite variance will be approximately
normal distributed

+ This is independent of the underlying distribution
+ If your measurement is sufficiently messy (i.e. influenced by “enough” independent

effects) it will be normal distributed

+ Usually leads to the assumption, that “everything” is normal distributed, which is wrong..

Niklaus Berger — SMIPP — WS 2013 - Slide 12



Examples for the normal distribution

. Good example:

+ Not so good example:

- Bad example:

Size distribution among students of a particular sex in a class

Distribution of scattering angles of particles passing through a

slab of material

(There are large angle scatters (Rutherford!) that produce
non-Gaussian tails)

Energy loss of particles passing through a slab of material
(Dominated by few large losses - Landau distribution)
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Quantiles of the Normal Distribution:
Standard Deviations
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Plot source: Wikipedia
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2.4. Log Normal Distribution

1
P X: e-(ln x-l1)%/202
(% p0) 5 X\ 21O
=0, 0=0.25 ,
.- Mean: E[x]=el*° /2
i | =0, 5=0.5 . 2
P - Variance:  V[x] = ( -1) e2mo
» Order of magnitude is normally

15— 5 distributed: e.g. growth of droplets

Plot source: Wikipedia
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2.5. Exponential Distribution
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P.(x; T) =T et forx>0

- Mean: E[x]=T

- Variance:  V[x] = T2

Plot source: Wikipedia
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Exponential Distribution: Application

- Lifetime of a particle

- Has no memory: f(t -t | t > t,) = {(t)

Integral 2.418e+11

e
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2.6. Uniform Distribution

f(x) 1
P, (x;a,b)= —fora<x<b
ﬁ L »
- Mean: E[x] = 1/2 (a+b)
0 a b X
- Variance:  V[x] = 1/12 (a-b)?
F{x;l
0 a b X Plot source: Wikipedia
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