Statistical Methods in Particle Physics WS 2012/2013

Exercise 0: Introduction to root

PJ.IBerger (nberger@physi.uni—heidelberg.de)

15. 10. 2012

This tutorial should provide you with a very basic introduction to the root
data analysis framework. It comes in two different flavours, namely in the native
C++ interpreter way and in Python; maybe you already have a preference, if
not give both a try and see what works best for you. First, make sure you have
your environment set up correctly, see
http://www.physi.uni-heidelberg.de/ nberger/teaching/ws12
/statistics/documentation.php. Also create a separate folder for your exer-
cises in this course and change to that folder.

1 Native root (C++)

Open a root session in a shell by typing
> root

(where the > symbol stands for your prompt. This should start root. If not,
check your environment again... You now have the root C++ interpreter run-
ning, so you can enter almost any valid C++ code. Or just use root as a
calculator

root[0] 1 + log(2)
The object in root we will use most is the histogram, so lets create one:
root[1] TH1F myhisto("myhisto","My most fabulous histogram",10,0,100)

This creates a histogram (of type TH1F), to which root will refer by its name
(?myhisto”) and which will be displayed with the title given. It has ten bins,
the lowest value is 0 and the highest 100. Now we can fill some values into the
histogram (root will return the corresponding bin number, if you do not like
this, terminate the statements with a semicolon):

root[2] myhisto.Fill(42)
root[3] myhisto.Fill(3.141592)
root[4] myhisto.Fill(66)

root [5] myhisto.Fill(99)
root[6] myhisto.Fill(69)
root[7] myhisto.Fill(17.7)

Now let us draw the histogram:

S. Masciocchi, N. Berger 1

http://www.physi.uni-heidelberg.de/ nberger/teaching/ws12/
statistics/statistics.php

Statistical Methods in Particle Physics WS 2012/2013

root[8] myhisto.Draw()

This opens a canvas, the surface root draws on, per default, the canvas will be
named cl. In the canvas window, you can open the Editor from the view menu.
It allows you to change the style of various objects on the canvas (which you
can also move around with the mouse); be aware though that there is no undo
function. All the things that can be set from Editor, can also be set from the
command line, e.g.

root[9] myhisto.SetLineColor(2)

for the change to become visible, you have to draw the histo again
root[9] myhisto.Draw()

if you want the histogram to be drawn with error bars, try
root[9] myhisto.Draw("E1")

If you do not want to rewrite all the code every time you start root, you can
use macro files. They end in .C and can be executed directly from root. Make
it a habit to start them with a comment stating the exercise they are for and
your name and email. Create a file exercise0.C in your exercise directory and
fill it similar to the following:

/* exercise0.C:
Example macro file for the root tutorial
in Statistical Methods in particle physics

Written by Niklaus Berger, 14.10.2012
*/

void fillHistogram(unsigned int nentries){
TH1F * histo = new TH1F("histo","Another histogram",10,0,100);

for(unsigned int i=0; i < nentries; i++){
histo->Fill (fmod (i*777,100));
}
}

Note that we create the histogram on the heap using new, to make sure it does
not go out of scope when the function returns. In root, we can now load the
macro file using

root[10] .L exercise0.C

(all root comments start with the .). Now we can call the function like any
other:

root[11] fillHistogram(100)
let’s now draw the new histogram

root[12] histo->Draw()

S. Masciocchi, N. Berger 2

http://www.physi.uni-heidelberg.de/ nberger/teaching/ws12/
statistics/statistics.php

Statistical Methods in Particle Physics WS 2012/2013

and we could also draw the old histogram on the same canvas
root[13] myhisto.Draw("same")

be aware that the root interpreter does not really differentiate between the .
and -> member access. Compiled C++ of course does, so better do it right
from the start. Now let us save the histograms to a file

root[14] TFilex file = new TFile("exerciseO.root","RECREATE")
and now we can write the histograms and close the file

root[15] myhisto.Write()
root[16] histo->Write()
root[17] file->Close()
root[18] delete file

Now try to read the histograms back in:

root[19] TFilex fileagain = new TFile("exerciseO.root","READ")
root[20] TH1F * histoagain = (TH1F*)fileagain->Get("histo");

You retrieve objects from root files using their name (usually the first parameter
in the constructor) with the Get () function, which will always return a pointer
to a TObject, the base class of everything in root. You have to manually cast
to the type you are expecting (here a TH1F pointer). This is not particularly
safe or nice... Draw your re-loaded histogram

root[21] histoagain->Draw()
and then call it a day, you can quit root with

root[22] .q

2 And the same again using Python

Start a Python session using
> python

then import the root module. There are several ways of doing this, probably
the cleanest is

>>> import ROOT

which imports everything from root, but leaves it in its own namespace, ROOT.
Python can of course also serve a s a calculator:

>>> import math
>>> 77-math.sqrt(17)

Now let us create a root histogram
>>> myhisto = ROOT.TH1F("myhisto","My phytonesque histogram",10,0,100)

filling then works just as in the plain root case

S. Masciocchi, N. Berger 3

http://www.physi.uni-heidelberg.de/ nberger/teaching/ws12/
statistics/statistics.php

Statistical Methods in Particle Physics WS 2012/2013

>>> myhisto.Fill(42)
>>> myhisto.Fill(42)
>>> myhisto.Fill(17)
>>> myhisto.Fill(7)

then we can draw it
>>> myhisto.Draw()

Note that on the CIP pool machines, PyROOT uses a slightly older version of
root with lots of ugly default settings. So use the editor of the canvas (in the
view menu) to get rid of the grey backgrounds and the red frame. Of course
you can again also do this from the command line:

>>> myhisto.SetLineColor (2)
>>> myhisto.Draw("E1")

where we have also switched on the error bars. Of course you can also write
Python code into files (ending in .py), try something like the following in a file
called exercise0.py:

exercise0O.py: Example python program for the root tutorial
#
Niklaus Berger, 4.10.2010

import ROOT
histo = ROOT.TH1F("histo","My faboulous histogram",10,0,100)

def histofill(entries):
for x in range(entries)
histo.Fill(x)

You can now load that file as you would any module
>>> import exerciseO
which puts everything from the file into the exercise0 namespace. Thus

>>> exercise0.histofil1(1000)
>>> exercise0.histo.Draw()

will fill and draw the histogram. Of course, drawing the old histogram on top
will also work

>>> myhisto.Draw("SAME")
Now we can safe the histograms to a root file:

>>> f = ROOT.TFile("exerciseO_python.root","RECREATE")
>>> myhisto.Write()

>>> exerciseO.histo.Write()

>>> f.Close()

>>> del f

S. Masciocchi, N. Berger 4

http://www.physi.uni-heidelberg.de/ nberger/teaching/ws12/
statistics/statistics.php

Statistical Methods in Particle Physics WS 2012/2013

Reading back in is now syntactically much more elegant than in the plain root
case:

>>> fagain = ROOT.TFile("exerciseO_python.root","READ")
>>> histoagain = fagain.histo
>>> histoagain.Draw()

You can quit the python interpreter by pressing CTRL + D.

This should have given you a first glance at root and PyROOT, you should
be able to use those skills in the first exercise. More material can be found on
the course website.

S. Masciocchi, N. Berger 5

http://www.physi.uni-heidelberg.de/ nberger/teaching/ws12/
statistics/statistics.php

