Statistical Methods
In Particle Physics

Lecture 4
November 5, 2012

Silvia Masciocchi, GSI Darmstadt
S.masciocchi@gsi.de

Winter Semester 2012/ 13



mailto:s.masciocchi@gsi.de

e Short reminders
e Error propagation
e (Correlation between variables

e Monte Carlo methods
e Transformation method
e [ntegration
e Monte Carlo for particle / nuclear physics
e Event generators
e Detector simulation
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Quick reminders

¢ Mean or expectation value
Elx| = fxf(x)dx = u
e Variance:

V(x| = E[(x—E[x])*] = E[X*]-p* = o
° O_=\/?
° cov|x,y| = E[(x —u,)(y —u,)l

CoV|X,VY|

e Correlation coefficient Pxy — pup—
X2y

—V<p =+
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Accuracy and precision

The accuracy of a measurement system is the degree of closeness of
measurements of a quantity to its true (actual) value.

The precision of a measurement system, also called reproducibility or
repeatability, is the degree to which repeated measurements under

unchanged conditions show the same results.
Reference value

Accuracy
- >

< — » Value
Precision
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Accuracy and precision

A measurement system can be accurate but not precise, precise but not
accurate. See the grouping of arrows on a target:

high accuracy low accuracy
low precision high precision

Fig 3: A target analogy for the comparison of accuracy
and precision. Arrows that strike closer to the bullseye
are considered more accurate. if a large number of arrows
are shot, precision would be the size of the arrow cluster.
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Error propagation

Function of ONE variable:
e Variable x, with mean X, and uncertainty o,

e Function vy =f(x)
We want to determine the uncertainty on y

e Use the Taylor expansion:

f(x) = f(X) + (x—X) (g—i)_ + higher order terms

We ignore the higher order terms WHEN the measured values are

close to the average values and/or the derivative is constant in the
region of interest (see in 3 slides)

Not always the case !!!!
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Error propagation: one variable

o ltfollowsthat: f(x) — f(X) =y — y =~ (x — X) (g—i)_
e Variance: ¢ 2
VIyl = [ty = 97 = [(x = %P5
2= (I o

e Standard deviation
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Error propagation: one variable

Y y= f(x)

i =L

0 \Ys
15

s -
_ X
X+ o,

* How does a “small” change in X, i.e. O,, propagate to a small change in ), G},

oy dy
o,  \dx/.
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Ignoring higher order terms

= Neglected second order terms in the Taylor expansion
* This is equivalent to saying that the derivative is constant in region of interest
* This may not always be true... (clf)
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Exercise

* Measurement of transverse momentum of a track from a fit
« radius of curvature of track helix, R, given by

R = 0.3B(T)pr(GeV)

« track fit returns a Gaussian uncertainty in radius of curvature, and hence,
the PDF is Gaussian in 1/pt

Gl,"p'r
« what is the errorin pPT
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Exercise

* Measurement of transverse momentum of a track from a fit
« radius of curvature of track helix, R, given by

R = 0.3B(T)pr(GeV)

« track fit returns a Gaussian uncertainty in radius of curvature, and hence,
the PDF is Gaussian in 1/pt

Gl,"p'r
« what is the errorin pPT
let x=1/pt
pr=1/x
dpr 1 2
dx X2 1
2 dpr 7 2
UPI — (a O-r
2 2\2 2
O}}T — (pT) Ur
2
Cpr = P1O1pr
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Error propagation: two variables

dx dy

O =+ )y g+ 289y
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2 _ (A 2, df df df

ar\c -
) o + | )Uy+2dxdy

= p = correlationcoefficient

e 1< p =+1
e p=0:variables are INDEPENDENT
e p#0:variables are CORRELATED
* p>0:correlated
e p <0 :anti-correlated
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Independent variables

L) ol + () o
dx  * dy” 7’
Important examples:
Function Derivative(s) Variance Standard deviation
f=kc:keR %: of = k’o} or = ko,
of of ||
f=x+y Ezl and %:1 of = df+o; oy = |0y + 0y
af af ||
f:x—}a E=1 and @=_1 ﬂ?: 5xz+ﬁ§ Of = EI-"-'E-I-{IJ'E
B of af or\% 0y ay\? 02 [(Oy)\?
J=x =y g=x | () =) +(5) =1 |3) +(5)
af 1 of  x O\ (OnE (02 |62 (0,2
o St S| @@ | |0
ox y dy  y? f ) y d fq(x) y
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Error propagation: SPECIAL CASES

Yy = X;+X, — 0,=07+ 05+ 2C0V[X, X,]

o, o7 0, CoV| X, X,
y = X, X, — —=-—04—2+42 ’
1 22 2 2 2 XX
y X X3 172

That is, if the x. are uncorrelated:

Add errors quadratically for the sum (or difference),
Add relative errors quadratically for product (or ratio)

A correlations can change this completely...
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Error propagation — MORE SPECIAL

Consider y = x, - X, with:

Now suppose p=1 (full correlation). Then:

Viy]="?+)' =YY=+ - ¢,=0

i.e. for 100% correlation, the error in the difference goes to 0 !
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Exercise

We wish to calculate the average speed (displacement/time) of an object.

Assume is displacement is measured as x = 22.2 + 0.5 cm during the
time interval t =9.0 £ 0.1 s.

Calculate speed and error on the speed.

Statistical Methods, Lecture 4, November 5, 2012
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Exercise

We wish to calculate the average speed (displacement/time) of an object.

Assume is displacement is measured as x = 22.2 + 0.5 cm during the
time interval t =9.0 £ 0.1 s.

Calculate speed and error on the speed.

=X_222 467
v_t_g.ﬂ_ : cm/s

2

Op = UJ(?)E + (?)2 = 2.46?\](%)2 + (%) = 0.062 cm/s

We report the result as: 2.467 £ 0.062 cm/s.
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Combination of results

Important case: combine the results of independent experiments

Consider we have n independent experiments with results ai and errors
o, (i=1, ..., n). We can combine the results from each experiment to

form a more accurate result. For this, a weighted sum is performed
where experiments with smaller errors contribute more to the combined

result.

The statistically correct way to combine independent results is:

a;/a? 1
.':::=Z /9 and g =

E 1-;!13 ‘Z 1}5[2
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Exercise

e For the measured gravitational acceleration data:
9.77+0.14, 9.82+0.10 and 9.86+£0.20 m/s?
the combined result is:

o Example: Power in an electric circuit.

P=PR
¢ Llet [I=10+01ampand R=10+1Q
= P =10 watts

+ calculate the variance in the power using propagation of errors

Statistical Methods, Lecture 4, November 5, 2012

20



Exercise

e For the measured gravitational acceleration data:
9.77+0.14, 9.82+0.10 and 9.86+0.20 m/s?
the combined result is: 9.811 £ 0.075 m/s?

o Example: Power in an electric circuit.

P=PR
¢ Llet [I=10+01ampand R=10+1Q
= P =10 watts

+ calculate the variance in the power using propagation of errors

P\’ P\’
op = a,?(_] +g§,(_] — 07 QIR) + ox(I*)* = (0.1)*(2°1-10)* + (1)*(1*)* = 5 watts”
ol /14 IR [ p_10
= P =10 %+ 2 watts
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Correlated variables

The covariance matrix and the correlation coefficient express to what
extent 2 or more variables “co-vary” randomly, or whether, when one has
a given variation, the second one varies by a corresponding quantity /

way of behaviour.

X and y are uncorrelated, i.e. INDEPENDENT Yl

(cov(x,y)) =0y

«If X and y are correlated

y 1 (cov(x,y)) >0 y t

L] 'E.'-
.s.re

« If X and y are anti-correlated

(cov(x,y)) <0

y sl y

HI R —

=l
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More correlation

X
X
L5
X
N X X
X
X w X
(b)) Weak (c) Strong
X
X %
X
X
X
(d) 100% (e} Anticorrelation (F) -100%

Figure 2: Examples of correlations and anticorrelations
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Consider pairs of jets in one event:
From the total energy of

each jet, the di-jet E |
invariant mass can be calculated

m*> = E1E>(1 —cos8)

Statistical Methods, Lecture 4, November 5, 2012
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Origin of correlation

* Correlations can arise from physical effects, e.g.
* Would expect E, and E, to be (slightly) anti-correlated
why ?
» Can always check (in MC) by plotting

AE, = E| —EMC  against AE, = E, — EYIC

:'.._:' .. p= cov(Xx,y) cov(x,y) = ((x =X)(y —¥))
_— AE[ GIGJJ Oy = <(‘x _'T)2>%

(1-p%)
n—?2
* Correlations also arise when calculating derived quantities from uncorrelated
measurements

* e.g. x:a—l—b y:ﬂ—b

* this type of correlation can be handled mathematically

NOTE: uncertainty on correlation coefficient Sp =~
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Error propagation: general case

Suppose we measure a set of values X = (X, ..., X )

which follow some joint pdf f(X).
f(x) might be not fully known. But we have the covariances:

-

V, = covx x], and the means [ = E[X]| (in practice only estimates)

Now consider a function Y (X).
What is the variance of y(X) ?
) to

Hard way: use joint pdf f(X find the pdf g(y),

Then from g(y) find
Vly| = E[y’]-(E[y])’

Often NOT practical. f(X) may not even be fully known ...

Statistical Methods, Lecture 4, November 5, 2012
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Error propagation - 2

Expand Y(X) to the first order in a Taylor series about [

yZ) ~ y@) + 21 (x—p)

=1 OXi %=

To find the variance V[y] we need E[y?] and E[y]:

Ely(X)] ~ y(i) since E[x—u]=0

Statistical Methods, Lecture 4, November 5, 2012
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Error propagation - 3

L oy dy
— V(7
= y (u) + JZ= [ax 8x]g Vi

Statistical Methods, Lecture 4, November 5, 2012
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Error propagation - 4

If the x, are uncorrelated, i.e. V, = 0%9,, then this becomes:

Ly
o2 ~ Z[—VJ o?
=1

Similar for a set of m functions Yy (X) = (y,(X),...,Y¥. (X))

n
Yy 0Y
U, = covly,,y| ~ Z_ [axkaxl] Vu‘
1, =1
. . . Y,
Or in matrix notation U=AV A", where A; = [8_X]
j X=p

Statistical Methods, Lecture 4, November 5, 2012

29



31

Statistical Methods, Lecture 4, November 5, 2012



Monte Carlo

Monte Carlo methods are a class of computational algorithms
that rely on repeated random sampling to compute their
results.

Monte Carlo methods are often used in computer simulations
of physical and mathematical systems.

These methods are most suited to calculation by a computer
and tend to be used when it is unfeasible to compute an exact
result with a deterministic algorithm

Statistical Methods, Lecture 4, November 5, 2012
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The Monte Carlo method was coined

in the 1940s by John von Neumann,
Stanislaw Ulam and Nicholas
Metropolis, while they were working
on nuclear weapon projects
(Manhattan Project) in the Los
Alamos National Laboratory. It was

named in homage to the Monte

Carlo Casino, a famous casino,
where Ulam's uncle would often
gamble away his money

Random processes were used
extensively for the first time to predict
theoretically the interaction of
neutrons with matter
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History - 1

An early variant of the Monte Carlo method can be seen in the

Buffon's needle experiment (18" century)

in which 1T can be estimated by dropping needles on a floor made of
parallel strips of wood.

In more mathematical terms:

Given a needle of length | dropped on a plane ruled with parallel
lines t units apart, what is the probability that the needle will cross
a line?

IfI<tthen: P = ’[2_| t
Use this to estimate 11!

Statistical Methods, Lecture 4, November 5, 2012

33



History - 2

e |nthe 1930s, Enrico Fermi first experimented with the Monte Carlo
method while studying neutron diffusion, but did not publish anything
on it

e |n 1946, physicists at Los Alamos Scientific Laboratory were
Investigating radiation shielding and the distance that neutrons would
likely travel through various materials. Despite having most of the
necessary data, such as the average distance a neutron would travel
in a substance before it collided with an atomic nucleus or how much
energy the neutron was likely to give off following a collision, the
problem could not be solved with analytical calculations.
Stanistaw Ulam had the idea of using random experiments.
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Monte Carlo and simulation

A bit subjective. Sawilowsky:

a simulation is a fictitious representation of reality, a Monte Carlo method
Is a technique that can be used to solve a mathematical or statistical
problem, and a Monte Carlo simulation uses repeated sampling to
determine the properties of some phenomenon (or behavior). Examples:

Simulation: Drawing one pseudo-random uniform variable from the interval [0,1] can
be used to simulate the tossing of a coin: If the value is less than or equal to 0.50
designate the outcome as heads, but if the value is greater than 0.50 designate the
outcome as tails. This is a simulation, but not a Monte Carlo simulation.

Monte Carlo method: The area of an irregular figure inscribed in a unit square can be
determined by throwing darts at the square and computing the ratio of hits within the
irregular figure to the total number of darts thrown. This is a Monte Carlo method of
determining area, but not a simulation.

Monte Carlo simulation: Drawing a large number of pseudo-random uniform variables
from the interval [0,1], and assigning values less than or equal to 0.50 as heads and
greater than 0.50 as tails, is a Monte Carlo simulation of the behavior of repeatedly
tossing a coin.

Not always so easy to distinguish

Statistical Methods, Lecture 4, November 5, 2012
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A numerical technique for calculating probabilities and
related quantities using sequences of random numbers
The usual steps:

o Generate sequencer,, r,, ..., r_uniformin [0,1]

o Use this to produce another sequence x,, X,, ..., X _

distributed according to some pdf f(x) in which we are 0 1
interested (x can be a vector)

e Use the x values to estimate some property of f(x)
e.g., fraction of x values with a < x < b gives fb ”
. f(x)

g(r)

v
-3

dx

Applications:
e MC calculation for integration
e Simulation to test statistical procedures
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Random numbers

e Extensively appreciated with Nik

. 250

200

150

100

50

0.2

0.4

0.6 0.8 1
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Transformation method

e Random variable x Fix)
o Pdf f(x) L |

e cumulative distribution function , 05}

| fix)
0.4 }

F(x) = [ f(t)dt

0

e (Case of F(x) analitically invertible:

x = F'(u)

e If u uniformin[0,1], then x;, = F_1(ui) follow pdf f(x)

Method is applicable if F(x) and F-'(u) are analytically solvable
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Example: exponential distribution

Consider random numbers according to:

—AX
f(x,A) = Aeo ’;:8

Computation of the inverse pdf:

[T ftydt = [ae™dt = [e™ = 1-e™ = r(x)

And solve for x(r). 250 F 1000 E
N _ B 200 Mﬂﬂrﬂ“ﬁ 800

x(r) = —=1/AIn(1-r) . | |

100 - 400

50 - 200

O ' 0 '
0 0.5 1 0 2 4
: x(r)
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If F-'(u) is not computable, then use “hit and miss” method

(also called acceptance-rejection method)

Enclose the pdf in a box:

e (Generate a random number x, uniform
In [X ], i.e.

mln’ max

X=__ +r (X

— X )
Xmin max min

r. uniform in [0,1]

J(x)

0.5

0.3

0.2

0.1

Jm

min

ax%‘

\

X

e (Generate a second indipendent random number uniformly distributed

between 0 and fmax, i.e. u=r, f

2 max

e [fu <f(x), then accept x
iIf not, reject x and repeat

Statistical Methods, Lecture 4, November 5, 2012
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Example

f@) =21 +2?)

(-1 <z<1)

If dot below curve, use
x value 1 histogram.

& = H o - - L] . " .
] . - - L) o (a)
" " A oa "ty Yo at e ..r_- b e E e - "
CEN " L " - T " -
W e a . . -
06 F. S . n’ LR G
N + . - . at s
- -
. LS . ER Y = . 1, " . . Lol
1 . £ om e

0.2

. .
-""'n"l =

0.5 1

(b)

-1 -0.5 0.5 1
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Improve efficiency of hit and miss

The fraction of accepted points 1s equal to the fraction of
the box’s area under the curve.

For very peaked distributions, this may be very low and
thus the algorithm may be slow.

Improve by enclosing the pdf f{x) i a curve C /(x) that conforms
to flx) more closely, where /(x) 1s a pdf from which we can
generate random values and C 1s a constant.

Generate points uniformly
over C /i(x).

If point 1s below f(x),
accept x.
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Monte Carlo integration

Check accuracy of the method:

= 0.2 T T T
MC calculation = integration. 015
Compare to trapezoidal rule,
. 01
N = number of computing steps.
0.05

0 2.9 ] 7.5 10 125 15
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Accuracy of Monte Carlo integration

For 1-dimensional integral:

MC: 7. o number of random values generated

accuracy o< 1/4/n

Trapezoid: 71 oC number of subdivisions

accuracy o< 1/ n?
Trapezoid wins! But in d dimensions this becomes
MC: accuracy o< 1 / \/?_?, 4 independent of d !

Trapezoid: accuracy o< 1/ n?/¢

For high enough d (d>4), MC always wins

Statistical Methods, Lecture 4, November 5, 2012
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Monte Carlo: statistical experiments

Often an analytical treatment of physical problems is either
difficult or impossible. Therefore we do either an approximation
or use a statistical description (via Monte Carlo)

APPLICATIONS:

e High energy and nuclear physics METHOD& o
e Numerical calculations (integration, * Find a statistic model
differentiation) e Produce random numbers
properly

e Coding/encoding (e.g. secure
connections, like ssh)

e Reliability tests

e Investment banking

e Earth sciences

e (Calculate estimators from
random quantities
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Monte Carlo: statistical experiments

Qualitatively:
Scattering experiment:

Measure the angular distribution of particles scattered from protons in a
fixed target

Ingredients:

e Magnitude and direction of the momentum vector of the incident
particles

e Probability that a particle will collide with a proton in the target
e Resulting momentum vectors of the scattered particles
All are described in terms of probability distributions !

The final experimental result can be treated in terms of a multiple
integration over all these probability distributions !!
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In “our” real life

Several stages:

e Event generator:
e Simulation of the PHYSICS process
e Colliding particles
e Cross section, processes involved, fragmentation ...

e Detector simulation:
e [nteraction of the produced particles with the material
e Realistic description of the experimental apparatus
e efficiencies
e defects (dead channels, etc)
e misalignment

Statistical Methods, Lecture 4, November 5, 2012
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Event generators

e e*‘e"— hadrons e JETSET (PYTHIA)
e HERWIG
e ARIADNE

* e'ee—> WW e KORALW
o EXCALIBUR
e ERATO

e pp — hadrons e |SAJET
e PYTHIA
e HERWIG

e PbPb — hadrons o HIJING

Statistical Methods, Lecture 4, November 5, 2012

48



Event generators

The output are so-called “events”, namely for each collision the programs
give a list of final state particles, with their momentum vectors, types,
angular distribution, etc

A simulated event

PYTHIA Monte Carlo

pp — glumo-gluino

49



Detector simulation

INPUT: particle list (with their species and momenta) from the event
generator

Simulate the detector response taking into account:

e Multiple Coulomb scattering (generate scattering angle)
e Particle decays (generate lifetime), nuclear knock-out

e |onization energy loss (generate A, Landau)

e Bremsstrahlung

e Electromagnetic / hadronic showers

5 GEANT

Statistical Methods, Lecture 4, November 5, 2012
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Detector simulation

GEANT

e First version ~ 1974
e Till GEANT 3.21, in FORTRAN
e Since ~ 2000, FORTRAN version no longer developed, bug fixes

e Geant4: in C++, with a modern object-oriented design

e Next... Geanth

Statistical Methods, Lecture 4, November 5, 2012
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Detector simulation

The detector simulation takes into account many more things:

e Production of the signals (electronics response)
e Addition of detector noise

e Description of the detection efficiency for each detector component
(experiment specific)

e Position and energy resolution of each detector component
(experiment specific)

The output is a list of digitized signals from all detector
components, exactly like real data!! (or data format input for the
reconstruction)
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Use of simulations

e Develop reconstruction algorithms

(particle trajectories in the tracking detectors, showers in the
calorimeters)

e QOptimize trigger selection
e |dentify the best signal signature
e Compute efficiency of selections in real data analysis

e During design of an experiment: define the detector acceptance, etc

Simulation is absolutely crucial in the planning phase of
experiments, for preparation of data taking, to optmize
analyses, to evaluate the significance of the results
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Geant — other applications

Proton beam eye therapy
unit at the Laboratori
Nazionali del Sud (INFN) in
Catania (left) and a display
from the Geant4 advanced
example for the simulation

of the same beam line (right).

Geant4 simulated dose
contours in a human brain
with a proton beam.

ol 16 Gy
18 Gy

Statistical Methods, Lecture 4, November 5, 2012
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ALICE (TPC) simulation: Pb-Pb

Statistical Methods, Lecture 4, November 5, 2012
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ALICE simulation: Pb-Pb

dN/dy ~ 8000

Particles per
unit rapidity

Statistical Methods, Lecture 4, November 5, 2012
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ALICE simulation: Pb-Pb

(R

2 degree slice
ONLY!!

v
¥

N

aurei?

reemil rulﬂl'!"— A n .
W T A
oo s LT

===
e,

(~ 500 tracks)

(abitold ...)
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