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Outline

● Reminder:
● Probability density function
● Cumulative distribution function

● Functions of random variables
● Expectation values
● Covariance, correlation

Examples of probability functions:
● Binomial
● Multinomial
● Poisson
● Uniform
● Exponential
● Gaussian 

● Central limit theorem

● Chi-square
● Cauchy
● Landau
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Probability density function (pdf)

Suppose outcome of experiment is continuous value x:

→ f(x) = probability density function (pdf)
With: 

Note:
● f(x) ≥ 0
● f(x) is NOT a probability ! It has dimension  1/x !

Px found in [x ,xdx ] = f x dx

∫−∞
∞

f xdx=1 Normalization
(x must be somewhere)
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Cumulative distribution function (cdf)

∫
−∞

x
f x 'dx ' = Fx Cumulative distribution function

● F(x) is a continuously non-decreasing function
● F(-∞)= 0, F(∞)=1
● For well behaved distributions:

pdf : f x =
∂Fx
∂ x



Statistical Methods, Lecture 3, October 29, 2012         5

Multivariate distributions

f(x,y)

The outcome of the experiment 
is characterized by more than 1 
quantity, e.g. by x and y 

Normalization:

PA∩B = f x , y dx dy

Joint pdf

∬ f x ,y dx dy = 1

∬ ...∫ f x1, x2,. .. xn dx1 dx2. ..dxn = 1
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Marginal pdf's

From a multivariate distribution
f(x,y) dx dy

(e.g. scatter plot)
we might be in interested only in 
the pdf of ONE of the components 
(x or y, here)

→ projection of joint pdf onto 
individual axes

Marginal pdf

f x x  = ∫ f x , ydy

f y y = ∫ f x , ydx
Distribution of a single variable which is 
part of a multivariate distribution
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Functions of a random variable

A function of a random variable is itself a random variable.
Suppose x follows a pdf  f(x), consider a function a(x).
What is the pdf g(a)?

dS = region of x space for 
which a is in [a, a+da].

For one-variable case with 
unique inverse this is simply:

gada = ∫
dS

f x dx

gada = ∣∫x a

x ada
f x 'dx '∣ = ∫x a

x a∣dx
da∣da

f x ' dx ' ga = f x a∣dx
da∣
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Expectation value

Consider a continuous random variable  x  with pdf  f (x).  

Define  expectation (mean) value as

Notation (often):                    
                                                                ~ “centre of gravity” of pdf. 

For a function y(x) with pdf g(y), 

E [x ] = ∫ x f xdx

E [x ] = 

E[x] is NOT a 
function of x, it 
is rather a  
parameter of f(x)

E [y ] = ∫ y gydy = ∫ y x  f xdx (equivalent)
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Variance and standard deviation

Variance:

Notation: 

Standard deviation:   

V [x ] = E [x−E [x ]2] = E[x2]−2

V [x ] = 2

=2

μ

Same dimension as x
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Exercises

● Find the mean of the random variable X that has probability density 
function f given by:
f(x) = x2 / 3     for    -1<x<2  

● Suppose that X has the power distribution with parameter a > 1, which 
has density:

       f(x) = (a - 1)x-a        for x > 1

Show that: 

● Let the random variable x have the probability density function

E [x ] = {∞ , if 1a≤2
a−1
a−2

, if a2

f x  = {3x2, if 0≤x≤1
0,elsewhere Calculate its variance.
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Covariance and correlation

Define covariance cov[x,y] (also use matrix notation  V
xy

) as:

Can be written as:

Correlation coefficient (dimensionless) defined as:

cov [x , y ] = E [x − x y − y]

cov [x , y ] = E [xy ]−xy

xy =
cov [x , y ]
x y

, −1≤xy≤1
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Correlation coefficient
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Independent variables

If x and y are independent, i.e.  f(x,y) = f
x
(x) f

y
(y), then:

Therefore: 

x and y are 'uncorrelated'

Note!! The converse is NOT always true!!!

E [xy ] = ∬ xy f x , y dx dy = xy

cov [x , y ] = 0
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Exercise

Let [x y]  be an  absolutely continuous random vector  with domain:

i.e. R
XY

 is the set of all couples (x,y) such that 0≤y≤2 and 0≤x≤y.

Let the joint probability density function of [x y]  be:

Compute the covariance between X  and Y. 

RXY = {x , y :0≤x≤y≤2}

f x ,y = {38 y , if x , y∈RXY

0 ,otherwise
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The binomial distribution – the coin

Coin is tossed in the air → 50% heads up, 50% tails up
Meaning: if we continue tossing a coin repeatedly, the fraction 
of times that it lans heads up will asymptotically approach 1/2.
For each given toss, the probability cannot determine whether 
or not it will land heads up; it can only describe how we should 
expect a large number of tosses to be divided into two 
possibilities.
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The binomial distribution – 2 coins

Suppose we toss two coins at the time 
→ There are 4 different possible PERMUTATIONS of the way in which 
they can land:
● Both heads up
● Both tails up
● 2 mixtures of heads and tails depending on which one is heads up
Each permutation is equally probable → the probability for any choice of 
them is 25% !
For the probability for the mixture of heads and tails, without differentiating 
between the two kinds of mixtures, we add two cases →  50%

THE SUM OF THE PROBABILITIES FOR ALL POSSIBILITIES IS 
ALWAYS EQUAL TO 1, BECAUSE SOMETHING IS BOUND TO 
HAPPEN
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The binomial distribution – n coins

Let us extrapolate to the general case: we toss n coins in the air
(or we toss one coin n times)
P(x;n) = probability that exactly x of these coin will land heads up, without 
              distinguishing which of the coins actually belongs to which group
X must be an integer for any physical experiment, but we can consider 
the probability to be smoothly varying with x as a continuous variable for 
mathematical purposes
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The binomial distribution: Permutations and combinations

If n coins are tossed:
● 2n different possible ways in which they can land (each coin has two 

possible orientations)
● Each of these possibilities is equally probable → the probability for any 

of these possibilities is 1/2n

How many of these possibilities will contribute to our observation of x 
coins with heads up?
            Box 1 (x): heads up                     Box 2 (n-x): tails up

1. How many permutations of the coins result in the proper separation   
     of the  x in one box, and n-x in the other?
     Total number of choices for coins to fill the x slots in the heads box is
     Pm(n,x) = n(n-1)(n-2) .... (n-x+2)(n-x+1)
     more easily written as 
       Pmn, x = n!

n−x !
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The binomial distribution: Permutations and combinations

But we care only on which is heads up or tails up, not which landed first!
We must consider contributions different only if there are different coins 
in the two boxes, nor if the x coins within the heads box are permuted 
into different time orderings!

2. the number of different combinations C(n,x) of the permutations         
     results from combining the x! different ways in which x coins in the       
     heads box can be permuted within the box.
     x! → degeneracy factor of the permutations

    This is the number of different possible combinations of n items, taken  
    x at a time

Cn, x  =
Pmn, x 

x !
= n!

x !n−x !
= nx 
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The binomial distribution - Probability

With coins: p(heads up) = p (tails up)
Then:       P(x,n) = all combinations   x   probability of each combination
                           = C(n,x)  x  1/2n

GENERAL CASE:
n independent experiments (Bernoulli trials)
Bernoulli trial is a random experiment in which
there are only two possible outcomes: 
success and failure
p = probability of success of any given trial
q = (1-p) = probability of failure

Therefore the probability of x times success
(heads up) and n-x failures (tails up) is pxqn-x
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The binomial distribution

From the definition of p and q, the probability P
B
(x;n,p) for observing x of 

the n items to be in the state with probability p is given by the binomial 
distribution

Name: the coefficients P
B
(x;n,p) are closely related to the binomial 

theorem:

The (j+1)th term (corresponding to x=j) of the expansion is equal to 
P

B
(j;n,p). This proves the NORMALIZATION of the binomial distr.

PBx ;n,p = nx px qn−x = n!
x !n−x !

px 1−pn−x

pqn = ∑
x=0

n

[nx px qn−x ]
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The binomial distribution – Mean and variance

The mean of the binomial distribution is:

If we perform an experiment with n items and observe the number x of 
successes, after a large number of repetitions the average      of the 
number of successes will approach a mean value      given by the 
probability for success of each item (p) times the number of items (n)

The variance is:

 = ∑
x=0

n

[x n!
x !n−x !

px 1−pn−x] = np

x


 2 = ∑
x=0

n

[x−2 n!
x !n−x !

px 1−pn−x] = np 1−p
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The binomial distribution - Types

If the probability for a single success p is equal to the probability for 
failure p = q = 1/2, then the distribution is symmetric about the mean μ.
The median and the most probable value are both equal to the mean.
The variance σ2 is equal to half the mean: σ2 = μ/2
If p and q are not equal, the distribution is asymmetric with a smaller 
variance

n=20
Blue: p=0.1
Green: p=0.5
Red: p=0.8
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The binomial distribution - Examples

DECAYS: observe n decays of W±, the number x of which are       
W → μν is a binomial random variable. p = branching ratio
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Exercises

A test consists of 10 multiple choice questions with five choices for each 
question.  As an experiment, you GUESS on each and every answer 
without even reading the questions. 

What is the probability of getting exactly 6 questions correct on this test?

Bits are sent over a communication channel in packets of 12. If the 
probability of a bit being corrupted over this channel is 0.1 and such errors 
are independent, what is the probability that no more than 2 bits in a 
packet are corrupted?
If 6 packets are sent over the channel, what is the probability that at least 
one packet will contain 3 or more corrupted bits?
Let X denote the number of packets containing 3 or more corrupted bits. 
What is the probability that X will exceed its mean by more than 2 standard 
deviations?
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Multinomial distribution

Like binomial but now m outcomes instead of two. Probabilities are:

For n trials, we want the probability to obtain:
   x

1
 of outcome 1,

   x
2
 of outcome 2,

   …
   x

m
 of outcome m

This is the multinomial distributions for 

p = p1, ... ,pm with ∑
i=1

m
pi = 1

PBx ;n,p = n!
x1 ! x2 ! ... xm !

p1
x1p2

x2 ...pm
xm

x = x1, x2,. .. xm
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Multinomial distribution

Now consider the outcome i as “success”, all others as “failure”
→ all x

i
 individually binomial with parameters n, p

i

Then:
                    E[x

i
] = np

i
            V[x

i
] = np

i
(1-p

i
)

One can also find the covariance to be:

EXAMPLE:                                 represents a histogram with 

m bins, n total entries, all entries independent

V ij = npi ij−p j

x = x1, ... , xm
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Poisson distribution

Consider a binomial x in the limit:
   n → ∞
   p → 0
   E[x] = μ = np → 

Approximation of the binomial distribution 
→  POISSON DISTRIBUTION

Often in these experiments, neither the number n of possible events nor 
the probability p for each is known. What may be known is the the 
average number of events μ expected in each time interval.

When the average number of 
successes is much smaller 
than the possible number:

μ«n because p«1

PPx ; =
x

x !
e− x≥0

E[x ] =  , V [x ] = 


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Poisson distribution

Properties:
● Since this is an approximation to 

the binomial distribution, and p«1, 
the Poisson distribution is 
asymmetric about its mean

● It does not become 0 for x=0
● It is not defined for x<0 

EXAMPLE: 
NUMBER OF EVENTS FOUND
Given a cross section σ, and a fixed 
integrated luminosity, with

x

x

x

P
(x

;ν
)

P
(x

;ν
)

P
(x

;ν
)

 = ∫L dt
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Exercise Poisson

The number of industrial injuries per working week in a particular factory is known 
to follow a Poisson distribution with mean 0.5
Find the probability that:
● In a particular week there will be

● Less than 2 accidents
● More than 2 accidents

● In a three week period there will be no accidents

The mean number of bacteria per millimetre of a liquid is known to be 4. Assuming 
that the number of bacteria follows a Poisson distribution, find the probability that, in 
1ml of liquid, there will be
(a) no bacteria 
(b) 4 bacteria 
(c) less than 3 bacteria
Find the probability that
(i) in 3ml of liquid there will be less than 2 bacteria 
(ii) in 0.5ml of liquid there will be more than 2 bacteria
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Uniform distribution

Consider a continuous random variable x, with -∞< x <∞
Uniform pdf is:

EXAMPLE: for π0 → γγ, Eγ is uniform is  [Emin, Emax], with

f x ; , = { 1
−

,≤x≤

0, otherwise

E[x ] = 1
2


V [x ] = 1
12
−2

Emin =
1
2

E1− , Emax =
1
2

E1
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Exponential distribution

The exponential distribution for the continuous random variable x is 
defined by:

EXAMPLE:
Proper decay time t of an unstable particle

Lack of memory: UNIQUE TO EXPONENTIAL

f x ; = { 1


e−x / x≥0

0 otherwise
E[x ] = 
V [x ] = 2

f  t ; r  = 1


e−t / =meanlifetime

f  t−t0∣t≥t0  = f  t 
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Gaussian distribution

The Gaussian (normal) pdf for a continuous random variable is defined by:

Special case: μ=0, σ2=1:

If y~Gaussian with μ, σ2, then  z=(y-μ)/σ  follows φ(z)

f x ; , = 1

2
e−x−

2/22

E [x ] = 
V [x ] = 2

x  = 1

2
e−x2/2 , x  = ∫−∞

x
x ' dx '
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Central limit theorem

For n independent random variables x
i
 with finite variances σ

i
2, otherwise 

arbitrary pdf's, consider the sum:

In the limit n → ∞, y is a Gaussian random variable with: 

Almost any random variable that is a sum of a large number of small 
contributions, follows a Gaussian distribution.
Measurement errors are often the sum of many contributions, so 
frequently measured values can be treated as Gaussian r.v.s

y = ∑
i=1

n
xi

E [y ] = ∑
i=1

n
i V [y ] = ∑

i=1

n
 i

2
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Central limit theorem - 2

For the proof, see book by Cowan e.g.

For finite n, the theorem is approximately valid to the extent that the 
fluctuation of the sum is not dominated by one (or few) terms

Beware of measurement errors with non-Gaussian tails !!!

Good example: velocity components v
x
 of air molecules

Medium good example: total deflection due to multiple Coulomb 
scattering (rare large angle deflections give non-Gaussian tail!!)

Bad example: energy loss of charged particle traversing thin gas layer 
(rare collisions make up large fraction of energy loss! → Landau pdf)
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Chi-square (χ2) distribution

The chi-square distribution for the continuous random variable z (z≥0) is 
defined by:

n = 1, 2, .. = number of degrees of
                     freedom (dof)
E[z] = n,    V[z] = 2n

EXAMPLE: goodness-of-fit test variable
especially in conjunction with method of least squares (soon!)

f z ;n = 1

2n/2n /2
zn/2−1 e−z /2
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Cauchy (Breit-Wigner) distribution

The Cauchy pdf for the continuous random variable x is defined by

This is a special case of the 
Breit-Wigner pdf:

E[x] not well defined, V[x] → ∞
x

0
 = mode (most probable value)

Γ= full width at half maximum 

EXAMPLE: mass of resonance particle, e.g. ρ, K*, Φ0, …

Γ = decay rate (inverse of mean lifetime)

f x  = 1


1
1x2

f x ; , x0 =
1


/2
2 /4x−x0

2
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Landau distribution

Describes the energy loss Δ of a charged particle with β=v/c traversing a 
layer of matter of thickness d
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Landau distribution - 2

Long Landau tail

Mode (most probable value) is 
sensitive to β
→ particle identification!
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Beta distribution

Often used to represent pdf 
of continuous random 
variable non-zero only 
between finite limits

f x ; , =
 
   

x−1 1−x−1

E [x ] =



V [x ] =


2 1
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Gamma distribution

Often used to represent pdf of 
continuous random variable non-zero 
only in [0,∞]

Also similar to the gamma distribution:
● Sum of n exponential r.v.s
● Time until the nth event in Poisson 

process

f x ; , = 1

 
x−1 e−x /

E [x ] = 
V [x ] =  2
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Student's t distribution 

●    = number of degrees of freedom
      (not necessarily integer)

●    = 1 gives Cauchy
●    → ∞  gives Gaussian

f x ; =

1

2


 /2 1x2

 
1

2


E [x ] = 0 1

V [x ] =

−2

2





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Student's t distribution 

The student's t provides a bell-shaped pdf with adjustable tails, 
ranging  
● from those of a Gaussian, which fall off very quickly (ν → ∞, but in fact 

very Gauss-like for ν = two dozen)
● To the very long-tailed Cauchy (ν = 1)

Developed in 1908 by William Gosset, who worked under the pseudonym 
“Student” for the Guiness Brewery
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Next

● Error propagation

● Monte Carlo methods
● Transformation method
● Integration

● Monte Carlo for particle / nuclear physics 
● Event generators
● Detector simulation
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