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Hypotheses

A hypothesis H specifies the probability for the data

i.e., the outcome of the observation, here symbolically “x”
We can write:

x can be uni-/multivariate, continuous or discrete
x could represent for example the observation of a single particle, a single 
event, or an entire “experiment”

Possible values of x form the sample space S (or “data space”)

The probability for x given H is also called the likelihood of the 
hypothesis, written 

x~f x∣H

L x∣H
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Example: particle identification

Use the ALICE Time Projection Chamber to identify the particle species: 
electron, muon, pion, kaon, proton, deuteron
“x” = particle momentum (p), specific energy loss in TPC (dE/dx) (and more)

Example:
I want to select electrons 
(hypothesis H

1
) from all 

other particles 
(hypothesis H

0
)

In Bayesian approach:
Can add prior 
hypotheses on the 
relative particle 
abundances (e.g. you 
see that pions are many 
more!)
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Rejection / acceptance regions

Goal is to make some statement based on the observed data x, as to the 
validity of the possible hypotheses.

A test of hypothesis H
0
 is defined by specifying a critical region W 

(also called rejection region) of the data space S, such that there is no 
more than some (small) probability α, assuming H

0
 is correct, to observe 

the data there:

If x is observed there, reject H
0
.

α is called the size or significance level of the test.

The complementary region is called acceptance region.

Px∈W∣H0 ≤ 
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Again the example

Looking for electrons:
Rejection region out here:           Acceptance region here: (not well drawn)
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Any decision involves a certain risk ...

Event by event, we need to decide whether to take it as signal or as 
background
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Type-I, Type-II errors

Rejecting the hypothesis H
0
 when it is true is a Type-I error.

The maximum probability for this is the size of the test:

But we might also accept H
0
 when it is false and an alternative H

1
 is true. 

This is called Type-II error, and occurs with probability:

One minus this is called the power of the test with respect to the 
alternative hypothesis H

1
:

Power = 1 - β

Px∈W∣H0 ≤ 

P x∈S−W∣H1  = 
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Type-I, Type-II errors

P x∈W∣H0  ≤ P x∈S−W∣H1  = 



Statistical Methods, Lecture 8, November 28, 2011    s.masciocchi@gsi.de     9

Selecting events

We have a data sample with two kinds of events, corresponding to 
hypotheses H

0
 (background) and H

1 
(signal).

We want to select those of type H
1
.

Each event is a point in     space (n dimensions).
What 'decision boundary' should we use to accept/reject events as 
belonging to event types H

0
 or H

1
?

x

One possibility is to select 
events with several 'cuts':
e.g.

x
i
 < c

i

x
j
 < c

j
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Other selections

But we can also use some other sort of decision boundary !!

How can we formalize this to choose the boundary in an 'optimal' way?



Statistical Methods, Lecture 8, November 28, 2011    s.masciocchi@gsi.de     11

Scalar / multidimensional

In addition:       

     is the result of the measurements, n can be large
    follows some joint pdf in an n-dimensional space 

Usually it is awkward to work with multidimensions!

At first we try to construct a test statistic of lower dimension (e.g. scalar):
● Compactify the data 
● Try not to loose the ability to discriminate between hypotheses 

x
x
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Multivariate analysis (MVA)

● Map the n-dimensional space of the observable variables (“feature” 
space of our measurements) to one dimensional output

● There are model classes for this
● Various types: linear, non-linear, flexible, less flexible

● We can use previous knowledge, “known” or “previously solved” cases
● The resulting class (description) should have good generalization 

properties

Often associated with the term of “machine learning”

ℝn  ℝ

x1, ... , xn  t x
Test statistic
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Test statistics

The decision boundary can be defined by an equation of the form:
t(x

1
, ..., x

n
)  =  constant  =  t

cut 

where t(x
1
, ..., x

n
) is a scalar test statistic

We can work out the pdf's:

g t∣H0 , gt∣H1

Decision boundary is now a single 'cut'  
on t, which divides the space into the 
critical (rejection region) and the 
acceptance region.

This defines a TEST: if the data fall in the 
critical region, we reject H

0
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Signal / background efficiency

b

b b

s

The probability to reject background hypothesis for a background event 
(background efficiency) is:

The probability to accept a signal event
as signal (signal efficiency) is:

b = ∫t
cut

∞ g t∣b dt = 

s = ∫tcut

∞
g t∣s dt = 1−
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Purity of event selection

Suppose only one type of background b.
Overall fractions of signal and background events are πs and πb (prior 
probabilities).

Suppose we select signal events with t>t
cut

. What is the PURITY of the 
selected sample?

PURITY means the probability to be signal given that the event was 
accepted. Using Bayes' theorem we find:

→ the purity depends on the prior probabilities as well as on the signal 
and background efficiencies !!

Ps∣ttcut =
P ttcut∣ss

P ttcut∣ssPttcut∣bb

=
ss

ssbb
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How to optmize the choice? 

How can we choose a test's critical region in an “optimal way”?

Neyman-Pearson lemma states:

To get the highest power for a given significance level (or highest purity 
for a given efficiency) in a test of H

0
 (background) versus H

1
 (signal), the 

critical region should have:

inside the region, and ≤c outside, where c is a constant which determines 
the power.

Equivalently, optimal scalar test statistics is:

                                                                         Likelihood ratio 

Px∣H1
Px∣H0

 c

t x =
Px∣H1

Px∣H0
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Neyman-Pearson lemma
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BUT  !!!

Usually we do NOT have explicit formulae for the pdfs

What we usually have are Monte Carlo models for signal and background 
processes, so we can produce simulated data, and enter each event into 
an n-dimensional histogram.
But then we need M bins for each of the n dimensions

→ total of M n cells !! 
If n is large, then we end up with a prohibitively large number of cells to 
populate with Monte Carlo data !!!

Compromise solution:
Make Ansatz for form of the test statistic t(x) with fewer parameters; 
determine them (e.g. using MC) to give best discrimination between 
signal and background!

Px∣H0,Px∣H1
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Example

Distinguish between 2 processes:
H

0
:  e+e- →  W W → hadrons (usually 4 jets)

H
1
:  e+e- →  qq  → hadrons (usually 2 jets)

For each event we measure      (n. of hadrons, their momenta, jets, 
missing energy, angles between jets, etc etc)

According to Neyman-Pearson, to select WW's we should cut on 

But we do not know entirely these pdf's !!!
Partly help with MC, partly simplify / transform the description of t

x

t x =
f x∣H0
f x∣H1



Statistical Methods, Lecture 8, November 2011 ,28    s.masciocchi@gsi.de     20

Linear test statistic

Ansatz:      

Choose the parameters a
1
, .. a

n
 so that the pdf's

have maximum SEPARATION:

We want large distance between
the mean values 
and small widths

Fisher: maximize   

t x  = ∑
i=1

n
a

i
x

i
= aT x

g t∣s, gt∣b

Ja =
s − b

2

s
2  b

2
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Maximum separation - 1

Hypotheses:    k = 0,1
Measurement:          i, j = 1, ...., n (components)
Means and variances for the x

i
:

In terms of mean and variance of            this becomes:
 

x


k

i
= ∫ x

i
f x∣Hk

 dx

V
k

ij

= ∫ x−
k

i
x−

k

j

f  x∣Hk
 dx

t x 


k

= ∫ t x  f x∣Hk
 dx = aT

k


k
2 = ∫ t x  − 

k
2 f x∣Hk

 dx = aT V
k

a
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Maximum separation - 2 

The numerator of           is:

The denominator:

Maximize 

Ja

0 − 1
2 = ∑

i , j=1

n
aia j0−1i0−1 j

= ∑
i , j=1

n
aia jBij = aT B a

0
2  1

2 = ∑
i , j=1

n
aia jV0V1ij = aT W a

Ja =
aT B a
aT W a

= separation between classes
separation within classes



Statistical Methods, Lecture 8, November 28, 2011    s.masciocchi@gsi.de     23

Fisher's discriminant

Setting:                                 gives  Fisher's linear discriminant function:∂J
∂ai

= 0

t x  = aTx , with a ∝ W−1  0− 1

Corresponds to a linear 
decision boundary
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Another illustration - 1 

Fisher linear discriminant analysis determines a canonical direction for which the 
data is most separated when projected on a line in this direction. The solid gray 
line shows the canonical direction.
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Another illustration - 2 

The squares are projected points on a line inclined at the angle θ with respect to 
the origin. When θ is adjusted so the projected points are aligned with the gray 
line, the points are maximally separated in the sense that the ratio of between-
classes variances to within-classes variance is maximized.
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Fisher: comment on least squares

We obtain equivalent separation between hypotheses if we multiply the a
i
 

by a common scale factor and add an arbitrary offset a
0
:

Thus we can fix the mean values under the hypotheses H
0
 and H

1
 to 

arbitrary values as 0 and 1. 
Then maximizing

Is equivalent to minimizing
 

t x  = a0  ∑
i=1

n
ai xi

J a =
s − b

2

s
2  b

2

0
2  1

2 = E0 [ t−0
2]  E1 [ t−1

2]

A type of least squares principle !!!
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Multivariate methods

Many new (and some old) methods:
● Fisher discriminant (linear decision boundary)
● Neural networks
● Kernel density methods
● Support Vector Machines
● Decision trees:

● Boosting
● Bagging

● Toolkit for Multivariate Data Analysis: TMVA
● Framework for “all” MVA-techniques, available in ROOT
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Linear decision boundaries

A linear decision boundary is only 
optimal when both classes follow 
multivariate Gaussians with equal 
covariances and different means 

For other cases, a linear 
boundary is almost useless
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Non-linear transformation of inputs

We can try to find a transformation 
So that the transformed “feature space” variables can be separated 
better by a linear boundary:

x1, ... , xn  1 x , ... ,mx 

1 = tan−1 x2/x1

2 = x1
2  x2

2
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Non-linear test statistic

The optimal decision boundary may not be a hyperplane
→ non linear test statistic !!

Many methods of multivariate 
Statistical methods:
● Neural networks
● Support vector machines
● Kernel density methods
● Decision trees
● TMVA
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Neural networks: introduction

If we want to go to the “arbitrary” non-linear decision boundaries, t(x) 
needs to be constructed in “any” non-linear fashion

● Think  of h
i
(x) as a set of “basis” functions

● If h(x) is sufficiently general (i.e. non linear), a linear combination of 
“enough” basis functions (M) should allow to describe any possible 
discriminating function t(x)

t x  = ∑
i

M
wi hix 
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Neural networks: introduction

We take the h
i
(x) to be such that:

● A linear combination of
● non-linear functions of

● linear combination of
● the input data

t x  = ∑
i

M
w0i A w i0  ∑

j=1

n
w ij x j

t x  is
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Multilayer perceptron (MLP)

We interpret the formula as a neural network             (here D=n)

● Nodes in hidden layer represent the “activation functions” whose arguments are linear 
combinations of input variables → non linear response to the input

● The output is a linear combination of the output of the activation functions at the internal 
nodes

● Input to the layers from preceding nodes only → feed forward network (no backward loops) 
● It is straightforward to extend this to “several” input layers
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Multilayer perceptron (MLP)

Nodes → neurons
Links (weights) → synapses 
                     → Neural network: try to simulate reactions of a brain to            
                          certain stimulus (input data)
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Neural network training

Use training events to adjust the weights such that:
● t(x) → 0 for background events
● t(x) → 1 for signal events

How do we adjust?
Minimize loss function:

                                                          where: 

t(x) is a very “wiggly” function with many local minima. A global overall fit 
in the many parameters is possible but not the most efficient method to 
train neutral networks ...

L w  = ∑
i

events

t xi−t C2 t C = {1 for C=signal
0 for C=bkgr

Predicted 
event type

True   
event type
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Neural network training

Use smarter methods instead of a global overall fit in the many parameters:
● Back propagation: learn from experience, gradually adjust your 

perception to match reality
● Online learning: learn event by event and not only at the end of your life 

from the entire experience

● Start with random weights
● Adjust weights in each step a bit, in the direction of the steepest descent 

of the loss function
● Training is repeated n times over the whole data sample: HOW OFTEN??

NOTE: for online learning, the training events should be mixed randomly, 
otherwise you first steer in a wrong direction from which it is afterward hard 
to get out again !!
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Overtraining

Very careful not to OVERDO with the training !!

CROSS 
VALIDATION !!!
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NN: cross validation

● Many (all) classifiers have tuning parameters that need to be 
controlled against overtraining:
● Number of training cycles, number of nodes (neural net)
● Smoothing parameters
● ...

● The more free parameters a classifiers has to adjust internally → more 
prone to overtraining

● More training data → better training results
● Divide the data set into “training” and “test” samples

(reduces the training data)
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What is the best network architecture?

● Theoretically a single hidden layer is enough for any problem, 
provided one allows for sufficient number of nodes. 

(K.Weierstrass theorem)

● “Relatively little is known concerning advantages and disadvantages 
of using a single hidden layer with many nodes over many hidden 
layers with fewer nodes. The mathematics and approximation theory 
of the MLP model with more than one hidden layer is not very well 
understood ……”
….”nonetheless there seems to be reason to conjecture that the two 
hidden layer model may be significantly more promising than the 
single hidden layer model”

A.Pinkus, “Approximation theory of the MLP model with neural 
networks”, Acta Numerica (1999), pp. 143-195
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Another example

Select electrons from pions using a Transition Radiation Detector (ALICE)
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Another example

Select electrons from pions using a Transition Radiation Detector (ALICE)

In order to identify individual 
particles (PID track by track) 
compare the energy deposit (dE/dx) 
and signal temporal shape with 
results from test beam !

→ in MC the energy deposit in the 
TRD chambers is not reproduced 
well enough, cannot use MC for 
comparison or training

→ use test beams where clean 
beams of electrons or pions of well 
defined energy hit the chambers
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Another example

Select electrons from pions using a Transition Radiation Detector (ALICE)

We use different methods to 
evaluate the PID, with increasing 
amount of information used:

→ 1-dimensional likelihood: only 
the total charge is compared 
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Another example

Select electrons from pions using a Transition Radiation Detector (ALICE)

We use different methods to 
evaluate the PID, with increasing 
amount of information used:

→ 2-dimensional likelihood:select 2 
regions and compare each
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Another example

Select electrons from pions using a Transition Radiation Detector (ALICE)

We use different methods to 
evaluate the PID, with increasing 
amount of information used:

→ neural network !!!
→ many inputs !!!

More difficult to train (needs more 
data) but more efficient and more 
robust!
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Next time

Multivariate data analysis methods:
● Fisher discriminant (linear decision boundary)
● Neural networks
● Kernel density methods
● Support Vector Machines
● Decision trees:

● Boosting
● Bagging

● Toolkit for Multivariate Data Analysis: TMVA
● Framework for “all” MVA-techniques, available in ROOT
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