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Examples of probability functions:
e Binomial

e Multinomial

e Poisson

e Uniform

e Exponential

e (aussian

e Central limit theorem

e Chi-square

e Cauchy

e lLandau Source:
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With example application cases
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The binomial distribution — the coin

Coin is tossed in the air — 50% heads up, 50% tails up

Meaning: if we continue tossing a coin repeatedly, the fraction
of times that it lans heads up will asymptotically approach 1/2.

For each given toss, the probability cannot determine whether
or not it will land heads up; it can only describe how we should
expect a large number of tosses to be divided into two
possibilities.

You flipped 2 coins of type US 51 - George \Washington:
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The binomial distribution — 2 coins

Suppose we toss two coins at the time

— There are 4 different possible PERMUTATIONS of the way in which
they can land:

e Both heads up
e Both tails up
e 2 mixtures of heads and tails depending on which one is heads up

Each permutation is equally probable — the probability for any choice of
them is 25% !

For the probability for the mixture of heads and tails, without differentiating
between the two kinds of mixtures, we add two cases — 50%

THE SUM OF THE PROBABILITIES FOR ALL POSSIBILITIES IS

ALWAYS EQUAL TO 1, BECAUSE SOMETHING 1S BOUND TO
HAPPEN
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The binomial distribution — n coins

Let us extrapolate to the general case: we toss n coins in the air

(or we toss one coin n times)

P(x;n) = probability that exactly x of these coin will land heads up, without
distinguishing which of the coins actually belongs to which group

X must be an integer for any physical experiment, but we can consider

the probability to be smoothly varying with x as a continuous variable for

mathematical purposes
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The binomial distribution: Permutations and combinations

If n coins are tossed:

o 2" different possible ways in which they can land (each coin has two
possible orientations)

e Each of these possibilities is equally probable — the probability for any
of these possibilities is 1/2"

How many of these possibilities will contribute to our observation of x
coins with heads up?

Box 1 (x): heads up Box 2 (n-x): tails up

1. How many permutations of the coins result in the proper separation

of the x in one box, and n-x in the other?

Total number of choices for coins to fill the x slots in the heads box is
Pm(n,x) = n(n-1)(n-2) .... (n-x+2)(n-x+1)

more easily written as n!

(n—x)!

Pm(n,x) =
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The binomial distribution: Permutations and combinations

But we care only on which is heads up or tails up, not which landed first!

We must consider contributions different only if there are different coins
in the two boxes, nor if the x coins within the heads box are permuted
into different time orderings!

2. the number of different combinations C(n,x) of the permutations
results from combining the x! different ways in which x coins in the
heads box can be permuted within the box.

x! — degeneracy factor of the permutations
Pm(n, x) n!

Cln,x) = X! - x!(n—x)! -

n
X

This is the number of different possible combinations of n items, taken
x at a time
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The binomial distribution - Probability

With coins: p(heads up) = p (tails up)
Then: P(x,n) = all combinations x probability of each combination
= C(n,x) x 1/2"

GENERAL CASE:

n independent experiments (Bernoulli trials)
Bernoulli trial is a random experiment in which
there are only two possible outcomes:

success and failure
p = probability of success of any given trial
g = (1-p) = probability of failure

Therefore the probability of x times success
(heads up) and n-x failures (tails up) is p*q™*
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The binomial distribution

From the definition of p and q, the probability P_(x;n,p) for observing x of

the n items to be in the state with probability p is given by the binomial
distribution

X n—=x __ n! X A \NX
T T (1-p)

PB<Xanap> =

Name: the coefficients P (x;n,p) are closely related to the binomial
theorem: n

(p+q)" = 2.

x=0

n
X

X n—X

P d

The (j+1)th term (corresponding to x=j) of the expansion is equal to
P_(;n,p). This proves the NORMALIZATION of the binomial distr.
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The binomial distributon — Me@an and variance

The mean of the binomial distribution is:

-2

X,n XNp<1 p)" | = np

If we perform an experiment with n items and observe the number x of
successes, after a large number of repetitions the average X of the
number of successes will approach a mean value py given by the
probability for success of each item (p) times the number of items (n)

The variance is:

N
= D |(x-
x=0

n!
x!(n—x

Np<1 p)"*| = np(1-p)
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The binomial distribution - Types

If the probability for a single success p is equal to the probability for
failure p = q = 1/2, then the distribution is symmetric about the mean p.

The median and the most probable value are both equal to the mean.
The variance 0% is equal to half the mean: 02= p/2
If p and q are not equal, the distribution is asymmetric with a smaller

variance Wahrscheinlichkeit

n=20 B

Blue: p=0.1 1ash

Green: p=0.5 |

Red: p=0.8 i .
.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 11



The binomial distribution - Examples
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DECAYS: observe n decays of W#, the number x of which are
W — pv is a binomial random variable. p = branching ratio
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A test consists of 10 multiple choice questions with five choices for each
question. As an experiment, you GUESS on each and every answer
without even reading the questions.

What is the probability of getting exactly 6 questions correct on this test?

Bits are sent over a communication channel in packets of 12. If the
probability of a bit being corrupted over this channel is 0.1 and such errors
are independent, what is the probability that no more than 2 bits in a
packet are corrupted?

If 6 packets are sent over the channel, what is the probability that at least
one packet will contain 3 or more corrupted bits?

Let X denote the number of packets containing 3 or more corrupted bits.
What is the probability that X will exceed its mean by more than 2 standard
deviations?
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Multinomial distribution

Like binomial but now m outcomes instead of two. Probabilities are:
m

p = (py...Pn) With D p
i=1

Il
—

For n trials, we want the probability to obtain:
x, of outcome 1,

X, of outcome 2,

x_ of outcome m
This is the multinomial distributions for X = (X4 Xy .. Xp)

n!

X X X
Py PSPy
X, I, x !

P.(X;n,p) =
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Multinomial distribution

Now consider the outcome i as “success’, all others as “failure”
— all x. individually binomial with parameters n, p,

Then:

E[Xi] = npi V[Xi] = npi(1_pi)

One can also find the covariance to be:

Vi = npi<5ij_pj)

EXAMPLE: X = (X4 ...,X,) representsa histogram with
m bins, n total entries, all entries independent
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Poisson distribution

Consider a binomial x in the limit: When the average number of

n— successes is much smaller
p—0 than the possible number:
Ex]=p=np— V U«n because p«1

Approximation of the binomial distribution

—

Often in these experiments, neither the number n of possible events nor
the probability p for each is known. What may be known is the the
average number of events p expected in each time interval.
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Poisson distribution

o
I

Properties:

e Since this is an approximation to
the binomial distribution, and p«1,
the Poisson distribution is 0
asymmetric about its mean

P(x;V)

e [t does not become O for x=0 = 04

e |tis not defined for x<0 \&{
0.2

EXAMPLE: 0

NUMBER OF EVENTS FOUND

Given a cross section o, and a fixed =%
iIntegrated luminosity, with X

v = o Ldt 0

20

20

V=2
...
5 10 15
V=D
HnHHHHHHﬂnnH
5 10 15
v=10
nnﬂ””HHH”ﬂﬂnnnﬁ
5 10 15

20
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The number of industrial injuries per working week in a particular factory
is known to follow a Poisson distribution with mean 0.5

Find the probability that:
e |n a particular week there will be

e [ess than 2 accidents
e More than 2 accidents

e |n athree week period there will be no accidents
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The mean number of bacteria per millimetre of a liquid is known to be 4.
Assuming that the number of bacteria follows a Poisson distribution, find
the probability that, in 1ml of liquid, there will be

(a) no bacteria

(b) 4 bacteria

(c) less than 3 bacteria

Find the probability that

(i) in 3ml of liquid there will be less than 2 bacteria

(ii) in 0.5ml of liquid there will be more than 2 bacteria

Statistical Methods, Lecture 4, October 31, 2011
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Uniform distribution

Consider a continuous random variable x, with -o< x <

Uniform pdf is: —
1 £ F B
<X< 08 |
f(x;00,8) = | B—« H=X=p = 1—a
0, otherwise T
ElX] = Z(a+p) "1
1
V -_— — 0 ' L
[X] 2<B O() 0 1 2 3 "

EXAMPLE: for Tt° = yy, Ey is uniformis [E_ , E ], with
1 1
Enn = SE.(1- E..x = =E,.(1+
min 2 1T< B)! max 2 T(( ﬁ)
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Exponential distribution

The exponential distribution for the continuous random variable x is
defined by:

", 1
1, = e | ot
f(x;&) = ge T x=0 LN s
| 0 otherwise | .
E[x] = ¢ S
V[x] = & 02 oo .
. .
EXAMPLE: T
Proper decay time t of an unstable particle
f(t;r) = %e_t“ (t=meanlifetime)

UNIQUE TO EXPONENTIAL
flt—to|t=t,] = f(t)
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Gaussian distribution

The Gaussian (normal) pdf for a continuous random variable is defined by:

f(x;u,0) =

1
V21T O

e

J(x;p,0)

—(x—pu)?/20°

04

02 r

Special case: y=0, 0%=1:

_ 1
CP(X)—EG )

If y~Gaussian with y, 02, then z=(y-p)/o follows @(z)

—x?/2

0 k="

u=0, o=1
u=0, o=2

- p=1, o=1

(x) = |~ @(x)dx
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Central limit theorem

For n independent random variables x. with finite variances oiz, otherwise
arbitrary pdf's, consider the sum:

Almost any random variable that is a sum of a large number of small
contributions, follows a Gaussian distribution.

Measurement errors are often the sum of many contributions, so
frequently measured values can be treated as Gaussian r.v.s
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Central limit theorem - 2

For the proof, see book by Cowan e.qg.

For finite n, the theorem is approximately valid to the extent that the
fluctuation of the sum is not dominated by one (or few) terms

Beware of measurement errors with non-Gaussian tails !!!

Good example: velocity components v _of air molecules

Medium good example: total deflection due to multiple Coulomb
scattering (rare large angle deflections give non-Gaussian tail!!)

Bad example: energy loss of charged particle traversing thin gas layer
(rare collisions make up large fraction of energy loss! — Landau pdf

Statistical Methods, Lecture 4, October 31, 2011
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Chi-square (x?) distribution

The chi-square distribution for the continuous random variable z (z=0) is
defined by:

= 0.5 1
f(z:n) = - 1 21 gmziz 8
2°°T'(n/2) 04
03 rh
n=1,2,..=number of degrees of :
freedom (dof) 2
E[zZ]=n, V[z]=2n o LAY

20

EXAMPLE: goodness-of-fit test variable
especially in conjunction with method of least squares (soon!)
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The Cauchy pdf for the continuous random variable x is defined by

1 1

T 14X

This is a special case of the
Breit-Wigner pdf:

1 /2

T [?/44(x—X,)°

f(x) =

flxxg,I)

f(x;I,X,) =

E[x] not well defined, V[x] — «
X, = mode (most probable value)

[ = full width at half maximum

EXAMPLE: mass of resonance particle, e.g. p, K*, ®°, ...

[ = decay rate (inverse of mean lifetime)

0.8

06

04

0.2

——  Xg=0, =1
--— xp=2, T=1
- Xg=0, T=2
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Describes the energy loss A of a charged particle with =v/c traversing a
layer of matter of thickness d

1 A
fF(A;B) = —é(N) , v
‘g +—t— .
1 o ﬁ —4+—+ i’
d(N) = —[ exp(—ulnu — Au) sinmudu ,
™ JO _.{ 7 }‘7
—Aa_e(né41_
= aefntran)]
¢ — 2rNpaetz2p > Z d ,  I?expp?
T mec2S A B2 = 2mec? 3242

L. Landau, J. Phys. USSR 8 (1944) 201; see also
W. Allison and J. Cobb, Ann. Rev. Nucl. Part. Sc1. 30 (1980) 253.
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— =
x| = x+ £ — a=2, =3
T 25f —-0=5p=2
x s (=2, p=2

Often used to represent pdf
of continuous random
variable non-zero only
between finite limits
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Gamma distribution

f(x;o,8) = F(;) - x* ' e
E|x| = «p
V[x] = ap’

Often used to represent pdf of
continuous random variable non-zero
only in [0, ]

Also similar to the gamma distribution:
e Sum of n exponential r.v.s

e Time until the nth event in Poisson
process

fx;ee )
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Student's t distribution

F(V+1) -
f(x;v) = 2 L
| Vv I'(v/2) 1% 05
&
E[x] =0 (v>1) oap Vo
V[x] = —  (v>2)
o

e v = number of degrees of freedom
(not necessarily integer)
e V =1 gives Cauchy

e v — o« gives Gaussian

Statistical Methods, Lecture 4, October 31, 2011
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Student's t distribution

The student's t provides a bell-shaped pdf with adjustable tails,
ranging

e from those of a Gaussian, which fall off very quickly (v — <, but in fact
very Gauss-like for v = two dozen)

e To the very long-tailed Cauchy (v = 1)

Developed in 1908 by William Gosset, who worked under the pseudonym
“Student” for the Guiness Brewery
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