
Statistical Methods in Particle Physics WS 2011/2012

Exercise 3: Probability density functions

N. Berger (nberger@physi.uni-heidelberg.de)

24.10.2011

Please send your solutions to nberger@physi.uni-heidelberg.de until 31.
10. 2011, 12:00. Put your answers in an email (subject line SMIPP:Exercise03 )
with macro files, root files and plots as mentioned in the attachments. Test
macros and programs before sending them off...

1. Random walk Simulate a random walk in one dimension. Take a test
particle at x = 0, t = 0. In every time step, the particle has a 50%
probability of moving one step to the right or one step to the left (use a
random number generator to decide the direction). Track the particle for
100 time steps and the store the end position in a histogram. Repeat for
many particles. What distribution do you see in the histogram?
(Attach the .C or .py file)

2. Analytic muon beam The Paul Scherrer Institute (PSI) in Switzerland
provides the most intense continuous muon beams in the world. These
beams are created by shooting over 2 mA of 590 MeV/c protons at a 4 cm
thick carbon target. In the p− C interactions, many pions are generated
and then stopped in the target. Charged pions decay mostly to a muon
and and a muon (anti)neutrino, π+ → µ+νµ and π− → µ−ν̄µ. These are
the muons (usually the positive ones) used in the experiments. In the pion
rest system, the muons will have a fixed momentum (two-body decay) of
pmax = 29.79 MeV/c. Muons traversing the target material will loose
some energy, thus the highest momentum muons come from the target
surface. In fact, the muon intensity behaves as

I(p) =

{

I0 · p
3.5 if 0 < p < pmax

0 otherwise
, (1)

where I0 is an (arbitrary) normalization. For the simulation of the future
µ → eee experiment at PSI, we would like to generate muons with this
energy distribution, but we only have a generator (e.g. TRandom3) for
equidistributed numbers from 0 to 1.

If a general distribution f(x) is analytically integrable (F (x) =
∫ x

−∞
f(t)dt

exists) and the integral F (x) = u is analytically invertible (x = F−1(u)
exists), then if we generate ui equidistributed in [0, 1], xi = F−1(ui) will
follow the distribution f(x). Use this to generate muon energies. Due to
the nature of the distribution, you can replace −∞ in the lower bound of
the integral with 0. You also have to make sure that the integral up to
the upper bound pmax is normalized to 1.

S. Masciocchi, N. Berger 1

www.physi.uni-heidelberg.de/~nberger/teaching/ws11/statistics.php



Statistical Methods in Particle Physics WS 2011/2012

Generate 100’000 muon energies and fill them into a histogram with ap-
propriate binning.
(Attach the .C or .py file)

3. Non-analytic muon beam In reality, the sharp edge at pmax = 29.79 MeV/c
is washed out because many pions are not perfectly at rest in the target.
The resulting distribution is the intensity from the above problem (Iideal)
convoluted with a Gaussian distribution

Ireal(p) =

∫ +∞

−∞

Iideal(τ) · g(p− τ)dτ =

∫ +∞

−∞

g(τ) · Iideal(p− τ)dτ (2)

where g(x) is the Gaussian or normal distribution,

g(x) =
1

σ
√
2π

e−
(x−µ)2

2σ2 (3)

In our example, the width σ of the distribution happens to be a convenient
1 MeV/c and the center µ is conveniently at 0. The above integral has
no analytical solution, so we are going to approximate it numerically by a
sum (using the fact that the normal distribution falls off rather rapidly):

∫ +∞

−∞

g(τ) · f(x− τ)dτ ≈

∑a

τ=−a g(τ)f(x− τ)
∑a

τ=−a g(τ)
, (4)

where a is chosen as a few (e.g. 3) σ of the normal distribution and the
steps of τ are chosen to be small enough. Write a function that implements
this convolution starting from a function implementing a normal distri-
bution with a σ of 1 and a mean of 0 (does not need to be normalised)
and a function implementing Iideal. In native (C++) root, these functions
should have prototypes of the form

double myFunction(double * x, double * par){

p = x[0];

parameter0 = par[0];

parameter1 = par[1];

...

return result;

}

where x is an array of the running variable (of length 1 in a 1D function)
and par is an array of the function parameters. In Python, everything is
somewhat simpler due to implicit typing:

def myFunction(x, par):

p = x[0]

parameter0 = par[0]

parameter1 = par[1]

...

return result

These functions can then be used in TF1 objects to draw the function.

S. Masciocchi, N. Berger 2

www.physi.uni-heidelberg.de/~nberger/teaching/ws11/statistics.php



Statistical Methods in Particle Physics WS 2011/2012

TF1 * rootfunction = new TF1("myFunction",myFunction,0,30,2);

rootfunction->SetParamter(0,1.3);

rootfunction->SetParamter(1,2.7);

rootfunction->Draw();

where the arguments to the constructor are name, the actual function, the
lower and upper edges of the range and the number of parameters, which
can then be set via SetParameter(index, value). In python this works
analogously. Determine the number of steps needed for τ by drawing the
function and increasing the number until you obtain a smooth behaviour.
(Attach the .C or .py file)

4. More non-analytic muon beam

Use the hit and miss method to generate muons with the distribution
obtained in the last problem in the range from 0 to 35 MeV/c. First
find the maximum value of the function Imax

real . Then generate pairs of
equidistributed random numbers, xi and yi. Scale xi to the range from 0
to 35 MeV/c and use it as the muon momentum. Then determine Ireal
for that value of p and keep the event if yi ¡ Ireal/I

max
real , otherwise reject

it. Plot the resulting distribution. Count how many random numbers you
need per generated muon. Could this be made more efficient? How?

S. Masciocchi, N. Berger 3

www.physi.uni-heidelberg.de/~nberger/teaching/ws11/statistics.php


