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Individual Detector Types 
• Modern detectors consist of many different pieces of 

equipment to measure different aspects of an event. 

• Measuring a particle’s properties: 

o Position 

o Momentum 

o Energy 

o Charge 

o Type 

Dirk Wiedner 2 

Tracking 

Calorimeter 

Muon System 

p, 
920GeV 

e, 
27GeV 



Particle Decay Signatures 

• Particles are detected via their interaction with matter. 

• Many types of interactions are involved,  
o mainly electromagnetic.   

• In the end, always rely on ionization and excitation of matter. 
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Particle Decay Signatures 
in CMS 
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Particle Decay Signatures 
in CMS 
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Energy loss 
by Ionization 
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Bethe-Bloch formula 
• Ionization main electromagnetic energy loss for charged particles.  

o Except when the projectile is highly relativistic  

• The mean energy loss due to ionization given by the Bethe-Bloch 
formula: 
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Energy loss of π in Cu 
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Energy loss of Pi in Cu 

 

large γ 
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dE/dx and Particle 
Identification 

• Measurements of energy loss to identify particles 

o when giving enough care to calibration problems  

• simultaneous measurement of momentum required 
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Calorimetry 
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Introduction 

• Energy of a particle measured destructively 

• Particle must be completely stopped in detectors to 

measure its full energy 
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Introduction 

• Energy of a particle measured destructively 

• Particle must be completely stopped in detectors to 
measure its full energy 

• Energy is deposited in a localized space  
o position can be determined with accuracy dependent on: 

o transverse energy fluctuations  

o detector design. 

• Accuracy of energy measurement: 
o Constant term: Uniformity of the detector medium 

o Stochastic term: Active sampling wrt total detector volume 

• Calorimetry can provide momentum of a particle 
o redundantly to the inner tracking measurements 

o useful in cleaning up backgrounds. 
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Shower in cloud chamber 
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Electron and γ Interactions 

• At lower energies, 

Ionization becomes 

important. 

• The ratio of the energy 

loss for these processes is: 

• At E> 10 MeV, interactions of γs and e-s in matter 
dominated by:  
o e+e- pair production and  

o Bremsstrahlung 
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      Critical Energy: 
When energy loss due to Bremsst. and 
energy loss due to ionization are equal. 

𝐸𝑐 ≈
610𝑀𝑒𝑉

𝑍 + 1.24
 

𝑅 =
𝑑𝐸

𝑑𝑥
𝐵𝑟𝑒𝑚𝑠

𝑑𝐸

𝑑𝑥
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≈
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580𝑀𝑒𝑉
 



Electron energy loss and 
critical energy 

relative energy loss for 
electrons 

• Critical energy loss due to  

o Bremsstrahlung and 

o ionization are equal to 

 

 

 

• High Z material gives more 

signal: shower stop later 
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Ec = 7 MeV in Pb 

𝐸𝑐 ≈
610𝑀𝑒𝑉

𝑍 + 1.24
 



Photon interactions in matter 
(A, Z) 
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Electromagnetic Showers 
• Radiation Length X0: 

o Scaling variable for the 
probability of occurrence 
of bremsstrahlung pair 
production 

o and for the variance of 
the angle of multiple 
scattering. 

• Average energy loss due 
to bremsstrahlung for an 
electron of energy E is 
related to the radiation 
length: 

 (dE/dx)brems = E/X0 

Dirk Wiedner 19 



Electromagnetic Showers 
• Radiation Length X0: 

o Scaling variable for the 
probability of occurrence 
of bremsstrahlung pair 
production 

o and for the variance of 
the angle of multiple 
scattering. 

• Average energy loss due 
to bremsstrahlung for an 
electron of energy E is 
related to the radiation 
length: 

 (dE/dx)brems = E/X0 

Dirk Wiedner 20 



Simple Shower Model 
• Start with a high energy electron: E0 

• After 1 X0: 1e- and 1γ each with E0/2 

• After 2 X0: 2e-, 1e+and 1γ each with 
E0/4 

• After kX0: total N=2k, each with 
<E>=E0/2k 

• At <E> = Ec pair production and brems-
strahlung stop 

• Compton- or photo-effect and 
ionization take over.  

• The shower ranges out. 

• kmax = lg2(E0/Ec) → Shower depth grows 
logarithmically with E0 

• Nmax = 2kmax = E0/Ec → Number of 
shower particles grows linearly with E0. 
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Energy Measurement 

● Total number of particle in the shower in the simple model:         
     ⇒ Ntot = Σk 2

k = 2 2kmax -1 ≃ 2 E0 / Ec 

● 2/3 of Ntot are charged (e++e-),  ⇒ Nch =4/3 E0/Ec 

● Each e travels 1 X0 between interactions                    

         ⇒ total path length Lch ≃ 4/3 X0 E0 / Ec 

● Electrons and positrons also ionize the medium, collect charge or 
fluorescence light.      ⇒ The measured signal S ~ X0 E0 / 

Ec 

● After calibration, S is an energy measurement! 

● Shower fluctuations: particle production is a Poisson process:         

   ⇒ σ(N) = √N 

● ⇒ σ(S) / S =1/ √S 

● The relative energy resolution improves as 1/√E0 
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A sophisticated shower 
simulation 
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Electromagnetic 
Calorimeter Types 

● Homogeneous “shower counters”: 

● Best performance from unorganic scintillating crystals.                                          

● Also use lead glass, detects Cerenkov light of electrons, limited 

by photoelectrons statistics.   

● Sampling calorimeters: 

● Layers of inactive absorber (such as Pb) alternating with active 
detector layers, such as scintillator or liquid.  Resolutions 
~7%/√E or so. 

● Liquid noble gases: 

● Counters based on liquid noble gases (with lead plates, for 
example) can act as ionization chambers.  LAr - Pb versions 
obtain ~10%/ √E. Ionization read out by electrodes attached to 
plates (no PMTs!). 

● Disadvantage: slow collection times (~1 μs).   
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Electromagnetic 
Calorimeter Types 

● “Lead-scintillator sandwich” calorimeter 

 

 

 

 

● Exotic crystals (BGO, PbW, ...) 

 

 

 

 

● Liquid argon calorimeter                ΔE/E ~ 18%/√E 
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ΔE/E ~ 20%/√E 

ΔE/E ~ 1%/√E 

Energy resolutions: 



CMS  PbWO Crystals 
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Charged particles 

create scintillation 

light: ~120 /MeV 

fast: 95% < 25 ns. 



CMS ECAL 

• CMS 

PbWO4 

crystal calorimeter 
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85mm 

● Barrel: 62k crystals 2.2 × 2.2 × 23 cm   

● End-caps: 15k crystals 3 × 3 × 22 cm 

95% 

lead 

X0 ≈ 0.9 cm 



Energy Resolution 
• Look at Detector Response 

for given energy E0. 

• For interaction following 

Poisson statistics 

 Detector Response for 

many interactions become 

Gaussian. 

• Fit Response  with Gaussian 

and look at σ (Resolution).  
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Test beam calibration 
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Response of a PbWO4 calo to a 120 GeV e- test beam: 



CMS ECAL Test beam with final electronics. 

Energy Position 
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Energy resolution terms 
• The intrinsic shower fluctuations give σ(E) ~ √E 

• Fluctuations in the photo-electron yield also give σ(E) ~ √E 

• Noise (electronics, radiation) gives a constant term: σ(E) = c 

• Inhomogeneities and leakage give σ(E) ~ E 

 

Dirk Wiedner 33 

%  0.44 
MeV 142

   
% 2.4 )(


EEE

E

σ(E) / E 
[%] 



Hadron Calorimeters 

• Hadronic Shower:  
o Spatial scale for shower development 

given by nuclear absorption length λN. 

o Mean free path of a particle before 
undergoing a non-elastic interaction in a 
given medium. 

• Compare X0 for high-Z materials 

• hadron calorimeters large compared to 
EM calorimeters. 

 

• Strongly interacting particle > 5 GeV enters matter 

o inelastic and  

o elastic scattering between particles and nucleons occur. 

• Cascade ceases when hadron energies small enough to 

o stop by ionization energy loss  

o or nuclear absorption. 
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Material X0 
(g/cm2) 

λ(g/cm2) 

H2 63 52.4 

Al 24 106 

Fe 13.8 132 

Pb 6.3 193 



Hadronic showers 
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A 

• Hadronic interaction have high multiplicity: 

• Shower 95% contained in ~7λ at 50 GeV (1.2m of iron) 

• Hadronic interactions produce π0: 
o π0→γγ, leading to local EM showers ('hot spots', ~30%) 

• Some energy lost in nuclear breakup and neutrons 
o 'invisible energy', 15-35% 

• Stronger fluctuations in a hadronic shower: 
o Worse energy resolution 

 



Hadronic showers 
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Electromagnetic & Hadronic 
showers 



Electromagnetic & 
Hadronic showers 
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39 

electron 

muon 

hadrons 

Hadronic showers 
Tracker EM cal Hadronic calorimeter Muon tracker 

Hadronic showers may already 

start in the ECAL and extend into the HCAL. 
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EM showers should be fully 

contained in the ECAL. 



Hadronic interaction length 

• Pion-proton cross section σ(πp) ≈ 25 mbarn above 

a few GeV. 

• σ(πA) ≈ σ(πp) A2/3 (black disk limit). 

 hadronic interaction length: 

 

 

• λI = 17 cm in Fe or Pb. 

• Much larger than X0. 
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λ𝐼 =
𝐴

σ𝑁𝐴ρ
=
35𝑐𝑚

ρ
𝐴1 3  



2 hadronic showers 
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blue = hadronic component red = electromagnetic component 

A good hadron calorimeter should have 

• equal response to hadrons and electrons ('hardware compensation') 

• or high granularity to isolate the hot spots ('software compensation') 



Hadron shower transverse 
• Transverse shower 

development: 

o Secondaries have significant 

transverse momenta 

o They produce a wide 

shower  
• compared with EM showers 

o Part of the shower gets an 

electromagnetic nature 
• i.e. The decay of the π0 

produced in the interaction 

• remains inside a narrow 

cylinder:  

• two times the Moliere radius 
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e.m. core 

T.S.Virdee, Proc. of the 1998 European School of High-Energy Physics, CERN 99-04 



Compensating 
Calorimeters 

• Improvements in energy resolution can be achieved if  
o showers induced by electrons and hadrons of same energy  

 produce same visible energy (detector response). 

• Requires the losses to be “compensated” 

• Three methods: 
o Energy lost by nuclear reactions made up for by fission of 238U 

o liberating n and soft γ-rays 

o response close to equal:  

o proton-rich detector → em shower decreases  

o hadron shower increases due to more nuclear reactions 

• If have lots of H2: 
 compensation achieved with high absorber material:  

o in inelastic collision of hadrons w/ absorber nuclei,  

o neutrons are produced → recoil protons, larger signal. 

• Reduce fluctuation in EM component:  
o weight individual counter responses 

o even response out across the board 
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• The active detector material samples a fraction F of the shower. 

• The detector signal is proportional to the incident energy. 

• Allows longitudinal segmentation 

• Good for hadrons 

• Energy resolution is degraded ~1/√F ('sampling fluctuations'). 

• Less expensive. 

Sampling calorimeter 
Absorber and detector are separated as passive and active layers. 
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Absorber: 

Lead, 

Tungsten, 

Uranium 

Detector: 

MWPC, 

scintillator, 

silicon pads, 

noble liquid 



Sampling Calorimeters 
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φ 

η 

Back Cell 

Middle Cell 

Strip Cell 

e 

3 sections: 

 strips for position resolution 

 middle for energy 

measurement 

 back for leakage control 

 Pb absorber in LAr 

 Accordion geometry for 

routing of readout signals 

to the back 

 Allows dense packing 

and fine granularity. 

ATLAS LAr ECAL 
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Cu electrodes at +HV 

Spacers define LAr gap 
2 × 2 mm 

2 mm Pb absorber 

clad in stainless steel. 

ATLAS LAr ECAL 
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Scintillators: 

• A scintillator is a material which exhibits the property 

of luminescence when excited by ionizing radiation. 

 

• Luminescent materials, when struck by an incoming 

particle, absorb its energy and scintillate, i.e. re-emit 

the absorbed energy in the form of a small flash of 

light, typically in the visible range. 
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Scintillators General 
Characteristics 

• Principle: 
o dE/dx converted to visible light 

o Light detection via photo-sensors 

• Main features: 
o Sensitivity to energy of particle 

o Fast response 

o Pulse Shape discrimination 

• Requirements: 
o High efficiency for the conversion of exciting energy to 

fluorescent radiation 

o Transparency to its fluorescent radiation to allow light transmission 

o Emission of light in a detectable spectral range 

o Short decay time to allow fast response 
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Scintillators - Basic Setup 

• Photo-sensors 

o Photomultiplier 

o Avalanche Photodiodes 

o ... 

• Scintillator Types 

o Organic Scintillators 

o Inorganic Scintillators 

o Noble Gases 
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Inorganic Crystals 

• Material 

o Sodium iodide (NaI) 

o Cesium iodide (CsI) 

o BGO 

o ... 

• Mechanism 

o Energy deposition by 

ionization 

o Energy transfer to impurities 

o Radiation of scintillation 

photons 
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Inorganic Crystals - Light 
Output 
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Inorganic Crystals - Light 
Output 
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Organic Scintillators 

• Aromatic hydrocarbon 

compounds: 

o Naphthalene (C10H8) 

o Antracene (C14H10) 

o Stilbene (C14H12) 

• ... 

• Very fast decay time 

• Scintillation light arises 

from delocalized 

electrons in π-orbitals 
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Scintillators Comparison 

Inorganic Scintillators Organic Scintillators 

• Advantages: 

o high light yield 

o high density 

o good energy resolution 

• Disadvantages: 

o complicated crystal 
growth 

o large temperature 

dependence 

o Expensive 

• Advantages: 

o very fast 

o easily shaped 

o small temperature 

dependence 

• Disadvantages: 

o Lower light yield 

o radiation damage 

o Cheap 
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Transport of Optical Photons 

• Unavoidable or desirable 

to have the photo-

detector remote from the 

scintillator: 

o Space limitations 

o Photo detector out of the 

magnetic field 

o Couple a large scintillator 

surface (volume) to a 

single photo-detector 

o ... 

• Use optical wave guides: 

o Total internal reflection 
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Transport of Optical Photons 
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CMS Hcal read out 

• Scintillators coupled to 

readout fibers. 

• Bundles of fibers 

coupled to an 

avalanche photodiode 
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Time Constants 
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γ, e separation based on 
time constant 

• e interacts in plastic sc. 

• γ interacts in BGO 

o Decay times BGO ~300ns 

o plastic sc ~10ns 

• use different integration 

times! 
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γ, e separation based on 
time constant 

• scatter plot of 22Na 

decay spectrum 

• no short signal for γ 

• 22Na decay spectrum 

  e+     γ        e+ + γ 

 

 

 

 

 

• only BGO, no fast signal 
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Wavelength Shifting 
Principle: 

• converts the short wavelength light ( λ<400nm) emitted 
by scintillation or Cherenkov radiation  

• into a longer wavelength (blue light, λ>400nm) 

 Adapt light to spectral sensitivity of photosensor 
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BGO 

• Best suited for gamma 
detection (high Z) 

• High density 

• Temperature 
dependence!!! 
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Scintillation Detector 
• Couple scintillator to an electronic light sensor 
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Scintillator Eye Electronic Signal Electronic Hardware Source 



Energy Measurement 
with BGO 

• BGO: Bi4Ge3O12 

• Luminescence: Optical transition of Bi3+ ion 

• n(t): #exitedBi3+ ions per dt 

• ==> 

• ==> 
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=? 

N_meas. ~ 4photons/keV (BGO) 



Light Detectors 
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Photomultiplier Tube (PM) 

Dirk Wiedner 67 

• Light falls on a photo-cathode 

• Photo-electron is emitted 
o Photo effect 

o Quantum Efficiency depends on 
• Cathode material and  

• Wavelength (QE ~ 25%) 

• Photo-electron focused and accelerated 
towards the first dynode by electric field 

• Photo-electron strikes dynode 
o Several electrons are emitted 

• Several dynodes (10-15) give hight gain 107 

• High speed: few ns transmit time 

• Gain much lower in magnetic field 

 



PM Response 

• Integrated PM 

response of 2 PM with 

different dynode 

multiplication factors: 

Dirk Wiedner 68 

large δ ~ 60 

normal δ ~ 5-10 

peaks: single photo 
electrons 



Avalanche Photodiode (APD) 

• 85% quantum efficiency 

• Photoelectrons create 
cascade of electron-hole 
pairs in the bulk.  

• Gain ~100 in linear mode 

• Low sensitivity to 
magnetic field. 

• APD gain decreases by 
2.3%/ºC .  
o Need temperature 

stabilization within 0.1ºC in 
ECAL! 
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Vacuum photo-triodes 

 

 

• ~20% quantum efficiency 

• Single stage photomultiplier 

• Gain ~ 10 at B=4T 
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radiation resistant UV glass 
window used in CMS ECAL 



Time of Flight 
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Time of Flight 
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Time of Flight 
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Time of Flight 
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Some Literature 

● Web: 

● The Particle Detector BriefBook: 
http://rkb.home.cern.ch/rkb/PH14pp/node1.html   

● (there is also a  Data Analysis BriefBook) 

● http://pdg.lbl.gov/ --> Summary and Reviews 

● Lectures: 

● http://wwwhephy.oeaw.ac.at/p3w/halbleiter/VOTeilchendetekto
ren.html 

● http://www.kip.uni-heidelberg.de/~coulon/Lectures/Detectors/ 

● http://www.desy.de/~blist/vl-detektor-ws07/ 

● www.physics.ucdavis.edu/Classes/Physics252b/Lectures/252b_lect
ureXX.ppt  XX = 1,2,3,4 

● Script: 

● http://www.physik.tu-dortmund.de/E5/E5-alt-
alt/index.php?content=25&lang=de 

Dirk Wiedner 75 



More Literature 
• Text books: 

o C.Grupen: Particle Detectors, Cambridge UP 22008, 680p 

o D.Green:  The physics of particle Detectors, Cambridge UP 2000 

o K.Kleinknecht: Detectors for particle radiation, Cambridge UP, 21998 

o W.R. Leo:  Techniques for Nuclear and Particle Physics Experiments, 

Springer 1994 

o G.F.Knoll:  Radiation Detection and Measurement, Wiley, 32000 

o W.Blum, L.Rolandi: Particle Detection with Driftchambers, Springer, 1994 

o G.Lutz:  Semiconductor radiation detectors, Springer, 1999 

o R. Wigmans: Calorimetry, Oxford Science Publications, 2000 

• Review articles: 

o T.Ferbel (ed): Experimental Techniques in High Energy Physics, Addison-

Wesley 1987 

• Web: 

o Particle Data Group:       Review of Particle Properties: pdg.lbl.gov 
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Backup Slides 
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The Standard Model  

● The SM: 

● world is made up of quarks 
and leptons  

● interacting by exchanging 
bosons 

 only photons directly visible 

● How do we see without 
seeing? 

● What makes Particle 
Detection possible? 
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Particle Reactions 

Dirk Wiedner 

• Idealistic View:  
o Elementary Particle Reaction 

• Usually cannot “see” the reaction itself 

• To reconstruct the  
o process and the  

o particle properties 

 need maximum information about 
end-products 

79 



Principle of an  

Elementary Particle Measurement 
• Need good:  

o Detectors  

o Triggers,  

o Readout  

 to reconstruct the mess. 

• Need good:  

o Analyzers  

 to put the raw data into 
a piece of physics. 
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Example of two Reactions 

Tracks in a Bubble Chamber  
(Bubble chambers are not used any more). 

Simulated Super LHC event.  
(People started to think about a LHC upgrade). 

Dirk Wiedner 

The decay products of elementary particle reactions can look very complicated! 
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Global Detector Systems 

• No single detector measures it all… 

 Create detector systems 
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• Overall design 

depends on: 

o Number of particles 

o Event topology 

o Momentum/energy 

o Particle identity 



Global Detector Systems 

Fixed Target Geometry Collider Geometry 
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•Limited solid angle dΩ coverage 

•Easy access (cables, maintenance) 
•Full” solid angle dΩ coverage 

•Very restricted access 



Ideal Detectors 

● An “ideal” particle detector would provide… 

● Coverage of full solid angle, no cracks, fine segmentation (why?) 

● Measurement of momentum and energy 

● Detection, tracking, and identification of all particles (mass, charge, 
lifetime) 

● Fast response: no dead time (what is dead time?) 

● Contain no dead material (what is dead material?) 

● However, practical limitations:  

● Technology, Space, Budget 
Dirk Wiedner 84 

End products: 
● charged particles 

● neural particles 

● photons 
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lifetime) 

● Fast response: no dead time (what is dead time?) 

● Contain no dead material (what is dead material?) 

● However, practical limitations:  

● Technology, Space, Budget 
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End products: 
● charged particles 

● neural particles 

● photons 



Particle Decay Signatures 
in Atlas 
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Particle Decay Signatures 
in Atlas 
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Particle Identification 
Methods 

Constituante Vertex Track PID Ecal Hcal Muon  

Electron Primary    - - 

Photon Primary - -  - - 

u, d, gluon Primary  -   - 

Neutrino - - - - - - 

s Primary     - 

c, b, tau Secondary     - 

Muon Primary  - MIP MIP  
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• PID = Particle ID (TOF, dE/dx) 
• MIP = Minimum Ionizing Particle 

 



Particle Detection  
Methods 

Signature Detector Type Particle 

Jet of hadrons Calorimeter, Tracking u, c, t  Wb, d, s, b, g 

Missing energy Calorimeter νe, νμ, ντ 

Electromagnetic shower EM Calorimeter e, γ 

Purely ionization 
interactions, dE/dx 

Muon absorber Μ, τμνμντ 

Life time, cτ ≥ 100 μm Si-Tracking b, c, τ  
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Quiz: Decays of a Z boson 
● Z bosons have a very short lifetime, decaying in ~10-27 s, so that:  

● only decay particles are seen in the detector.   

● By looking at these detector signatures, identify the daughters of the Z boson. 

 

 

 

 

 

                                                                     But some daughters can also decay: 

 

 

 

 

 

 

● More fun with Z bosons: http://opal.web.cern.ch/Opal/events/opalpics.html 
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Principles of a 
measurement 
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e- 

e- 
 

• The particle must interact with the detector material:  
o transfer directly or indirectly energy to the medium they are 

traversing  

o via ionization or excitation of its constituent atoms. 

• An effect of the interaction must be measured: 
o Ionization:     

 

 
o Excitation and scintillation: 

 
o Cerenkov radiation 

o Signals from electron-hole pairs (Si-detectors) 

• The particle may also be affected by the interaction: 
o energy loss, scattering and absorption 



Measurable Properties of 
particles 

• Production / passage of a particle 

• Four-Momentum of particle 

• Charge of particle 

• Lifetime of particle 
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How does one measure  
the Four-Momentum? 
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Magnetic field points 
 out of plane 

negative Charge 

positive Charge R1 

R2 

p2 

p1 

 p1< p2  R1 < R2 

q vT B = m vT
2/R 

q B R = m vT
 = pT 

Lorentz-Force 

• Energy:  

o with a "calorimeter" (see tomorrow) 

• Momentum: 

o with a "magnetic field + track detector" 



Tracking: 
Proportional Counters 
and Drift Chambers 
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Charged Particle Tracking 
• Two main types:  

o Gas wire chambers  

o Silicon 

• Innermost detectors:  
 precise tracking  use Si-Detectors! 

• Outer detectors:  
o silicon too expensive!  

o (not true for LHC-detectors also use silicon). 

• Basic design: ionization chamber with HV sense wire: 
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Amplification of 

103 - 105 in high 

field near wire 



Ionization Wire Chambers 

• Wire Chambers:  

o Most commonly used detection devices in high energy 

physics experiments. 

• The Basics of Wire Chambers: 

o Charged particles travels through a gas 

o Gas is ionized by the particle 

o Ionization drifts & diffuses in an electric field toward an 

electrode 

o Collection and amplification of anode signal charge 

 detectable signals 

o Measurement of points on trajectory determines p 
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Processes in Gases 
• When a charged particle passes through gases 

subject to an E field,  it loses energy by: 

o Elastic scattering (small) 

o Excitation: gas atoms/molecules 

o Excite then de-excite by γ emission 

o Ionization (most important) 

• Ionization:  

o One or more electrons are liberated from atoms of the 

medium,  

 leaving positive ions and electrons.  

o Energy imparted to atom exceeds ionization potential of 

gas. 
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Principle of Gas Detectors 
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Number of Ions v. Voltage 

Simplest case: Parallel plate capacitor 
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- 
+ 



Number of Ions v. Voltage 
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• Ionization chamber: 
o Voltage increased such 

that the charge arriving 
on plates =  

o charge formed 

• Proportional region: 
o Initial electrons 

accelerated enough to 
ionize more;  

o avalanche pulse 
proportional to primary 
ionization 

o reaches ~108 



Proportional Chambers 
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a 

b 

V0 

V=0 



Multi-wire Proportional 
Chambers 
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• MWPC invented by 

Charpak at CERN  

o Principle of proportional 

counter is extended to 

large areas: 

o Stack several wire planes 

up in different direction 

to get position location. 

 



Multi-wire Proportional 
Chambers 
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Avalanche developing 



Drift Chambers - Field 
Formation 
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Large Area Drift 
Chambers 

• The “open cell” drift chamber uses  

o field and sense wires:  

o field wires create shape of electric field,  

o sense wires detect time of arrival of pulse. 

• Position of particle: x = xwire + vdrift tdrift 
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Drift Chamber - 
Ambiguities 
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Drift Chamber - Jade 
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Drift Chamber - Jade 
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Drift Chamber - Jade 
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Drift Chamber - Jade 
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Segmented Silicon Diode Sensors for 

Particle Detection 

• For charged tracks 

resolution depend on: 

o segmentation pitch  

(strips, pixels) 

o charge sharing  (angle, 
B-field, diffusion) 

o S/N performance  of 

readout electronics 

o -rays 
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Segmented Silicon Diode Sensors for 

Particle Detection 
• Shared Charge collection 

on segmented electrodes 

due to: 

o Diffusion during drift time 

o Lorentz angle due to 

presence of B-field 

o Tilted tracks 

• Individual readout of 

charge signal on 

electrodes allows position 

interpolation that is better 

than pitch of 

segmentation. 
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Segmented Silicon Diode Sensors for 

Particle Detection 
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• Silicon microsrip 

detectors in HEP: 

• Strip pitch = 50μm 

• Position resolution 

~1.5μm achieved 



Charge collection 

• Electrons and holes  

o separated in the electric field 

and  

o collected on the implanted 

strips: 

 

o Electrons drift 10 ns 

o Holes drift 25 ns 

o Need high-purity silicon to 

avoid trapping. 
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Charge collection 
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• Position resolution:  
o 5-30 µm  

o for strip pitch of 50-100 µm  

o better with pulse-height 
interpolation 

• Silicon detectors are  
o fast and have  

o high resolution 

• Further readout electronics 
required to amplify the 
charge 
o Need many channels to cover 

large areas. 

 



From Strips to Pixels 
•  very high rate & high multiplicity   

• requires 2 D – segmentation of silicon sensors. 

•   connection to readout electronic chips !! 
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Micro strip Detectors                  Pixel Detectors 

LEP, HERA, Tevatron        105 increase     LHC 

1 D – connection 
   

   wire-bonding 

 

2 D – connection 
 

- bump-bonding   

- wafer bonding 

- 3D integration 

 



Particle / X-ray    Signal Charge  Electr. Amplifier   Readout   Digital Data 

Hybrid Pixel Detectors 
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CMS Pixel Detector 
for the Large Hadron 

Collider 

768 pixel modules    

~0.75 m2 
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48Mega Pixel Detector 
with 40 MHz Frame Rate 
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Cherenkov Radiation 
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See http://webphysics.davidson.edu/applets/applets.html for a nice illustration 

airplane passing  the sonic wall 

Event of Super Kamiokande 

A light cone, so called Cherenkov radiation is emitted  
• whenever charged particles pass through matter  
• with a velocity v exceeding the velocity of light in the medium. 
• Measure angle of light cone -> v of particle; Particle ID possible 



Application in 
Astroparticle Physics 

● Detection of high energetic γ's via Cherenkov light in the 
atmosphere 
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Hess telescope Magic telescope 

Event Display Magic 


