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The Standard Model  

● The SM: 

● world is made up of quarks 
and leptons  

● interacting by exchanging 
bosons 

 only photons directly visible 

● How do we see without 
seeing? 

● What makes Particle 
Detection possible? 
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Particle Reactions 
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• Idealistic View:  
o Elementary Particle Reaction 

• Usually cannot “see” the reaction itself 

• To reconstruct the  
o process and the  

o particle properties 

 need maximum information about 
end-products 
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Principle of an  

Elementary Particle Measurement 
• Need good:  

o Detectors  

o Triggers,  

o Readout  

 to reconstruct the mess. 

• Need good:  

o Analyzers  

 to put the raw data into 
a piece of physics. 
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Example of two Reactions 

Tracks in a Bubble Chamber  
(Bubble chambers are not used any more). 

Simulated Super LHC event.  
(People started to think about a LHC upgrade). 
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The decay products of elementary particle reactions can look very complicated! 
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Global Detector Systems 

• No single detector measures it all… 

 Create detector systems 
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• Overall design 

depends on: 

o Number of particles 

o Event topology 

o Momentum/energy 

o Particle identity 



Global Detector Systems 

Fixed Target Geometry Collider Geometry 
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•Limited solid angle dΩ coverage 

•Easy access (cables, maintenance) 
•Full” solid angle dΩ coverage 

•Very restricted access 



Ideal Detectors 

● An “ideal” particle detector would provide… 

● Coverage of full solid angle, no cracks, fine segmentation (why?) 

● Measurement of momentum and energy 

● Detection, tracking, and identification of all particles (mass, charge, 
lifetime) 

● Fast response: no dead time (what is dead time?) 

● Contain no dead material (what is dead material?) 

● However, practical limitations:  

● Technology, Space, Budget 
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End products: 
● charged particles 

● neural particles 

● photons 
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Individual Detector Types 
• Modern detectors consist of many different pieces of 

equipment to measure different aspects of an event. 

• Measuring a particle’s properties: 

o Position 

o Momentum 

o Energy 

o Charge 

o Type 
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Tracking 

Calorimeter 

Muon System 

p, 
920GeV 

e, 
27GeV 



Particle Decay Signatures 

• Particles are detected via their interaction with matter. 

• Many types of interactions are involved,  
o mainly electromagnetic.   

• In the end, always rely on ionization and excitation of matter. 
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Particle Decay Signatures 
in CMS 
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Particle Decay Signatures 
in CMS 
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Particle Decay Signatures 
in Atlas 
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Particle Decay Signatures 
in Atlas 
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Particle Identification 
Methods 

Constituante Vertex Track PID Ecal Hcal Muon  

Electron Primary    - - 

Photon Primary - -  - - 

u, d, gluon Primary  -   - 

Neutrino - - - - - - 

s Primary     - 

c, b, tau Secondary     - 

Muon Primary  - MIP MIP  
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• PID = Particle ID (TOF, dE/dx) 
• MIP = Minimum Ionizing Particle 

 



Particle Detection  
Methods 

Signature Detector Type Particle 

Jet of hadrons Calorimeter, Tracking u, c, t  Wb, d, s, b, g 

Missing energy Calorimeter νe, νμ, ντ 

Electromagnetic shower EM Calorimeter e, γ 

Purely ionization 
interactions, dE/dx 

Muon absorber Μ, τμνμντ 

Life time, cτ ≥ 100 μm Si-Tracking b, c, τ  
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Quiz: Decays of a Z boson 
● Z bosons have a very short lifetime, decaying in ~10-27 s, so that:  

● only decay particles are seen in the detector.   

● By looking at these detector signatures, identify the daughters of the Z boson. 

 

 

 

 

 

                                                                     But some daughters can also decay: 

 

 

 

 

 

 

● More fun with Z bosons: http://opal.web.cern.ch/Opal/events/opalpics.html 
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Principles of a 
measurement 
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e- 

e- 
 

• The particle must interact with the detector material:  
o transfer directly or indirectly energy to the medium they are 

traversing  

o via ionization or excitation of its constituent atoms. 

• An effect of the interaction must be measured: 
o Ionization:     

 

 
o Excitation and scintillation: 

 
o Cerenkov radiation 

o Signals from electron-hole pairs (Si-detectors) 

• The particle may also be affected by the interaction: 
o energy loss, scattering and absorption 



Measurable Properties of 
particles 

• Production / passage of a particle 

• Four-Momentum of particle 

• Charge of particle 

• Lifetime of particle 
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How does one measure  
the Four-Momentum? 
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Magnetic field points 
 out of plane 

negative Charge 

positive Charge R1 

R2 

p2 

p1 

 p1< p2  R1 < R2 

q vT B = m vT
2/R 

q B R = m vT
 = pT 

Lorentz-Force 

• Energy:  

o with a "calorimeter" (see tomorrow) 

• Momentum: 

o with a "magnetic field + track detector" 



Tracking: 
Proportional Counters 
and Drift Chambers 
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Charged Particle Tracking 
• Two main types:  

o Gas wire chambers  

o Silicon 

• Innermost detectors:  
 precise tracking  use Si-Detectors! 

• Outer detectors:  
o silicon too expensive!  

o (not true for LHC-detectors also use silicon). 

• Basic design: ionization chamber with HV sense wire: 
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Amplification of 

103 - 105 in high 

field near wire 



Ionization Wire Chambers 

• Wire Chambers:  

o Most commonly used detection devices in high energy 

physics experiments. 

• The Basics of Wire Chambers: 

o Charged particles travels through a gas 

o Gas is ionized by the particle 

o Ionization drifts & diffuses in an electric field toward an 

electrode 

o Collection and amplification of anode signal charge 

 detectable signals 

o Measurement of points on trajectory determines p 
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Processes in Gases 
• When a charged particle passes through gases 

subject to an E field,  it loses energy by: 

o Elastic scattering (small) 

o Excitation: gas atoms/molecules 

o Excite then de-excite by γ emission 

o Ionization (most important) 

• Ionization:  

o One or more electrons are liberated from atoms of the 

medium,  

 leaving positive ions and electrons.  

o Energy imparted to atom exceeds ionization potential of 

gas. 
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Principle of Gas Detectors 
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Number of Ions v. Voltage 

Simplest case: Parallel plate capacitor 
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Number of Ions v. Voltage 
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• Ionization chamber: 
o Voltage increased such 

that the charge arriving 
on plates =  

o charge formed 

• Proportional region: 
o Initial electrons 

accelerated enough to 
ionize more;  

o avalanche pulse 
proportional to primary 
ionization 

o reaches ~108 



Proportional Chambers 
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a 

b 

V0 

V=0 



Multi-wire Proportional 
Chambers 

Dirk Wiedner 34 

• MWPC invented by 

Charpak at CERN  

o Principle of proportional 

counter is extended to 

large areas: 

o Stack several wire planes 

up in different direction 

to get position location. 

 



Multi-wire Proportional 
Chambers 
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Avalanche developing 



Drift Chambers - Field 
Formation 
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Large Area Drift 
Chambers 

• The “open cell” drift chamber uses  

o field and sense wires:  

o field wires create shape of electric field,  

o sense wires detect time of arrival of pulse. 

• Position of particle: x = xwire + vdrift tdrift 
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Drift Chamber - 
Ambiguities 
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Drift Chamber - Jade 
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Drift Chamber - Jade 
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Drift Chamber - Jade 
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Drift Chamber - Jade 
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Segmented Silicon Diode Sensors for 

Particle Detection 

• For charged tracks 

resolution depend on: 

o segmentation pitch  

(strips, pixels) 

o charge sharing  (angle, 
B-field, diffusion) 

o S/N performance  of 

readout electronics 

o -rays 
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Segmented Silicon Diode Sensors for 

Particle Detection 
• Shared Charge collection 

on segmented electrodes 

due to: 

o Diffusion during drift time 

o Lorentz angle due to 

presence of B-field 

o Tilted tracks 

• Individual readout of 

charge signal on 

electrodes allows position 

interpolation that is better 

than pitch of 

segmentation. 
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Segmented Silicon Diode Sensors for 

Particle Detection 
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• Silicon microsrip 

detectors in HEP: 

• Strip pitch = 50μm 

• Position resolution 

~1.5μm achieved 



Charge collection 

• Electrons and holes  

o separated in the electric field 

and  

o collected on the implanted 

strips: 

 

o Electrons drift 10 ns 

o Holes drift 25 ns 

o Need high-purity silicon to 

avoid trapping. 
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Charge collection 
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• Position resolution:  
o 5-30 µm  

o for strip pitch of 50-100 µm  

o better with pulse-height 
interpolation 

• Silicon detectors are  
o fast and have  

o high resolution 

• Further readout electronics 
required to amplify the 
charge 
o Need many channels to cover 

large areas. 

 



From Strips to Pixels 
•  very high rate & high multiplicity   

• requires 2 D – segmentation of silicon sensors. 

•   connection to readout electronic chips !! 
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Micro strip Detectors                  Pixel Detectors 

LEP, HERA, Tevatron        105 increase     LHC 

1 D – connection 
   

   wire-bonding 

 

2 D – connection 
 

- bump-bonding   

- wafer bonding 

- 3D integration 

 



Particle / X-ray    Signal Charge  Electr. Amplifier   Readout   Digital Data 

Hybrid Pixel Detectors 
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CMS Pixel Detector 
for the Large Hadron 

Collider 

768 pixel modules    

~0.75 m2 
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48Mega Pixel Detector 
with 40 MHz Frame Rate 
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Cherenkov Radiation 
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See http://webphysics.davidson.edu/applets/applets.html for a nice illustration 

airplane passing  the sonic wall 

Event of Super Kamiokande 

A light cone, so called Cherenkov radiation is emitted  
• whenever charged particles pass through matter  
• with a velocity v exceeding the velocity of light in the medium. 
• Measure angle of light cone -> v of particle; Particle ID possible 



Application in 
Astroparticle Physics 

● Detection of high energetic γ's via Cherenkov light in the 
atmosphere 
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Hess telescope Magic telescope 

Event Display Magic 



Some Literature 

● Web: 

● The Particle Detector BriefBook: 
http://rkb.home.cern.ch/rkb/PH14pp/node1.html   

● (there is also a  Data Analysis BriefBook) 

● http://pdg.lbl.gov/ --> Summary and Reviews 

● Lectures: 

● http://wwwhephy.oeaw.ac.at/p3w/halbleiter/VOTeilchendetekto
ren.html 

● http://www.kip.uni-heidelberg.de/~coulon/Lectures/Detectors/ 

● http://www.desy.de/~blist/vl-detektor-ws07/ 

● www.physics.ucdavis.edu/Classes/Physics252b/Lectures/252b_lect
ureXX.ppt  XX = 1,2,3,4 

● Script: 

● http://www.physik.tu-dortmund.de/E5/E5-alt-
alt/index.php?content=25&lang=de 
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More Literature 
• Text books: 

• C.Grupen: Particle Detectors, Cambridge UP 22008, 680p 

• D.Green: The physics of particle Detectors, Cambridge UP 2000 

• K.Kleinknecht: Detectors for particle radiation, Cambridge UP, 21998 

• W.R. Leo: Techniques for Nuclear and Particle Physics Experiments, 
Springer 1994 

• G.F.Knoll: Radiation Detection and Measurement, Wiley, 32000 

• W.Blum, L.Rolandi: Particle Detection with Driftchambers, Springer, 1994 

• G.Lutz: Semiconductor radiation detectors, Springer, 1999 

• R. Wigmans: Calorimetry, Oxford Science Publications, 2000 

• Review articles: 

• T.Ferbel (ed): Experimental Techniques in High Energy Physics, Addison-Wesley 
1987 

• Web: 

• Particle Data Group:       Review of Particle Properties: pdg.lbl.gov 
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