

Modern Methods of Data Analysis

Lecture VII (26.11.07)

Contents:

• Maximum Likelihood (II)

Modern Methods of Data Analysis - WS 07/08

Stephanie Hansmann-Menzemer

Exercise: Quality of Estimators

- Assume hight of students is Gaussian distributed. You measure the size of N students. Which of the following estimators is a) consistent? b) unbiased?
 c) efficient?
- 1) Add all measurements, divide by N
- 2) Add the first 10 measurements, divide by 10
- 3) Add all measurements, divide by N-1
- 4) Assume 1.8 m
- 5) Add smallest & largest meas., divide by 2
- 6) Add every second measurement, divide by N/2

Re: Maximum Likelihood (I)

- N independent measurements of a random variable x_i distributed according to f(x|a), with unknown parameter a
- Want to get the best estimate \hat{a} for the true parameter a.
- Likelihood = joint probability:

$$L(a) = \prod_{i=1}^n f(x_i|a)$$

- According to the ML principle the best estimation of a is the value \hat{a} which maximizes L(a), i.e., which maximizes the probability to obtain the observed data
- The maximum is computed by $\ \ dL(a)/da = 0$
- \hat{a} is an efficient (often biased but consistent) estimator

Exercise

 If you have two independent measurements of equal accuracy, one of sinΘ and one of cosΘ, find the ML estimate of Θ.

Error on Estimate (I)

• Evolve (negative) Log-Likelihood around $a = \hat{a}$

$$-\ln L(a) = -\ln L(\hat{a}) - \frac{d\ln L}{a}_{a=\hat{a}}(a-\hat{a}) - \frac{1}{2}\frac{d^2\ln L}{da^2}_{a=\hat{a}}(a-\hat{a})^2 + \dots$$
$$-\ln L(a) \approx -\ln L(\hat{a}) - \frac{1}{2}\frac{d^2\ln L}{da^2}_{a=\hat{a}}(a-\hat{a})^2$$

 $L(a) \approx const * e^{\frac{1}{2} \frac{d^2 \ln L}{da^2} (a - \hat{a})^2} L(a)$ is Gaussian distributed!

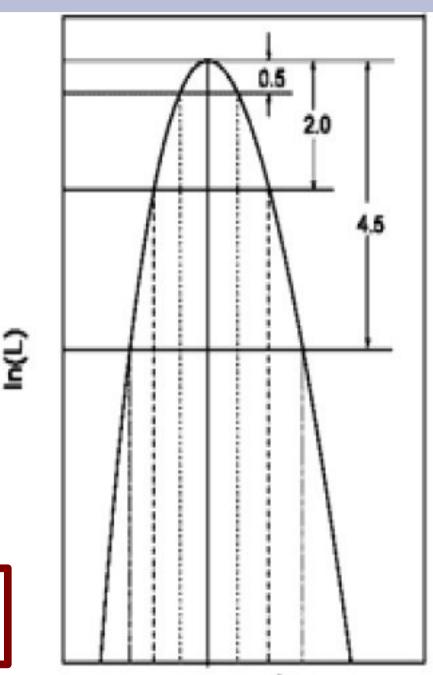
$$\sigma^{2} = \frac{d^{2} \ln L}{da^{2}}_{a=\hat{a}} - \ln L(\hat{a} \pm n\sigma) = -\ln L(\hat{a}) + \frac{1}{2}n^{2}$$

Error on Estimate (II)

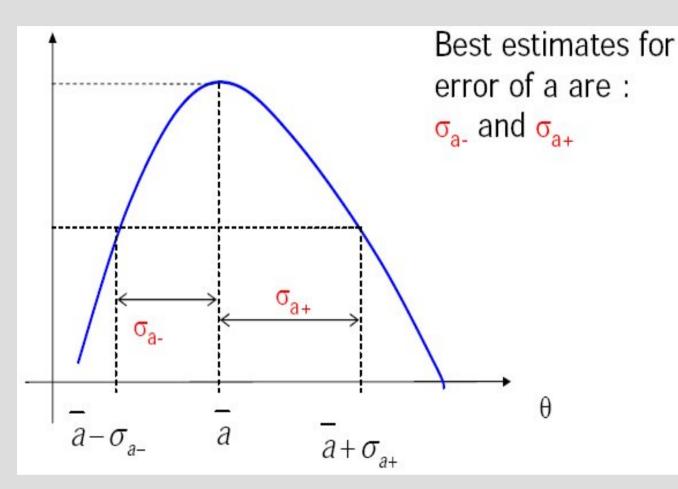
- This means Log-Likelihood decreases
 - for $\pm 1\sigma$ by ± 0.5
 - for $\pm 2\sigma$ by ± 2.0
 - for $\pm 3\sigma$ by ± 4.5
- in case of too small n, Log-Likelihood is not parabola, but rather asymmetric
 - quote asymmetric uncertainties

$$-\ln L(\hat{a}\pm n\sigma)=-\ln L(\hat{a})+rac{1}{2}n^2$$

Modern Methods of Data Analysis - WS 07/08



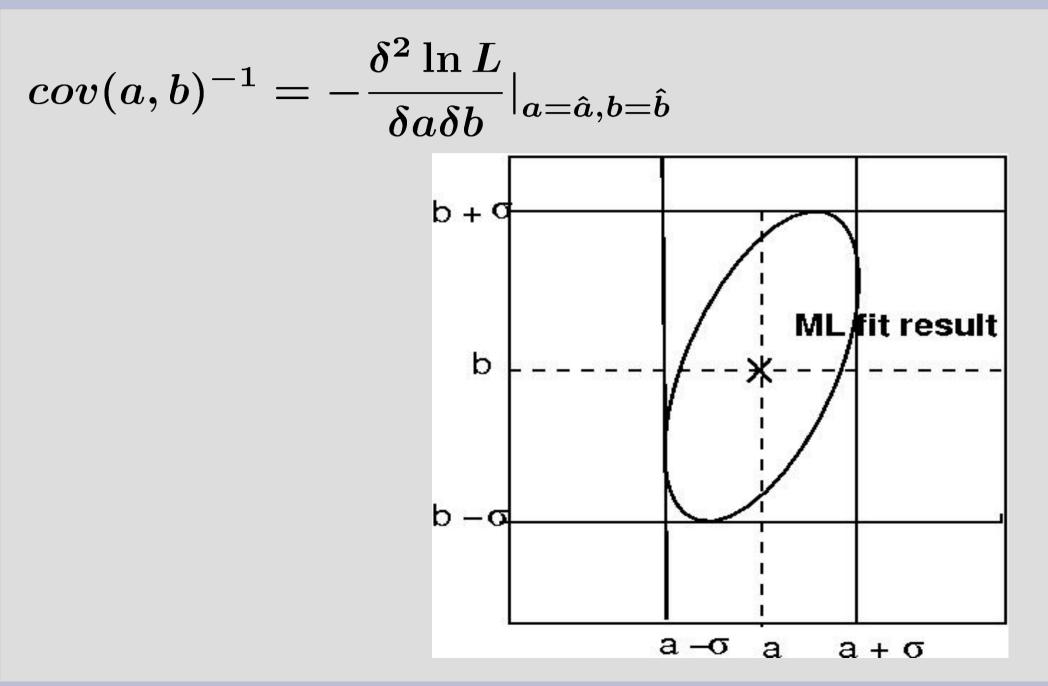
Error on Estimate (III)



Idea: There is some transformation to make log L parabolic. Due to Invariance of log L definition for 1,2,3 σ are still valid.

For non parabolic distribution the 2σ interval is not necessarily twice as large as the 1σ interval!

Error Estimate for Multiple Parameters



Stephanie Hansmann-Menzemer

Error on Estimate (IV)

- In many not-so-easy cases, a Monte Carlo based Method is used:
 - simulate with a toy-MC the experimental measurements many times (use realistic resolutions etc.)
 - As a true value for parameter a in the MCs, \hat{a} obtained from data is a sensible choice.
 - determine in every pseudo-experiment i the estimator \hat{a}_{i}
 - determine the sample variance of \hat{a} from the many pseudo-experiments
 - this also can be used to check/correct for bias

Example: Signal Enhancement (I)

 Search for special events in two independent channels, uncertainties on expected numbers due to limited MC sample for study (pure statistical)

channel	meas n_i	expected (total)	signal S	background B
a	6	1.1±0.3	0.9±0.3	0.2±0.1
b	24	28.0±6.0	4.0±0.6	24.0±6.0

Model includes factor f: $\mu_i = fS_i + B_i$

Question: Are both measurements compatible with f=1, which is standard expectation from theory?

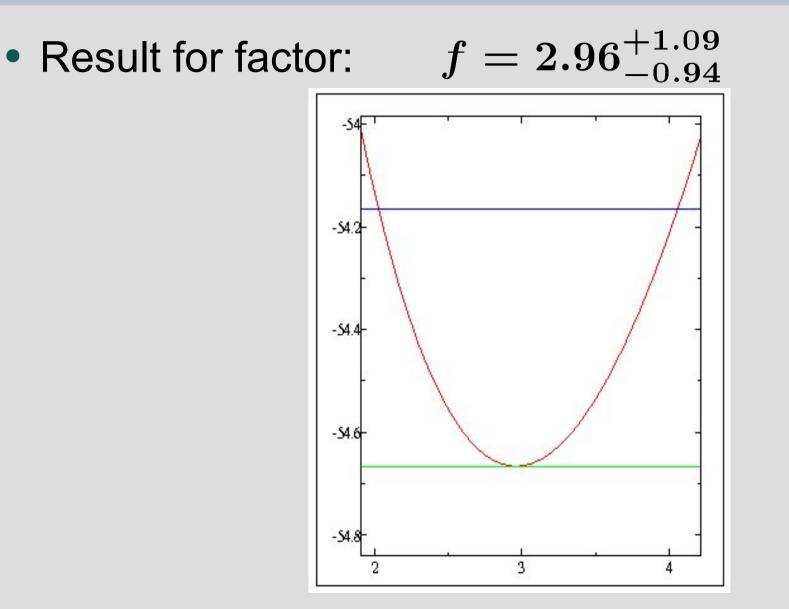
Signal Enhancement (II)

- Use ML method to obtain best estimate for factor f from all data!
- Assume Poisson distribution of data n_i with mean values given by theory model:

$$L(f) = P(n_1|\mu_1)P(n_2|\mu_2) = \frac{e^{-\mu_1}\mu_1^{n_1}}{n_1!} \frac{e^{-\mu_2}\mu_2^{n_2}}{n_2!}$$

$$F = -\ln(L(f)) = \sum_{i=1}^{2} (\mu_i - n_i \ln \mu_i) + const$$

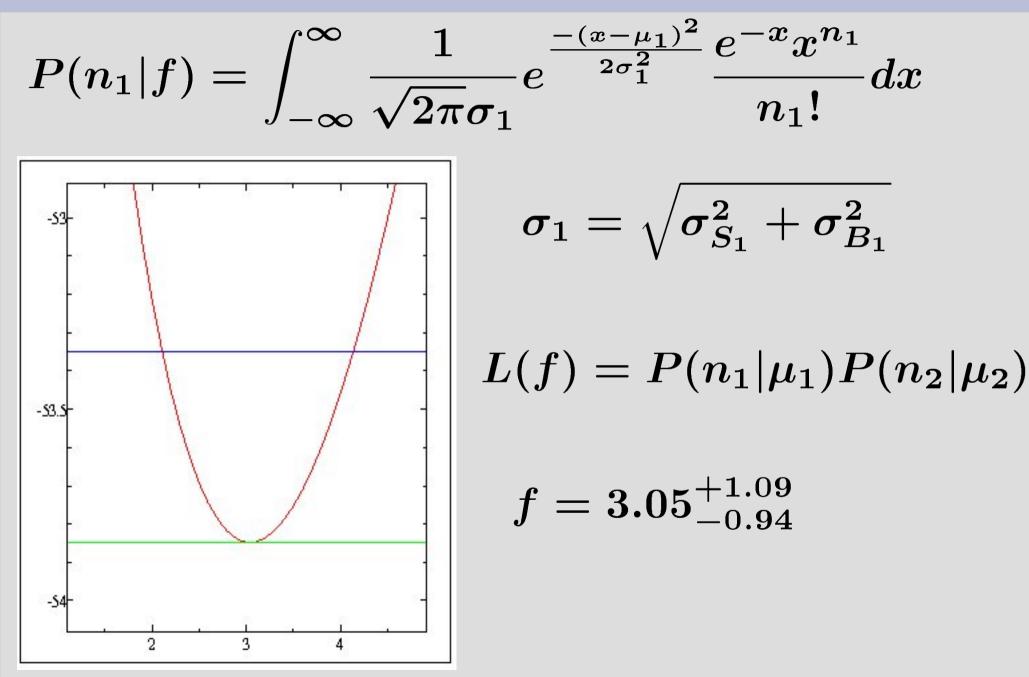
Signal Enhancement (III)



Note: statistical fluctuations for model predictions ignored

Modern Methods of Data Analysis - WS 07/08

Signal Enhancement (III)



Modern Methods of Data Analysis - WS 07/08

Combination of Measurements with LH

 first experiment measure x_i with pdf f(x|a), second experiment measures y_i with pdf g(y|a). Functions f and g can be different but have to depend on same true parameter a:

$$L(a) = \prod_{i=1}^{n} f(x_i|a) \prod_{i=1}^{m} g(y_i|a) = L_x(a) * L_y(a)$$

- combined likelihood is product of single likelihoods.
- alternatively: $\ln L(a) = \ln L_x(a) + \ln L_y(a)$
- often used to combined complex analysis from two different experiments (example later)

Extended Maximum Likelihood (I)

random variable x distributed according to f(x,Θ),
 θ = (θ₁, ..., θ_m). Often number of observed events
 n is itself a Poisson random variable with mean
 value v.

$$L(\nu,\theta) = \frac{\nu^n}{n!} e^{-\nu} \prod_{i=1}^n f(x_i,\theta) = \frac{e^{-\nu}}{n!} \prod_{i=1}^n \nu f(x_i,\theta)$$

This is called extended Likelihood function.

$$\ln L(\nu, \theta) = -\nu(\theta) + \sum_{i} \ln[v(\theta)f(x_i, \theta)] + const$$

v is independent of Θ
 v is a function of Θ

Extended Maximum Likelihood (II)

• v is independent of Θ : $\frac{d \ln L}{d\nu} = -1 + \sum_{i} \frac{1}{\nu} \rightarrow \hat{\nu} = n$

 $\frac{d\ln L}{d\theta}$: same as normal LH

v depend on Θ: E.g. measurement of angular distribution, which depend on mass of particle. Number of observed events is function of cross section which depend as well on mass of particle. Adding v as measurement to LH improves resolution on Θ (on mass), additional information is used!

Binned Maximum Likelihood (I)

- For very large data samples, the log-likelihood function becomes difficult to compute
- Compute the number of expected entries in a bin $\int_{x_{max}}^{x_{max}} dx = 0$

$$\nu_i(\theta) = n_{tot} \int_{x_{min,i}} f(x,\theta) dx$$

$$f(n,\nu) = \frac{n_{tot}!}{n_1!...n_N!} \left(\frac{\nu_1}{n_{tot}}\right)^{n_1} \dots \left(\frac{\nu_N}{n_{tot}}\right)^{n_N}$$

$$\ln(L(\theta)) = \sum_{i=1}^N n_i \ln \nu_i(\theta) + const$$

- Uncertainties are $i = \frac{1}{2} \frac{1}{2}$ by larger than in unbinned fit
- limit of very small bins -> unbinned fit -> no problems with low number of entries

Binned Maximum Likelihood (II)

• One may regard the total number of entries n_{tot} as random variable from a Poisson distribution with mean ν_{tot} .

$$\begin{split} f(n,\nu) &= \frac{\nu_{tot}^{n} e^{-\nu_{tot}}}{n_{tot}!} \frac{n_{tot}!}{n_{1}!...n_{N}!} \left(\frac{\nu_{1}}{\nu_{tot}}\right)^{n_{1}} \dots \left(\frac{\nu_{N}}{\nu_{tot}}\right)^{n_{N}} \\ \text{mit} \quad \nu_{tot} &= \sum_{i=1}^{N} \nu_{i}, \ n_{tot} = \sum_{i=1}^{N} n_{i} \\ f(n,\nu) &= \prod_{i=1}^{N} \frac{\nu_{i}^{n_{i}}}{n_{i}!} e^{-\nu_{i}} \\ \nu_{i}(\nu_{tot},\theta) &= \nu_{tot} \int_{x_{min}}^{x_{max}} f(x,\theta) dx \end{split}$$

Binned Maximum Likelihood (III)

 Independent Poisson distribution of each bin or Poisson distribution of overall number of entries plus multinomial distribution!

$$\ln L(\nu_{tot}, \theta) = -\nu_{tot} + \sum_{i=1}^{N} n_i \ln \nu_i(\nu_{tot}, \theta)$$

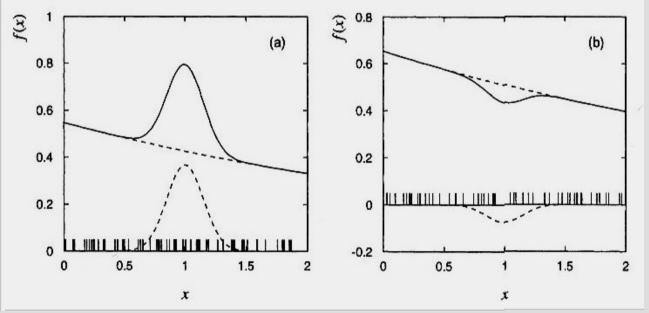
• This is extended LH for binned case. As before: if there is any relation between $\nu_{tot} \& \theta$ uncertainties on θ get smaller, otherwise best estimator for $\nu_{tot} = n_{tot}$. Uncertainties on θ stay the same.

Signal to Background

 Likelihood often sum of two or more components (signal + background)

 $L(\theta) = \theta * f_S(x) + (1 - \theta) * f_B(x)$

• e.g. toy MC with 6 signal & 60 background events



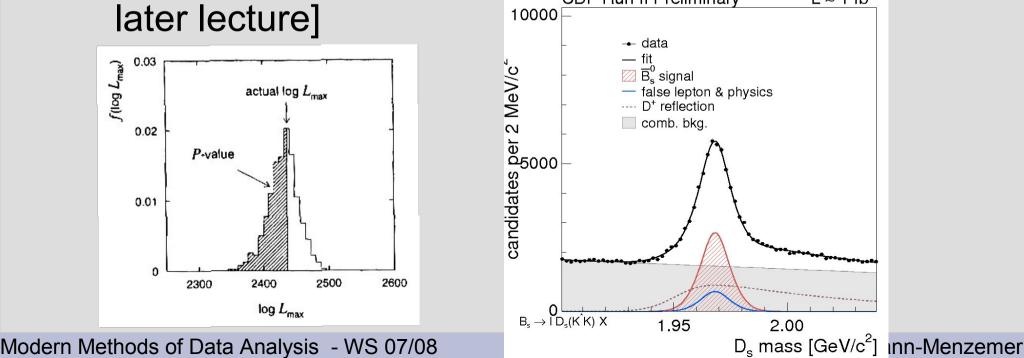
Although negative number of # signal unphysical, need to use them, when combining with other experiments otherwise bias.

Modern Methods of Data Analysis - WS 07/08

Stephanie Hansmann-Menzemer

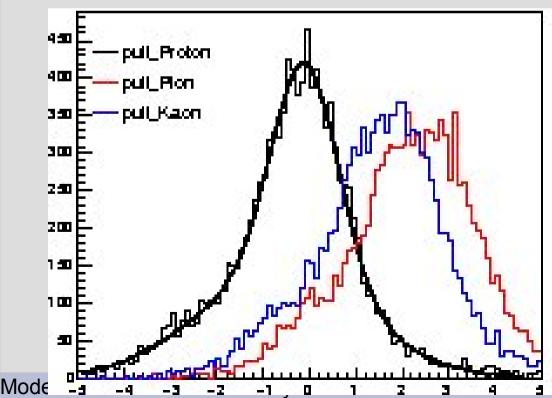
Goodness of Fit

- LH does not provide any information on the Goodness of the fit.
- This has to be checked separately.
 - e.g. simulate toy MC according to estimated pdf (using fit results from data as "true" parameter values) compare max Likelihood value in toy to the one in data
 - draw data in (binned) histogram, "compare" distribution with result of LH fit. [Methods to quantify agreement in



Likelihood Ratio

- Observed stable particle has to be kaon, pion or proton. One of the hypothesis has to be true
 -> which one is the most likely one.
- The relative probability for proton is given by:
 - L(data| proton)/L(data/proton or pion or kaon)
 - be aware of a priori probabilities



It is crucial to well describe tails in the distribution!

Exercise: Throwing a Coin

- There are two type of coins, which are not distinguishable from looking at them
 - Type 1: p(head) = 0.9, p(number) = 0.1
 - Type 2: p(head) = 0.1, p(number) = 0.9
- Throwing 10 times the coin give 6 times head and 4 times number
- If you don't know anything about the properties of the coin before, what is the best estimator for p using ML?
- Is the result of the experiment consistent with any of the two type of coins?
- Compute the Likelihood ratio of L(Type1)/L(Type2).

Comments (I)

- Advantages
 - no binning needed, retains full information
 - also possible with binned data, no problem with zero entries
 - good method to combine results from different experiments (simply add the log-likelihood functions)
- ML estimates are
 - Gaussian for large N
 - consistent (asymptotically unbiased), i.e. bias disappears for large n
 - efficient, reaching the minimal variance bound
- this is why ML is very popular!

Comments (II)

- Disadvantages:
 - can be extremely CPU-time consuming for large sample
 - Need to know pdf f(x|a), but often pdf very complicated or actually not known
 - no general way to estimate "goodness of fit"
 - compare simply fitted pdf with data distributions
 - perform MC experiments to get distrib. of L(max)
 - for smaller n, there is generally a bias. Important to study ML behavior in toy-MC and correct for bias
 - ML method requires normalization of f(x|a). This has to be done at every step in the minimization/maximization. Programs like MINUIT are doing this numerically (CPU intense).