Particle Physics WS 2012/13 (7.12.2012)

Stephanie Hansmann-Menzemer

Physikalisches Institut, INF 226, 3.101

Content of Today

> Feynman-Rules for Strong IA and Colour Factors
$>$ Strong IA potential
$>$ Experimental Test of QCD
> Observation of Gluon
$>$ Measurement of spin of the gluon
$>$ Test of $\operatorname{SU}(3)_{C}$ structure of strong IA
$>$ Running of strong IA constant α_{s}

SU(3) Color

physics is invariant under rotation in color space red, green and blue quarks are not distinguishable This is an exact symmetry!

$$
\left(\begin{array}{l}
R^{\prime} \\
G^{\prime} \\
B^{\prime}
\end{array}\right)=U\left(\begin{array}{l}
R \\
G \\
B
\end{array}\right)
$$

	octett state	color neutral
color	anti-color	carry color

It is believed (though not yet proven) that all free particles are colour neutral . neutral $=$ symmetric under rotation in colour space $\left(Y_{c}=I_{3}=0\right.$ is not sufficient!)
Colour wave function of mesons: $\psi_{\mathrm{C}}=\frac{1}{\sqrt{3}}(\mathrm{r} \bar{r}+g \bar{g}+b \bar{b})$
Gluons consists of a combination of colour and anticolour, and have net color. Gluons are represented by octett state.

Gell-Mann Matrices can be "associated" to Gluons!

Color SU(3): Quark states

$$
R=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \quad G=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), \quad B=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

$$
\begin{array}{ll}
R \leftrightarrow G & \lambda_{1}=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \quad \lambda_{2}=\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \quad \lambda_{3}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right) \quad \begin{array}{c}
\mathrm{T}_{ \pm}=1 / 2\left(\lambda_{1} \pm \mathrm{i} \lambda_{2}\right) \\
R \leftrightarrow B
\end{array} \\
\lambda_{4}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right) \quad \lambda_{5}=\left(\begin{array}{ccc}
0 & 0 & -i \\
0 & 0 & 0 \\
i & 0 & 0
\end{array}\right) \quad \mathrm{V}_{ \pm}=1 / 2\left(\lambda_{4} \pm \mathrm{i} \lambda_{5}\right) & \mathrm{r} \bar{b}-g \bar{g}) \\
B \leftrightarrow G & \lambda_{6}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \quad \lambda_{7}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -i \\
0 & i & 0
\end{array}\right) \quad \mathrm{U}_{ \pm}=1 / 2\left(\lambda_{6} \pm \mathrm{i} \lambda_{7}\right)
\end{array}
$$

$$
\lambda_{8}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -2
\end{array}\right)
$$

$$
\frac{1}{\sqrt{6}}(r \bar{r}+g \bar{g}-2 \bar{b} b)
$$

conservation of color at each vertex

$q(b)$

Symmetries define Interactions

Lagrangian must reflect the invariance of the symmetry transformation. The Lagrangian of the free fermion ($\mathrm{L}=\mathrm{i} \bar{\psi} \gamma^{\mu} \partial_{\mu} \psi-\mathrm{m} \bar{\psi} \psi$) is not invariant under any symmetry, thus need to add IA terms.
The Lagrangian defines the IA. To each Lagrangian, there correpsonds a set of Feynman rules.
two transformation commute

Introduce 1 photon field A to get invariant Lagrangian

$$
\mathrm{L}=, „ \bar{\psi} \psi^{\prime}+, \ldots \mathrm{e} \bar{\psi} \psi A^{\prime \prime}+\mathrm{A}^{2 "}
$$

QCD: SU(3)

$$
U=e^{i \overrightarrow{\alpha(x) \vec{\lambda}}} \quad \lambda_{i} ; i=1,2, \ldots, 8
$$

two transformation in genreral do not commute
introduce 8 gluon fields G_{i} to get invariant Lagrangian

free fermion IA kinematic energy of gluon fields

$$
\mathrm{L}=\mathrm{i} \bar{\psi} \gamma^{\mu} \partial_{\mu} \psi-\mathrm{m} \bar{\psi} \psi-g_{s}\left(\bar{\psi} \gamma^{\mu} T_{a} \psi\right) G_{\mu}{ }^{a}-\frac{1}{4} G_{\mu \nu}{ }^{a} G_{a}{ }^{\mu \nu}
$$

The Quark-Gluon Interaction

Particle wave functions $\psi(x)=u(x) e^{-i p x} \quad \rightarrow c_{j} u(x) e^{-i p x}$
$\mathrm{c}_{1}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right) \quad \mathrm{c}_{2}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right) \quad \mathrm{c}_{3}=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$
colour part of the fermion wave-function

Interaction term:

$$
g_{s}\left(\bar{\psi} \gamma^{\mu} T_{a} \psi\right) G_{\mu}{ }^{a}
$$ vertex factor part of propagator

	vertex factor: $\quad \overline{u\left(p_{3}\right)} c_{j}^{\dagger}\left(-1 / 2\right.$ i $\left.g_{s} \lambda^{a} \nu^{\mu}\right) c_{i} u\left(p_{1}\right)$ isolating the colour part: $\mathrm{c}_{\mathrm{j}}{ }^{\dagger} \lambda^{\mathrm{a}} \mathrm{c}_{\mathrm{i}}=\lambda_{\mathrm{ji}}{ }^{a}$ vertex factor: $\quad \overline{u\left(p_{3}\right)}\left(-1 / 2\right.$ i $\left.\mathrm{g}_{\mathrm{s}} \lambda_{\mathrm{ji}}{ }^{\mathrm{a}} \boldsymbol{\gamma}^{\mu}\right) \mathrm{u}\left(\mathrm{p}_{1}\right)$	$\frac{\stackrel{n}{0}}{\frac{0}{0}}$

	vertex factor: $\quad \overline{v\left(p_{1}\right)} \mathrm{c}_{\mathrm{i}}{ }^{\dagger}\left(-1 / 2\right.$ i $\left.\mathrm{g}_{\mathrm{s}} \lambda^{\mathrm{a}} \nu^{\mu}\right) \mathrm{c}_{\mathrm{j}} \mathrm{v}\left(\mathrm{p}_{3}\right)$ isolating the colour part: $c_{i}{ }^{+} \lambda^{a} c_{j}=\lambda_{i j}{ }^{a}$ vertex factor: $\quad \overline{v\left(p_{1}\right)}\left(-1 / 2\right.$ i $\left.g_{s} \lambda_{\mathrm{ij}}{ }^{\mathrm{a}} \nu^{\mu}\right) \mathrm{v}\left(\mathrm{p}_{3}\right)$	

Feynman Rules for QCD

External Lines
spin Lines $1 / 2 \begin{cases}\text { incoming quark } & u(p) \\ \text { outgoing quark } & \bar{u}(p) \\ \text { incoming anti-quark } & \bar{v}(p) \\ \text { outgoing anti-quark } & v(p)\end{cases}$
spin 1 $\begin{cases}\text { incoming gluon } & \varepsilon^{\mu}(p) \\ \text { outgoing gluon } & \varepsilon^{\mu}(p)^{*}\end{cases}$
$\frac{-i g_{\mu \nu}}{q^{2}} \delta^{a b}$
$a, b=1,2, \ldots, 8$ are gluon colour indices

Vertex Factors

spin $1 / 2$ quark

$$
-i g_{s} \frac{1}{2} \lambda_{j i}^{a} \gamma^{\mu}
$$

$\mathrm{i}, \mathrm{j}=1,2,3$ are quark colours, $\lambda^{a} \quad a=1,2, . .8$ are the Gell-Mann $\operatorname{SU}(3)$ matrices
+3 gluon and 4 gluon interaction vertices
Matrix Element $-i M=$ product of all factors

Matrix Element for Quark-Quark Scattering

coulor indices: $\mathrm{i}, \mathrm{j}, \mathrm{k}, \mathrm{l}$
In this example the colour flow $\mathrm{ik} \rightarrow \mathrm{jl}$
a, b are the gluon index. $\delta_{a b}$ ensures that $a=b$, same gluon is „emitted" at a and „absorbed" at b

$$
\left.\mathrm{iM}=\left[\overline{u\left(p_{3}\right)}\left(\frac{1}{2} g_{s} \lambda_{j i}{ }^{a} \gamma^{\mu}\right) u\left(p_{1}\right)\right] \frac{-i g^{\mu \nu} \delta^{a b}}{q^{2}}\left[\overline{u\left(p_{4}\right)}\left(\frac{1}{2} g_{s} \lambda_{l k}{ }^{b} \gamma^{v}\right) u\left(p_{2}\right)\right]\right]
$$

where summing over a, b and μ, v is implied.
$\left.\mathrm{M}=-\frac{g_{s}^{2}}{4} \lambda_{\mathrm{ji}}{ }^{\mathrm{a}} \lambda_{\mathrm{Ik}}{ }^{\mathrm{a}} \frac{1}{q^{2}}{ }^{\mathrm{g}}{ }^{\mu \nu}\left[\overline{u\left(p_{3}\right)} \gamma^{\mu} u\left(p_{1}\right)\right]\left[\overline{u\left(p_{4}\right)} \gamma^{\nu} u\left(p_{2}\right)\right]\right]$

QCD vs. QED

QED matrix element:

$$
\left.\mathrm{M}=-\mathrm{e}^{2} \frac{1}{q^{2}} g^{\mu \nu}\left[\overline{u\left(p_{3}\right)} \gamma^{\mu} u\left(p_{1}\right)\right]\left[\overline{u\left(p_{4}\right)} \gamma^{\nu} u\left(p_{2}\right)\right]\right]
$$

$$
\mathrm{e}^{2} \rightarrow \mathrm{~g}_{\mathrm{s}}{ }^{2} \quad \alpha^{2}=\frac{e^{2}}{4 \pi} \rightarrow \alpha_{\mathrm{s}}{ }^{2}=\frac{g_{s}^{2}}{4 \pi}
$$

+ add. color factor $C(i k \rightarrow j)=\frac{1}{4} \sum \lambda_{\mathrm{ji}} \lambda_{1 \mathrm{k}}{ }^{\mathrm{a}}$

QCD matrix element:

$$
\mathrm{M}=-\frac{g_{\mathrm{s}}^{2}}{4} \lambda_{\mathrm{ji}}^{\mathrm{a}} \lambda_{\mathrm{lk}^{\mathrm{a}}}^{q^{2}} g^{\mu \nu}\left[\overline{u\left(p_{3}\right)} \gamma^{\mu} u\left(p_{1}\right)\right]\left[\overline{u\left(p_{4}\right)} \gamma^{\nu} u\left(p_{2}\right)\right]
$$

Evaluation of QCD Colour Factors

- QCD colour factors reflect the gluon states that are involved

$\lambda^{1}=\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$	$\lambda^{4}=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0\end{array}\right)$	$\lambda^{6}=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)$	$\lambda^{3}=\left(\begin{array}{rrr}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0\end{array}\right)$
$\lambda^{2}=\left(\begin{array}{rrr}0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$	$\lambda^{5}=\left(\begin{array}{rrr}0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0\end{array}\right)$	$\lambda^{7}=\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0\end{array}\right)$	$\lambda^{8}=\frac{1}{\sqrt{3}}\left(\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2\end{array}\right)$
Gluons: $r \bar{g}, g \bar{r}$	$r \bar{b}, b \bar{r}$	$g \bar{b}, b \bar{g}$	$\frac{1}{\sqrt{2}}(r \bar{r}-g \bar{g})$
$\frac{1}{\sqrt{6}}(r \bar{r}+g \bar{g}-2 b \bar{b})$			

(1) Configurations involving a single colour

- Only matrices with non-zero entries in 11 position are involved

$$
\begin{aligned}
C(r r \rightarrow r r) & =\frac{1}{4} \sum_{a=1}^{8} \lambda_{11}^{a} \lambda_{11}^{a}=\frac{1}{4}\left(\lambda_{11}^{3} \lambda_{11}^{3}+\lambda_{11}^{8} \lambda_{11}^{8}\right) \\
& =\frac{1}{4}\left(1+\frac{1}{3}\right)=\frac{1}{3}
\end{aligned}
$$

Similarly find

$$
C(r r \rightarrow r r)=C(g g \rightarrow g g)=C(b b \rightarrow b b)=\frac{1}{3}
$$

Evaluation of QCD Colour Factors

2 Other configurations where quarks don't change colour
 e.g. $r b \rightarrow r b$

- Only matrices with non-zero entries in 11 and 33 position are involved

$$
\begin{aligned}
C(r b \rightarrow r b) & =\frac{1}{4} \sum_{a=1}^{8} \lambda_{11}^{a} \lambda_{33}^{a}=\frac{1}{4}\left(\lambda_{11}^{8} \lambda_{33}^{8}\right) \\
& =\frac{1}{4}\left(\frac{1}{\sqrt{3}} \cdot \frac{-2}{\sqrt{3}}\right)=-\frac{1}{6}
\end{aligned}
$$

Similarly $\quad C(r b \rightarrow r b)=C(r g \rightarrow r g)=C(g r \rightarrow g r)=C(g b \rightarrow g b)=C(b r \rightarrow b r)=C(b g \rightarrow b g)=-\frac{1}{6}$
3 Configurations where quarks swap colours e.g. $r g \rightarrow g r$

$$
\begin{aligned}
& \xrightarrow{r} \quad \text {-Only matrices with non-zero entries in } 12 \text { and } 21 \text { position } \\
& \text { are involved } \\
& C(r g \rightarrow g r)=\frac{1}{4} \sum_{a=1}^{8} \lambda_{21}^{a} \lambda_{12}^{a}=\frac{1}{4}\left(\lambda_{21}^{1} \lambda_{12}^{1}+\lambda_{21}^{2} \lambda_{12}^{2}\right) \\
& \text { Gluons } r \bar{g}, g \bar{r} \\
& =\frac{1}{4}(i(-i)+1)=\frac{1}{2} \\
& C(r b \rightarrow b r)=C(r g \rightarrow g r)=C(g r \rightarrow r g)=C(g b \rightarrow b g)=C(b r \rightarrow r b)=C(b g \rightarrow g b)=\frac{1}{2}
\end{aligned}
$$

4 Configurations involving 3 colours e.g. $r b \rightarrow b g$

- Only matrices with non-zero entries in the 13 and 32 position
- But none of the λ matrices have non-zero entries in the 13 and 32 positions. Hence the colour factor is zero

$$
\star \text { colour is conserved }
$$

Colour Factor for Mesons

Colour-factor for $\mathrm{q} \bar{q}$ color singulett state: $\psi=\frac{1}{\sqrt{3}}(r \bar{r}+b \bar{b}+g \bar{g})$

$\mathrm{C}(\mathrm{b} \bar{b} \rightarrow b \bar{b})=\frac{1}{4} \sum_{a=1}^{8} \lambda_{33}{ }^{a} \lambda_{33}{ }^{a} \quad \mathrm{C}(\mathrm{b} \bar{b} \rightarrow r \bar{r})=\frac{1}{4} \sum_{a=1}^{8} \lambda_{13}{ }^{a} \lambda_{31}{ }^{a} \quad \mathrm{C}(\mathrm{b} \bar{b} \rightarrow g \bar{g})=\frac{1}{4} \sum_{a=1}^{8} \lambda_{23}{ }^{a} \lambda_{32}{ }^{a}$

$$
\left.\begin{array}{ll}
\lambda^{1}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) & \lambda^{4}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right) \\
\lambda^{2}=\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right) & \lambda^{5}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -i \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \\
i & 0
\end{array} 0\right) \quad \lambda^{3}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right) ~, \left.~ \lambda^{7}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -i \\
0 & i & 0
\end{array}\right) \quad \lambda^{8}=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -2
\end{array}\right) \right\rvert\,
$$

Colour Factor for Mesons

Colour-factor for $\mathrm{q} \bar{q}$ color singulett state: $\psi=\frac{1}{\sqrt{3}}(r \bar{r}+b \bar{b}+g \bar{g})$

Colour factor of meson: $\quad C_{F}=3 * \frac{1}{\sqrt{3}} * \frac{1}{\sqrt{3}} *\left(\frac{1}{3}+\frac{1}{2}+\frac{1}{2}\right)=+\frac{4}{3}$

Computing the colour factor for colour octett states, e.g. $\psi=\frac{1}{\sqrt{2}}(r \bar{r}-g \bar{g})$ results in negative colour factors (see homeworks) \square sign of colour factors determine if the potential is attractive or repulsive (see next slides).

Form of QCD Potential: Small Distances

Comparision of postironium ($\mathrm{e}^{+} \mathrm{e}^{-}$) spectroscopy and quarkonium spectroscopy motivate that QED and QCD potential the same at small distances! Masses of c, b quarks (1.5/5 GeV) large compared to electron mass, thus test potential at smaller distances.

\star Whether it is a attractive or repulsive potential depends on sign of colour factor

Form of QCD Potential: Long Distances

\star Gluon self-interactions are believed to give rise to colour confinement
\star Qualitative picture:

- Compare QED with QCD
- In QCD "gluon self-interactions squeeze lines of force into a flux tube"

* What happens when try to separate two coloured objects e.g. $q \bar{q}$

- Form a flux tube of interacting gluons of approximately constant energy density $\sim 1 \mathrm{GeV} / \mathrm{fm}$

$$
\Rightarrow V(r) \sim \lambda r
$$

- Require infinite energy to separate coloured objects to infinity
- Coloured quarks and gluons are always confined within colourless states
- In this way QCD provides a plausible explanation of confinement - but not yet proven (although there has been recent progress with Lattice QCD)

e.g. potential of a meson

Hadronisation and Jets

夫 Consider a quark and anti-quark produced in electron positron annihilation
i) Initially Quarks separate at high velocity
ii) Colour flux tube forms between quarks
iii) Energy stored in the
iii) Energy stored in the
flux tube sufficient to produce $q \bar{q}$ pairs
iv) Process continues until quarks pair up into jets of colourless hadrons

\star This process is called hadronisation. It is not (yet) calculable.
\star The main consequence is that at collider experiments quarks and gluons observed as jets of particles

Discovery of Gluon

discovery of 3-jet events by Tasso collaboration in 1977 at PETRA ($\sqrt{s} \sim 20 \mathrm{GeV}$)

Interpreted as quark anti-quark pair which emits an additional hard gluon.

Fig. 11.12 A threejet event observed by the IADE delectior at FITRA

$$
\frac{\# \text { of three jet events }}{\# \text { of two jet events }} \sim 0.15
$$

α_{s} is large!

Reminder: Evidence for Color

$\mathrm{N}_{\mathrm{c}}=3$ „more or less" confirmed by data!

q	$\mathrm{Z}_{\mathrm{i}}{ }^{2}$	$\mathrm{R}[\sqrt{s} \leq 2 m(q)]$
u	$4 / 9$	$4 / 3$
d	$1 / 9$	$5 / 3$
s	$1 / 9$	2
c	$4 / 9$	$10 / 3$
b	$1 / 9$	$11 / 3$
t	$4 / 9$	5

$$
\begin{aligned}
R & =\frac{\sigma\left(e^{+} e^{-} \rightarrow \text { hadrons }\right)}{\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)} \\
& =\mathrm{N}_{\mathrm{c}} \sum_{i}^{u} Z_{i}^{2} \quad\left(1+\frac{\alpha_{s}}{\pi}+1.411 \frac{\alpha_{s} 2}{\pi^{2}}+\ldots\right)
\end{aligned}
$$

original R-factor computation ignored higher QCD corrections (due to large size of α_{s}) not negligible!

Spin of the Gluon

Ellis-Karlinger angle

Ordering of 3 jets: $E_{1}>E_{2}>E_{3}$

Pigure 8: (a) Representation of the momentum vectors in a three-jet event, ans (b) definition of the Ellis-Karliner angle.

Measure direction of jet-1 in the rest frame of jet-2 and jet-3: θ_{EK}

Multi-Jet Events and Gluon Self Coupling

Gluon self-coupling is a direct consequence of non-abelian $\operatorname{SU}(3)$ gauge symmetry!

Test of gluon-self coupling (strenght) is a test of $S U(3)$.

Rate of four jet events depend on the colour factors of the involved vertices:
$\mathrm{q} \rightarrow \mathrm{gq}, \mathrm{g} \rightarrow \mathrm{q} \overline{\mathrm{q}}, \mathrm{g} \rightarrow \mathrm{gg}$

Multi-Jet Algorithms

Jet Algorithm

Hadronic particles are i and j grouped to a pseudo particle k as long as the invariant mass is smaller than the jet resolution parameter:

$$
\frac{m_{i j}^{2}}{s}<y_{c u t}
$$

m_{ij} is the invariant mass of i and j .
Remaining pseudo particles are jets.

4 Jet Events

D

(General) colour factors:

$$
\sim C_{F}=4 / 3
$$

Value of colour factors are a direct consequence of SU(3)

$$
\begin{gathered}
\frac{1}{\sigma} d \sigma^{4}=\left(\frac{\alpha_{S} C_{F}}{\pi}\right)^{2}\left[F_{A}+\left(1-\frac{1}{2} \frac{N_{C}}{C_{F}}\right) F_{B}+\frac{N_{C}}{C_{F}} F_{C}\right. \\
\left.+\frac{T_{F}}{C_{F}} N_{f} F_{D}\right]
\end{gathered}
$$

Group	N_{C}	C_{F}	T_{F}
$\mathrm{U}(1)$	0	1	1
$\mathrm{SU}(\mathrm{N})$	N	$(\mathrm{N} 2-1) / 2 \mathrm{~N}$	$1 / 2$
$\mathrm{SU}(3)$	3	$4 / 3$	$1 / 2$

$F_{A}, F_{B}, F_{C}, F_{D}$ depend on kinematics and not on symmetry group

Angular Correlation of jets in 4-jet events

Exploiting the angular distribution of 4-jets:
$>$ Bengston-Zerwas angle $\cos \chi_{\mathrm{BZ}} \sim\left(\overrightarrow{p_{1}} \times \overrightarrow{p_{2}}\right)\left(\overrightarrow{p_{3}} \times \overrightarrow{p_{4}}\right)$
$>$ Nachtmann-Reiter angle

$$
\cos \theta_{\mathrm{NR}} \sim\left(\overrightarrow{p_{1}}-\overrightarrow{p_{2}}\right)\left(\overrightarrow{p_{3}}-\overrightarrow{p_{4}}\right)
$$

Allow to measure the ratios T_{F} / C_{F} and N_{C} / C_{F} $\mathrm{SU}(3)$ predicts: $\mathrm{T}_{\mathrm{F}} / \mathrm{C}_{\mathrm{F}}=0.375$ and $\mathrm{N}_{\mathrm{C}} / \mathrm{C}_{\mathrm{F}}=2.25$

If $N_{C} / C_{F} \neq 0 \rightarrow$ contribution from gluon self-coupling in the 4 -jet events

Test of SU(3) Symmetry

one example of a measurements at the ALEPH experiment (at LEP)

Many more similar analysis exist and confirm precisely $\mathrm{SU}(3)$ structure of QCD!

Strong coupling constant α_{s}

QED: Running coupling constants

due to higher order propgator corrections

QCD:

screeining of bare charge

What is the q^{2} dependence of α_{s} ?

Strong coupling constant α_{s}

Effective strong coupling $\alpha_{s}\left(Q^{2}\right)$

$$
\alpha_{s}\left(Q^{2}\right)=\frac{\alpha_{s}\left(\mu^{2}\right)}{1+\alpha_{s}\left(\mu^{2}\right) \frac{1}{12 \pi}\left(33-2 n_{f}\right) \log \frac{Q^{2}}{\mu^{2}}} \underbrace{}_{\beta_{0}=\frac{1}{12 \pi}\left(33-2 n_{f}\right)>0}
$$

$$
\mathrm{n}_{\mathrm{f}}=\text { \# quark flavors (5) }
$$

$$
\mu^{2}=\text { renormalization scale }
$$ conventionally $\mu^{2}=M_{z}^{2}$

sign of β_{0} and thus Q^{2} dependence of α_{s}, depends on number of quark flavours

Effective strong coupling $\alpha_{s}\left(Q^{2}\right)$

$$
\alpha_{s}\left(\mathrm{Q}^{2}\right)=\frac{\alpha_{s}\left(\mu^{2}\right)}{1+\alpha_{s}\left(\mu^{2}\right) \beta_{0} \log \frac{Q^{2}}{\mu^{2}}}
$$

For $Q^{2} \rightarrow \infty, \alpha_{s} \rightarrow 0$
at large Q^{2} quarks are
asymtotically free \rightarrow Quark Parton Model (Gross\&Wilczek (1973), Politzer (1974)
at small values of Q^{2}, pertubative theory doesn't work anymore ($\alpha_{\mathrm{s}} \gg 1$), this happens around
$\Lambda_{\mathrm{QCD}} \sim 200 \mathrm{MeV}$ (value has to come from experiment, see later)

$$
\alpha_{s}\left(Q^{2}\right)=\frac{1}{\beta_{0} \log \frac{Q^{2}}{\Lambda_{Q C D}}}
$$

Strong coupling constant α_{s}

Effective strong coupling $\alpha_{s}\left(Q^{2}\right)$

$$
\alpha_{s}\left(Q^{2}\right)=\frac{\alpha_{s}\left(\mu^{2}\right)}{1+\alpha_{s}\left(\mu^{2}\right) \beta_{0} \log _{\mu^{2}}^{Q^{2}}}
$$

at small values of Q^{2}, pertubative theory doesn't work anymore ($\alpha_{\mathrm{s}} \sim 1$)
This is the reason why hadronic computations are extremly hard to perform

If $\alpha_{s}\left(\mu^{2}\right)$ is around 1 and Q^{2} / μ^{2} rather large: formular simplifies:

$$
\alpha_{s}\left(Q^{2}\right)=\frac{1}{\beta_{0} \log \frac{Q^{2}}{\Lambda_{\text {QCD }}}}
$$

get Λ_{QCD} value from data!

$$
\Lambda_{\mathrm{QCD}} \sim 200 \mathrm{MeV}[\sim 1 \mathrm{fm}]
$$

Nobel Prize in 2004

The Nobel Prize in Physics 2004

David J. Gross \quad H. David Politzer \quad Frank Wilczek

"for the discovery of asymptotic freedom in the theory of the strong interaction"

Nobel prize was awarded after a lot of experimental results from HERA ($e^{ \pm} p$ collider) confirmed this hypothesis

Measurement of α_{s}

$\square \alpha_{s}$ measurements are done at fixed scale $Q^{2}: \alpha_{s}\left(Q^{2}\right)$
I) α_{s} from hadronic cross section in e+e- collisions

$$
\mathrm{R}_{\text {had }}=\frac{\sigma(e e \rightarrow \text { hadrons })}{\sigma(e e \rightarrow \mu \mu)}=3 \sum Q_{q}^{2}\left(1+\frac{\alpha_{s}}{\pi}+1.411 \frac{\alpha_{s}^{2}}{\pi^{2}}+\ldots\right)
$$

 unfortunately not very precise ...
II) $\quad \alpha_{s}$ from hadronic event shape variables

3-jet rate $R_{3}=\frac{\sigma_{3 \text { jet }}}{\sigma_{\text {had }}}$
measure R_{3} as function of jet paramter y (similarly other event shape variables can be used)

Measurement of α_{s}

III) α_{s} from hadronic τ decays

$$
\mathrm{R}_{\text {had }}^{\tau}=\frac{\Gamma\left(\tau \rightarrow v_{\tau}+\text { hadrons }\right)}{\Gamma\left(\tau \rightarrow v_{\tau}+e+\bar{v}_{e}\right)} \sim f\left(\alpha_{s}\right)
$$

IV) α_{s} from DIS (deep inelastic scattering)

Running of α_{s} and Asymptotic Freedom

$$
\alpha_{s}\left(Q^{2}\right)=\frac{1}{\beta_{0} \log \left(Q^{2} / \Lambda_{Q C D}^{2}\right)}
$$

