Particle Physics WS 2012/13 (7.12.2012)

Stephanie Hansmann-Menzemer

Physikalisches Institut, INF 226, 3.101

Content of Today

- Feynman-Rules for Strong IA and Colour Factors
- Strong IA potential
- Experimental Test of QCD
 - Observation of Gluon
 - Measurement of spin of the gluon
 - ➤ Test of SU(3)_c structure of strong IA
- \succ Running of strong IA constant α_s

SU(3) Color

physics is invariant under rotation in color space red, green and blue quarks are not distinguishable This is an exact symmetry!

$$\binom{R'}{G'}_{B'} = U\binom{R}{G}_{B}$$

It is believed (though not yet proven) that all free particles are colour neutral . neutral = symmetric under rotation in colour space ($Y_c = I_3 = 0$ is not sufficient!) Colour wave function of mesons: $\psi_c = \frac{1}{\sqrt{3}} (r\bar{r} + g\bar{g} + b\bar{b})$

Gluons consists of a combination of colour and anticolour, and have net color. Gluons are represented by octett state.

Gell-Mann Matrices can be "associated" to Gluons!

Color SU(3): Quark states

$$R = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, G = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, B = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

$$R \leftrightarrow G \quad \lambda_{1} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \lambda_{2} = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \lambda_{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \frac{1}{\sqrt{2}} (r\bar{r} - g\bar{g})$$

$$R \leftrightarrow B \quad \lambda_{4} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \lambda_{3} = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix}, V_{\pm} = 1/2(\lambda_{4} \pm i\lambda_{5}), r\bar{b}, b\bar{r}$$

$$B \leftrightarrow G \quad \lambda_{6} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}, \lambda_{7} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix}, U_{\pm} = 1/2(\lambda_{6} \pm i\lambda_{7}), b\bar{g}, \bar{b}g$$

$$\lambda_{8} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}, \frac{1}{\sqrt{6}} (r\bar{r} + g\bar{g} - 2\bar{b}b), q(r), d(r), q(r), q(r), q(r), q(r)$$

Symmetries define Interactions

Lagrangian must reflect the invariance of the symmetry transformation. The Lagrangian of the free fermion (L = $i\overline{\psi} \gamma^{\mu} \partial_{\mu}\psi - m\overline{\psi}\psi$) is not invariant under any symmetry, thus need to add IA terms.

The Lagrangian defines the IA. To each Lagrangian, there correpsonds a set of Feynman rules.

QED: U(1)	QCD: SU(3)
$U = e^{i\alpha(x)}$	$U = e^{i \overrightarrow{\alpha(x)} \lambda} \qquad \lambda_i; i=1,2,,8$
two transformation commute	two transformation in genreral do not commute
Introduce 1 photon field A to get invariant Lagrangian	introduce 8 gluon fields G _i to get invariant Lagrangian
L = "ΨΨ" + "eΨΨA"+"A ² "	$L = , \overline{\Psi}\Psi'' + , \overline{\Psi}\Psi G'' + , G^{2''} + , g_{s}G^{3''} + , g_{s}^{2}G^{4''}$ $\rightarrow \circ \circ$

The Quark-Gluon Interaction

Feynman Rules for QCD

spin 1/2 quark

i, j = 1,2,3 are quark colours,

 λ^{a} a = 1,2,..8 are the Gell-Mann SU(3) matrices

+ 3 gluon and 4 gluon interaction vertices Matrix Element -iM = product of all factors

Matrix Element for Quark-Quark Scattering

coulor indices: i,j,k,l

In this example the colour flow ik \rightarrow jl

a,b are the gluon index. δ_{ab} ensures that a=b, same gluon is "emitted" at a and "absorbed" at b

$$\begin{split} &\mathsf{iM} = [\overline{u(p_3)} \left(\frac{1}{2} g_s \,\lambda_{ji}{}^a \gamma^{\mu}\right) u(p_1)] \, \frac{-ig^{\mu\nu} \,\delta^{ab}}{q^2} \left[\overline{u(p_4)} \left(\frac{1}{2} g_s \,\lambda_{lk}{}^b \gamma^{\nu}\right) u(p_2)\right] \right] \\ &\mathsf{where summing over a,b and } \mu, \mathsf{v} \mathsf{ is implied.} \\ &\mathsf{M} = -\frac{g_s^2}{4} \lambda_{ji}{}^a \lambda_{\mathsf{lk}}{}^a \frac{1}{q^2} \mathsf{g}^{\mu\nu} [\overline{u(p_3)} \gamma^{\mu} u(p_1)] \left[\overline{u(p_4)} \,\gamma^{\nu} u(p_2)\right] \right] \end{split}$$

QCD vs. QED

QED matrix element:

$$\mathsf{M} = - \mathrm{e}^{2} \frac{1}{q^{2}} \mathrm{g}^{\mu\nu} [\overline{u(p_{3})} \gamma^{\mu} u(p_{1})] [\overline{u(p_{4})} \gamma^{\nu} u(p_{2})]]$$

$$e^2 \rightarrow g_s^2 \qquad \alpha^2 = \frac{e^2}{4\pi} \rightarrow \alpha_s^2 = \frac{g_s^2}{4\pi}$$

+ add. color factor $C(ik \rightarrow jl) = \frac{1}{4} \sum \lambda_{ji}^{a} \lambda_{lk}^{a}$

′e⁻ p₃ e⁻ p_1 **p**₄ р μμ ν p_1 p_3 u u μ, а k d d v, b \mathbf{p}_2 p_4

QCD matrix element:

$$\mathsf{M} = -\frac{g_s^2}{4} \lambda_{ji}^a \lambda_{lk}^a \frac{1}{q^2} \mathsf{g}^{\mu\nu} [\overline{u(p_3)} \gamma^{\mu} u(p_1)] [\overline{u(p_4)} \gamma^{\nu} u(p_2)]$$

Evaluation of QCD Colour Factors

QCD colour factors reflect the gluon states that are involved

Configurations involving a single colour

•Only matrices with non-zero entries in 11 position are involved $C(rr \rightarrow rr) = \frac{1}{4} \sum_{a=1}^{8} \lambda_{11}^{a} \lambda_{11}^{a} = \frac{1}{4} (\lambda_{11}^{3} \lambda_{11}^{3} + \lambda_{11}^{8} \lambda_{11}^{8})$ $= \frac{1}{4} \left(1 + \frac{1}{3} \right) = \frac{1}{3}$ Similarly find $C(rr \rightarrow rr) = C(gg \rightarrow gg) = C(bb \rightarrow bb) = \frac{1}{3}$

Evaluation of QCD Colour Factors

2 Other configurations where quarks don't change colour e.g. $rb \rightarrow rb$ i = 1 j = 1 Only matrices with non-zero entries in 11 and 33 position $C(rb \rightarrow rb) = \frac{1}{4} \sum_{a=1}^{8} \lambda_{11}^{a} \lambda_{33}^{a} = \frac{1}{4} (\lambda_{11}^{8} \lambda_{33}^{8})$ are involved $= \frac{1}{4}\left(\frac{1}{\sqrt{3}},\frac{-2}{\sqrt{3}}\right) = -\frac{1}{6}$ **b** $k=3^{a}$ **b** $k=3^{a}$ **b** $C(rb \to rb) = C(rg \to rg) = C(gr \to gr) = C(gb \to gb) = C(br \to br) = C(bg \to bg) = -\frac{1}{\kappa}$ Similarly **6** Configurations where quarks swap colours e.g. $rg \rightarrow gr$ r _____a ___9 • Only matrices with non-zero entries in 12 and 21 position $= \frac{1}{4}(i(-i)+1) = \frac{1}{2}$ $\mathbf{g}_{k-2} \stackrel{a}{\longrightarrow} \mathbf{l} = \mathbf{l} \mathbf{r}$ $C(rb \to br) = C(rg \to gr) = C(gr \to rg) = C(gb \to bg) = C(br \to rb) = C(bg \to gb) = \frac{1}{2}$ **4** Configurations involving 3 colours e.g. $rb \rightarrow bg$ r _____ a ____ Only matrices with non-zero entries in the 13 and 32 position •But none of the λ matrices have non-zero entries in the 13 and 32 positive for the λ matrices have non-zero entries in the i = 113 and 32 positions. Hence the colour factor is zero ★ colour is conserved $3^{a}_{l=2}$ g

Colour Factor for Mesons

Colour-factor for $q\bar{q}$ color singulett state: $\psi = \frac{1}{\sqrt{3}} (r\bar{r} + b\bar{b} + g\bar{g})$

$$\begin{split} \lambda^{1} &= \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \lambda^{4} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \qquad \lambda^{6} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \qquad \lambda^{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \\ \lambda^{2} &= \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \lambda^{5} = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix} \qquad \lambda^{7} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix} \qquad \lambda^{8} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix} \end{split}$$

12

Colour Factor for Mesons

Colour-factor for $q\bar{q}$ color singulett state: $\psi = \frac{1}{\sqrt{3}} (r\bar{r} + b\bar{b} + g\bar{g})$

Computing the colour factor for colour octett states, e.g. $\psi = \frac{1}{\sqrt{2}} (r\bar{r} - g\bar{g})$ results in negative colour factors (see homeworks) \implies sign of colour factors determine if the potential is

attractive or repulsive (see next slides).

Form of QCD Potential: Small Distances

Comparision of postironium (e⁺e⁻) spectroscopy and guarkonium spectroscopy motivate that QED and QCD potential the same at small distances! Masses of c, b quarks (1.5/5 GeV) large compared to electron mass, thus test potential at smaller distances.

Form of QCD Potential: Long Distances

e⁺

- **★** Gluon self-interactions are believed to give rise to colour confinement
- **★** Qualitative picture:
 - Compare QED with QCD
 - In QCD "gluon self-interactions squeeze lines of force into a flux tube"

$$\rightarrow$$
 $V(r) \sim \lambda r$

 Require infinite energy to separate coloured objects to infinity Coloured guarks and gluons are always confined within colourless states

q

 In this way QCD provides a plausible explanation of confinement – but not yet proven (although there has been recent progress with Lattice QCD) e.g. potential of a meson

Hadronisation and Jets

*Consider a quark and anti-quark produced in electron positron annihilation

- i) Initially Quarks separate at high velocity
- ii) Colour flux tube forms between quarks
- iii) Energy stored in the flux tube sufficient to produce qq pairs
- iv) Process continues until quarks pair up into jets of colourless hadrons

- **★** This process is called hadronisation. It is not (yet) calculable.
- The main consequence is that at collider experiments quarks and gluons observed as jets of particles

Discovery of Gluon

discovery of 3-jet events by Tasso collaboration in 1977 at PETRA ($\sqrt{s} \sim 20 \text{ GeV}$)

Interpreted as quark anti-quark pair which emits an additional hard gluon.

Fig. 11.12 A three-jet event observed by the JADE detector at PETRA.

 $\frac{\# of three jet events}{\# of two jet events} \sim 0.15$

Reminder: Evidence for Color

q	Z _i ²	$R[\sqrt{s} \le 2m(q)]$
u	4/9	4/3
d	1/9	5/3
S	1/9	2
С	4/9	10/3
b	1/9	11/3
t	4/9	5

N_c=3 "more or less" confirmed by data!

$$\begin{split} R &= \frac{\sigma(e^+e^- \to hadrons)}{\sigma(e^+e^- \to \mu^+\mu^-)} \\ &= \mathsf{N}_{\mathsf{c}} \sum_{i}^{u} Z_i^{\ 2} \ (\mathsf{1} + \frac{\alpha_s}{\pi} + 1.411 \ \frac{\alpha_s^2}{\pi^2} + \ \ldots) \end{split}$$

original R-factor computation ignored higher QCD corrections (due to large size of α_s) not negligible!

Spin of the Gluon

Ellis-Karlinger angle

Measure direction of jet-1 in the rest frame of jet-2 and jet-3: θ_{EK}

Figure 9: The Ellis-Karliner angle distribution of three-jet events recorded by TASSO at $Q \sim 30$ GeV [18]; the data favour spin-1 (vector) gluons.

Gluon spin J=1

Multi-Jet Events and Gluon Self Coupling

Gluon self-coupling is a direct consequence of non-abelian SU(3) gauge symmetry!

Test of gluon-self coupling (strenght) is a test of SU(3).

Figure 1: Hadronic event of the type $e^+e^- \rightarrow 4$ jets recorded with the ALEPH detector at LEP-I.

Rate of four jet events depend on the colour factors of the involved vertices: $q \rightarrow gq, g \rightarrow q\overline{q}, g \rightarrow gg$

Multi-Jet Algorithms

4 Jet Events

Value of colour factors are a direct consequence of SU(3)

$$\frac{1}{\sigma}d\sigma^{4} = \left(\frac{\alpha_{s}C_{F}}{\pi}\right)^{2}[F_{A} + \left(1 - \frac{1}{2}\frac{N_{C}}{C_{F}}\right)F_{B} + \frac{N_{C}}{C_{F}}F_{C} - \frac{\text{Group}}{U(1)} \frac{N_{C}}{0} - \frac{C_{F}}{1} - \frac{T_{F}}{1} + \frac{T_{F}}{C_{F}}N_{f}F_{D}] - \frac{1}{SU(N)} - \frac{SU(N)}{SU(3)} - \frac{N_{C}}{3} - \frac{1}{4/3} - \frac{1}{1/2}$$

F_A, F_B, F_C, F_D depend on kinematics and not on symmetry group

Angular Correlation of jets in 4-jet events

Exploiting the angular distribution of 4-jets:

> Bengston-Zerwas angle $\cos \chi_{BZ} \sim (\overrightarrow{p_1} \ x \ \overrightarrow{p_2})(\overrightarrow{p_3} \ x \ \overrightarrow{p_4})$

➢ Nachtmann-Reiter angle cos Θ_{NR} ~ ($\vec{p_1}$ − $\vec{p_2}$)($\vec{p_3}$ − $\vec{p_4}$)

Allow to measure the ratios T_F/C_F and N_C/C_F SU(3) predicts: $T_F/C_F = 0.375$ and $N_C/C_F = 2.25$

Test of SU(3) Symmetry

one example of a measurements at the ALEPH experiment (at LEP)

Many more similar analysis exist and confirm precisely SU(3) structure of QCD!

Strong coupling constant α_s

QED: Running coupling constants

due to higher order propgator corrections

screeining of bare charge

QCD:

What is the q^2 dependence of α_s ?

sign of β_0 and thus Q² dependence of α_s , depends on number of quark flavours

Effective strong coupling $\alpha_s(Q^2)$

$$\alpha_{s}(Q^{2}) = \frac{\alpha_{s}(\mu^{2})}{1 + \alpha_{s}(\mu^{2}) \beta_{0} \log \frac{Q^{2}}{\mu^{2}}}$$

For $Q^2 \rightarrow \infty$, $\alpha_s \rightarrow 0$ at large Q^2 quarks are **asymtotically free** \rightarrow **Quark Parton Model** (Gross&Wilczek (1973), Politzer (1974)

at small values of Q², pertubative theory doesn't work anymore ($\alpha_s >> 1$), this happens around $\Lambda_{QCD} \sim 200$ MeV (value has to come from experiment, see later)

$$\alpha_{s}(Q^{2}) = \frac{1}{\beta_{0}\log \frac{Q^{2}}{\Lambda_{QCD}^{2}}}$$

26

Strong coupling constant α_s

Effective strong coupling $\alpha_s(Q^2)$

$$\alpha_{s}(Q^{2}) = \frac{\alpha_{s}(\mu^{2})}{1 + \alpha_{s}(\mu^{2}) \beta_{0} \log \frac{Q^{2}}{\mu^{2}}}$$

at small values of Q², pertubative theory doesn't work anymore ($\alpha_s \sim 1$) This is the reason why hadronic computations are extremly hard to perform

If $\alpha_s(\mu^2)$ is around 1 and Q^2/μ^2 rather large: formular simplifies:

$$\alpha_{\rm s}({\rm Q}^2) = \frac{1}{\beta_0 \log \frac{Q^2}{\Lambda_{ocD}^2}}$$

get Λ_{OCD} value from data!

 $\Lambda_{QCD} \simeq 200 \text{ MeV} [\simeq 1 \text{ fm}]$

Nobel Prize in 2004

The Nobel Prize in Physics 2004

David J. Gross H. David Politzer Frank Wilczek

"for the discovery of asymptotic freedom in the theory of the strong interaction"

Nobel prize was awarded after a lot of experimental results from HERA (e[±]p collider) confirmed this hypothesis

Measurement of α_s

 α_s measurements are done at fixed scale Q²: $\alpha_s(Q^2)$

I) α_s from hadronic cross section in e+e- collisions

$$\mathsf{R}_{\mathsf{had}} = \frac{\sigma(ee \to hadrons)}{\sigma(ee \to \mu\mu)} = 3\sum Q_q^2 \left(1 + \frac{\alpha_s}{\pi} + 1.411 \frac{\alpha_s^2}{\pi^2} + \ldots\right)$$

unfortunately not very precise ...

II) α_s from hadronic event shape variables

3-jet rate $R_3 = \frac{\sigma_{3_jet}}{\sigma_{had}}$

measure R_3 as function of jet paramter y (similarly other event shape variables can be used)

Measurement of α_s

III) α_s from hadronic τ decays

$$R^{\tau}_{had} = R^{\tau,0}_{had} \left(1 + \frac{\alpha_s(m_{\tau}^2)}{\pi} + ...\right)$$

IV) α_s from DIS (deep inelastic scattering)

Running of α_s and Asymptotic Freedom

