I.1 Outline of ATLAS & CMS Lectures

<table>
<thead>
<tr>
<th>Part</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.4</td>
<td>Part I: Introduction & Motivation LHC, the Standard Model and its Problems</td>
</tr>
<tr>
<td>25.4</td>
<td>Part II: Experimental Environment, pp Collisions, Kinematics, ATLAS & CMS</td>
</tr>
<tr>
<td>2.5</td>
<td>Part III: Standard Model Physics and the Search for the Higgs Boson</td>
</tr>
<tr>
<td>9.5</td>
<td>Part IV: Supersymmetry</td>
</tr>
<tr>
<td>16.5</td>
<td>Part V: Exotic New Physics (extra dimensions, micro black holes, compositeness,...)</td>
</tr>
</tbody>
</table>
I.2 List of References / Suggested Reading

General/Overview:

ATLAS & CMS:

Proton-Proton Collisions:
I.2 List of References / Suggested Reading

Higgs:

Supersymmetry:

Exotic New Physics:

Chapter I:
Introduction, the Standard Model and its Problems
I.3 The LHC Ring, ATLAS & CMS
Across the street from the CERN main gate
I.5 Underground Cavern at Pit-1: ATLAS

Length = 45 m
Width = 32 m
Height = 35 m
I.6 Grand Unification & Running Couplings

• **GUTs = Grand Unified Theories**

• Best explanation for quark charges, generations of quarks and leptons

• Predictions:
 - Unified interactions at large energies \rightarrow same couplings
 - Couplings at other energies depend on quantum corrections
 \rightarrow Renormalization Group Equations (RGE) for masses and couplings

\[\text{QED} \quad \text{QCD: Gluon self-interaction} \]
I.7 Measurements of Running Couplings

Electromagnetic interaction

Strong interaction

\[e^+e^- \rightarrow e^+e^- \]

LEP

\[1.81 \text{GeV}^2 < -Q^2 < 6.07 \text{GeV}^2 \]
\[12.25 \text{GeV}^2 < -Q^2 < 3434 \text{GeV}^2 \]
\[1800 \text{GeV}^2 < -Q^2 < 21600 \text{GeV}^2 \]

\[\alpha_s(Q) \]

\[\alpha = \text{constant} = 1/137.04 \]

\[\alpha_s(M_Z) = 0.1189 \pm 0.0010 \]
I.8 Extrapolation of Couplings in the SM

Rotation: \(\alpha_1 \), \(\alpha_2 \), \(\alpha_3 \)

\[\alpha_s(M_Z) = 0.117 \pm 0.005 \]
\[\sin^2 \theta_{\text{MS}} = 0.2317 \pm 0.0004 \]

\[\rightarrow \text{Grand Unification not possible} \]
I.9 Dark Matter in our Universe

Evidence from:

- Rotational curves of galaxies: Ω_{DM}
- Gravitational lensing: Ω_{DM}
- Cosmic microwave background (CMB): $\Omega_\Lambda \Omega_{DM}$
- Expansion of the universe (supernovae): $\Omega_\Lambda \Omega_M$
- Big Bang Nucleosynthesis: Ω_B

Ω: energy density
M = Matter
DM = Dark Matter
Λ = cosm. constant
B = Baryons
I.10 Dark Matter in Galaxies

- Gravitation $\sim 1/r^2 \rightarrow$ Rotation curves à la Kepller

\Rightarrow Halo of invisible matter
I.11 Gravitational Lensing

Contribution from dark matter?!
I.12 Dark Matter & Colliding Galaxies

Here is the Hubble Space Telescope Image:

analysis of Bradac, Clowe, Gonzalez, Marshall, Forman, Jones, Markevitch, Randall, and Schrabback

From talk by M. Peskin (SLAC)
I.12 Dark Matter & Colliding Galaxies

Here is the mass distribution reconstructed from gravitational lensing

From talk by M. Peskin (SLAC)
I.12 Dark Matter & Colliding Galaxies

The atomic matter is mainly in hot gas, emitting X-rays. The Chandra satellite measures this component (red). The gravitating mass is elsewhere (blue)!

From talk by M. Peskin (SLAC)
I.13 Dark Matter

Dark-Matter properties:

- Gravitationally interacting
- Not short-lived
- Not hot
- Not baryonic

→ Unambiguous evidence for new physics!