Teilchendetektoren

Rainer Stamen

Vorwort

- "Teilchendetektoren" 2SWS Vorlesung + Seminar/Journal Club
- Dies ist eine stark kondensierte Version
- Mehr Beschreibung Weniger Erklärung
- Grundlegende Konzepte

Inhalt

- Aufgaben von Teilchendetektoren
- Wechselwirkung von Teilchen mit Materie
- Detektoren Subdetektoren
- Detektorsysteme Experimente

Literatur

Bick ins Buch k Further provide the second second

- Teilchenphysikbücher
 - Grundlegende Konzepte
 - Minimum für einen Teilchenphysiker
- Allgemeine Detektorbücher
 - Detaillierte Beschreibung aller gängigen Detektoren
 - Minimum für einen experimentellen Teilchenphysiker
- Spezielle Detektorbücher
 Details für den "Anwender"
- Zeitschriftenpublikationen

– Experteninformationen, neue Entwicklungen

Aufgaben von Teilchendetektoren

- Identifikation der produzierten Teilchen
- Bestimmung von Energie und Impuls der Teilchen
- Bestimmung der fehlenden (transversalen)
 Energie in einem Ereignis
- Bestimmung des Ursprungsorts (Vertex) der Teilchen

Wechselwirkung von Teilchen mit Materie

- Anregung und Ionisation von Materie durch (schwere) geladene Teilchen
- Vielfachstreuung
- Wechselwirkung von Photonen mit Materie (Photoeffekt, Compton-Streuung, Paarbildung)
- Bremsstrahlung
- Cerenkovstrahlung
- Übergangsstrahlung
- Vorgänge in Szintillatoren

Anregung und Ionisation von Materie durch (schwere, langsame) geladene Teilchen

Semiklassische Ableitung (Bethe und Bloch)

- Impulsübertrag während des Vorbeiflugs (Verschiedene Approximationen)
- Summiere über alle Materieteilchen
- Berücksichtige Anregungen (quantisiert) und Ionisation (kontinuierlich)
- Berechnung des Energieverlusts pro Wegstrecke dE/dx

Bethe-Bloch Formel

$$\frac{dE}{dx} = 4\pi r_e^2 mc^2 \frac{L\rho}{A} Z \frac{z^2}{\beta^2} \left(\ell n \frac{2mc^2 \gamma^2 \beta^2}{I} - \beta^2 - \frac{\delta}{2} \right)$$

 β = v/c - Geschwindigkeit des Teilchens

- Z,A Ladung und Atomzahl der Atome in der Materie
 - Ionisationsenergie

Bethe-Bloch Formel

Gültigkeitsbereich der Bethe-Bloch-Formel: 0.05 < $\beta\gamma$ < 500, $m \ge m_{Myon}$

Bethe-Bloch Formel

Energieverlust durch Ionisation

- Erzeugung einer Teilchenspur
- Teilchenidentifikation

Vielfachstreuung

die Wechselwirkung stattfindet

Ionisationsdichten: Simulation

Wechselwirkung von Photonen mit Materie

Es gibt drei dominierende Effekte:

Photoeffekt $\gamma + Atom$ ->Atom+ + e^-Comptoneffekt $\gamma + e^-$ -> $\gamma + e^-$ Paarbildung $\gamma + Kern$ -> $e^+ + e^- + Kern$

Weitere Effekte können im Allgemeinen vernachlässigt werden

- Rayleigh Streuung
- Thomson Streuung
- Kernphotoeffekt
- Kernresonanzstreuung
- Delbrückstreuung
- Hadron Paarbildung

Relevant bei sehr niedrigen Energien, bzw. sehr niedriger Wirkungsquerschnitt

Photoeffekt

- Stark abfallende Energieabhängigkeit des Wirkungsquerschnitts
- Kantenstruktur (Energieniveaus im Atom)-

Comptoneffekt

Streuung von Photonen an schwach gebundenen Hüllenelektronen

Energie-Impulserhaltung führt zu fester Beziehung zwischen Energien und Streuwinkeln der Teilchen im Endzustand

Wirkungsquerschnitt (QFT-1 Vorlesung) Semiklassische Herleitung

Photoeffekt und Comptoneffekt in der Praxis

Energy [keV]

Paarbildung

- Erzeugung eines Elektron-Positronpaares im Kernfeld
- Schwelleneffekt: $E > 2m_e$

Wechselwirkung von Photonen mit Materie

Effekt	Wirkungsquerschnitt	E_{γ} –Abhängigkeit	dominant für
Photoeffekt	$\sigma_{ph} \sim (Z^4 \cdots Z^5) r_e^2 \alpha^3$	\searrow	$E_{\gamma} < 30 \text{ keV}$
Compton–Effekt	$\sigma_c~\sim Z r_e^2$	\searrow	$0.03 \cdots 5 \text{ MeV}$
Paarbildung	$\sigma_P \sim Z^2 r_e^2$	7	$> 5 { m MeV}$

Bremsstrahlung

Photonabstrahlung von (schnellen, leichten) geladenen Teilchen im Kernfeld

Semiklassisches Bild: Weizsäcker Williams

Bremsstrahlung

Energiespektrum der erzeugten Photonen

Energieverlust der geladenen Teilchen

Detektoren

- Spurdetektoren
 - Driftkammern
 - Siliziumdetektoren
- Kalorimeter
 - Elektromagnetische Kalorimeter
 - Hadronische Kalorimeter

Geiger Müller Zählrohr

- Ionisation des Gases im Zählrohr
- Drift der Elektronen zur Anode
- Signalcharakteristik hängt von der Anodenspannung ab

Geiger Müller Zählrohr

- Ionisation des Gases im Zählrohr
- Drift der Elektronen zur Anode
- Signalcharakteristik hängt von der Anodenspannung ab
- Lawinenbildung im Geiger-Müller
 Bereich -> gleichförmige Pulse

Multi-Wire Proportional Chamber (Charpak, Nobelpreis 1992)

Driftzeit unterstützt Spurrekonstruktion

Driftkammer

- Grosse Anzahl von
 Signaldrähten (> 10⁴)
- Möglichst homogenes E-Feld
- Kombination mit Magnetfeld durch eine Soleonidspule

ARGUS-Experiment

ARGUS Driftkammer

Siliziumdetektoren

pn-Übergang als Detektor

- Ionisation in der Verarmungszone
- Ladungstrennung durch elektrisches Feld
- Drift der Ionisationsladung zu Anode und Kathode

Siliziumdetektoren

- Siliziumscheibe (~300 µm)
- Anodenschicht (unten)
- Kathode (Streifen oder Pixel)

Siliziumdetektoren: ATLAS Modul

ATLAS Silicon Tracker 5.6 m

17 thousand silicon sensors (60 m²) 6 M silicon strips (80 μm x 12.8 cm) 80 M pixels (50 μm x 400 μm)

1.6 m

1 m

40 MHz event rate; > 50 kW power

2 m

Siliziumdetektoren

Spurdetektoren: Impulsmessung

Impuls eines geladenen Teilchens

 $p_T = qB\rho$

$$\frac{\sigma(p_T)}{p_T} = \frac{\sigma_s}{s} = \sqrt{\frac{3}{2}}\sigma_x \cdot \frac{8p_T}{0.3BL^2}$$

Spurdetektoren können gut den Impuls von niederenergetischen geladenen Teilchen messen

Kalorimeter

- Energiemessung von geladenen und neutralen Teilchen durch totale Absorbtion
- Elektromagnetische Kalorimeter
 - Elektronen, Photonen
- Hadronische Kalorimeter

– Protonen, Neutronen, geladene Pionen

Elektromagnetischer Schauer

Energieabsorbtion von Elektronen und Photonen in einem dichten Medium

Kombination aus Bremsstrahlungs- und Paarbildungsprozessen Charakteristische Längenskale ist die Strahlungslänge X₀ Niederenergetische Teilchen am Ende der Kaskade erzeugen Signal (Licht oder Ladung)

Kalorimetertypen

Homogene Kalorimeter: Aktives Medium + Signaldetektor + Elektronik

Sampling Kalorimeter: Passives Medium + Aktives Medium + Signaldetektor + Elektronik

CMS Kristallkalorimeter

Sampling Kalorimeter

Possible setups

Scintillators as active layer; signal readout via photo multipliers

Sampling Kalorimeter: ATLAS LAr

Accordion structure: No gaps, cracks, holes in ϕ

Wechselwirkung von Hadronen mit Materie

Wechselwirkung von Hadronen mit Materie

2nd Schritt:

Hadronische Schauer

Cascade energy distribution: [Example: 5 GeV proton in lead-scintillator calorimeter]

- lonization energy of charged particles (p,π,μ)
- Electromagnetic shower (π^0 , η^0 ,e)

Neutrons

Photons from nuclear de-excitation

Non-detectable energy (nuclear binding, neutrinos)

1980 MeV [40%] 760 MeV [15%] 520 MeV [10%] 310 MeV [6%] 1430 MeV [29%]

Subject to large fluctuations

5000 MeV [29%]

Hadronische Schauer

ATLAS Tile Calorimeter

Particle ID

Schematic of a typical HEP calorimeter

Typical HEP detector consist of two calorimeter systems: electromagnetic and hadronic

Different setups chosen for optimal energy resolution

But: Hadronic energy measured in both parts of the calorimeter

Needs careful consideration of different response

Resolution: Master Formula

$$\frac{\sigma(E)}{E} = \frac{a}{\sqrt{E}} \oplus \frac{b}{E} \oplus c$$

- a stochastic term (fluctuations)
- b noise term
- c constant term (miscalibration, inhomogenities)

Kalorimeter sind gut zur Messung hochenergetischer Teilchen

Detektorsysteme - Experimente

- Viele Beschleunigerexperimente sind Vielzweckexperimente
- Hohes Anforderungsprofil an die Detektoren
- Moderne Detektoren sind immer Kombinationen von verschiedenen Technologien

Typical Collider Detectors

ATLAS im "Rohbau"

Der Innere Detektor

- Impulsmessung: $\sigma/p_T \approx 5 \cdot 10^{-4} p_T \oplus 0.001$
- Impact Param.: $\sigma(d0) \approx 15 \ \mu m @ 20 \ GeV$

Rekonstruktion, Identifikation und Impulsmessung geladener Teilchen

Das Kalorimetersystem

Elektronen, Photonen und Hadronen

- $O(E)/E = 10\%/\sqrt{E \oplus 0.7\%}$ • EM:
- Had. (jets): $\sigma(E)/E = 50\%/\sqrt{E \oplus 3\%}$

Das Myonsystem

Präzisionskammern

- Driftröhren
- 360 000 Kanäle

Triggerkammern

- Resistive Plate chambers
- Thin Gap chambers
- 680 000 Kanäle

Identifikation und Impulsmessung von Myonen

Auflösung

• $\Delta p_T/p_T < 10\%$ bei 1 TeV

Quellen

- Skript: D. Wegener: Detektoren
- <u>http://www.e5.physik.uni-dortmund.de/index.php?</u>
 <u>option=com_content&view=category&layout=blog&id=55&Itemid=93</u>