TMVA ROOT Seminar

Yukai Zhao

January 10, 2024

₹ 990

- Introduction
- Data preprocessing
- TMVA structure
 - Decision Trees
 - Neural Networtk
 - Convolutional Neural Network

arXiv:physics/0703039 (Data Analysis, Statistics and Probability) CERN-OPEN-2007-007 TMVA version 4.3.0 for POOT >= 6.1200 May 28, 2020 (https://root.cern/strave

TMVA 4 Toolkit for Multivariate Data Analysis with ROOT

Users Guide

K. Albertsson, S. Gleyzer, A. Hoecker, L. Moneta, P. Speckmayer, J. Stelzer, J. Therhaag, E. von Toerne, H. Voss, S. Wunsch

TMVA User Guide

Definition:

Multivariate Data Analysis (MVA) is a statistical and computational approach that involves the simultaneous analysis of multiple variables to understand complex relationships and patterns within a dataset.

TMVA = Toolkit for Multivariate Analysis

 \rightarrow Important part of the ROOT data analysis framework.

Example:

Goal: Differentiate $B_s^0 \to \phi \gamma (\to e^+ e^-)$ from $B_s^0 \to \phi J/\psi (\to e^+ e^-)$

What we obtain from experiment are parameters such as $(p_T, E, m, \text{flight distance}, ...)$

Decorrelation

Correlation makes it harder to learn the underlying structure

 \rightarrow Utilizing covariance matrix $x' \mapsto (C)^{-1} x$

Data preprocessing

Primarily used for machine learning applications Preprocessing to O(1) numbers, e.g. $\frac{x-\mu}{x_{max}-x_{min}}$ \rightarrow Improved Convergence and Better Interpretability

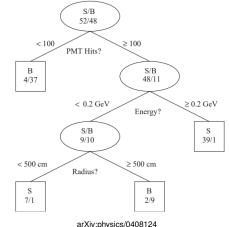
Data seperation

Dataset split into $\sim 80\%$ training data, $\sim 20\%$ validation data Using validation data to test for overfitting

イロト イ押ト イヨト イヨトー

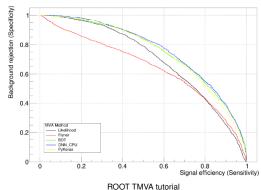
(Boosted) Decision Tree

Supervised learning: Have events and know if it's signal and background Example: Selection of v_e from a beam of v_μ using the MiniBooNE Cerenkov detector


(1)

(2)

signal efficiency, or true positive rate $\epsilon_{\rm S} \equiv s^{\rm S-tagged}/s^{\rm truth}$ background mis-id rate, or false positive rate $\epsilon_{\rm B} \equiv b^{\rm S-tagged}/b^{\rm truth}$


TMVA

$$purity = precision = \frac{s^{S-tagged}}{s^{S-tagged} + b^{S-tagged}}$$
$$accuracy = \frac{s^{S-tagged} + b^{B-tagged}}{s^{truth} + b^{truth}}$$

Receiver Operating Characteristic (ROC) curve

ROC curve graphical representation of the trade-off between signal efficiency and background rejection

Signal efficiency vs. Background rejection

```
void TMVA_Higgs_Classification() {
   auto outputFile = TFile::Open("Higgs_ClassificationOutput.root", "RECREATE");
// Declare Factory. Main object for TMVA. All functions called later are from this class
   TMVA::Factory factory("TMVA_Higgs_Classification", outputFile,
   TString inputFileName = "Higgs_data.root";
   inputFile = TFile::Open( inputFileName );
   TTree *signalTree
                     = (TTree*)inputFile->Get("sig_tree");
   TTree *backgroundTree = (TTree*)inputFile->Get("bkg_tree");
   signalTree->Print();
   TMVA::DataLoader * loader = new TMVA::DataLoader("dataset");
   loader->AddVariable("m_jj");
   loader->AddVariable("m_jjj");
   loader->AddVariable("m_lv");
   loader->AddVariable("m_jlv"):
   loader->AddVariable("m_bb");
```

```
/ You can add an arbitrary number of signal or background trees
  loader->AddSignalTree ( signalTree,
                                             signalWeight
  loader->AddBackgroundTree( backgroundTree, backgroundWeight );
  loader->PrepareTrainingAndTestTree( mycuts, mycutb,
  //7000 training events for signal and background, random slected, normalization by weights
/Boosted Decision Trees
f (useBDT) {
  factory.BookMethod(loader,TMVA::Types::kBDT, "BDT",
  factory.TrainAllMethods();
  factory.TestAllMethods();
  factory.EvaluateAllMethods();
  auto c1 = factory.GetROCCurve(loader);
  c1->Draw();
  outputFile->Close();
```

\Rightarrow obtain weights file

```
TMVA::Tools::Instance();
```

```
TMVA::Reader *reader = new TMVA::Reader("!Color:!Silent");
```

```
float m_jj, m_jjj;
reader->AddVariable("m_jj", &m_jj);
reader->AddVariable("m_jjj", &m_jjj);
```

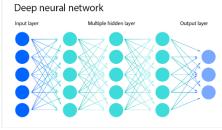
reader->BookMVA("cut", "dataset/weights/TMVAClassification_CutsSA.weights.xml");

```
TFile *input = TFile::Open("root.root");
TTree *theTree = (TTree *) input->Get("tree");
double_t userVar1, userVar2;
theTree->SetBranchAddress("m_jj", &userVar1);
theTree->SetBranchAddress("m_jjj", &userVar2);
```

```
for (Long64_t ievt = 0; ievt < theTree->GetEntries(); ievt++) {
    theTree->GetEntry(ievt);
    m_jj = userVar1;
    m_jjj = userVar2;
    Bool_t passed = reader->EvaluateMVA("cut", .99);
    if (passed) { // do something
    }
}
```

Neural Networks can be seen as a fit function with huge number of model parameters θ

$$f_{\theta}(x) \sim f(x) \tag{3}$$


Using many layers to perform the "fit":

$$x \to x^{(1)} \to x^{(2)} \to \dots \to x^{(n)} \equiv f_{\theta}(x) \tag{4}$$

where the layers are defined as:

$$x^{(n-1)} \to x^{(n)} := W^{(n)} x^{(n-1)} + b^n$$
 (5)

Neural network learns network weights *W* and bias *b* through **Loss function** $\mathcal{L} = |x_{\text{pred}} - x_{\text{true}}|$

Deep neural network

< □ > < □ > < □ >

CNN primarily used for image classification: Zero padding, Convolution, Feature maps, Pooling

Feature

8@39x39

maps

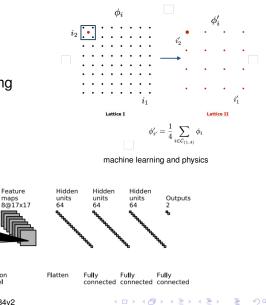
Convolution

4x4 kernel

TMVA

Inputs

1@40x40


Feature

8@38x38

maps

Convolution

4x4 kernel

Convolution

4x4 kernel

Feature

8@18x18

maps

MaxPooling Convolution

4x4 kerne