
  



  

Books / Material

 - Books on Machine Learning
    ○ Ian Goodfellow and Yoshua Bengio and Aaron Courville, MIT Press Book 
       Deep Learning
       free online http://www.deeplearningbook.org/ 
    ○ Aurelien Geron, Hands-On Machine Learning with Scikit-Learn and
       TensorFlow
    ○ Francois Chollet, Deep Learning with Python
    ○ Deep Learning for Physics Research, Martin Erdmann, Jonas Glombitza, 
       Gregor Kasieczka, Uwe Klemradt             (available via Kindle)

 - Papers
    ○ A high-bias, low-variance introduction to Machine Learning for physicists
        https://arxiv.org/abs/1803.08823
    ○ Machine learning and the physical sciences
        https://arxiv.org/abs/1903.10563

   - Credits: The talk contains material of a tutorial at the 3rd IML workshop  2019 at 
     CERN by Yannik Rath, Train-the-Trainer Workshop "Deep Learning Basics" 
     in February 2023 and “Introduction to Data Analysis and Machine Learning in Physics” 
     by Jörg Marks and Klaus Reygers in April 2023

 

http://www.deeplearningbook.org/
https://arxiv.org/abs/1803.08823
https://arxiv.org/abs/1903.10563


  

Introduction
• ChatGPTs opinion on the relation of Artificial Intelligence (AI) Machine Learning (ML) 
 and Deep Learning 

  AI (Artificial Intelligence) is a broad field that encompasses a range of techniques and
  approaches for developing intelligent systems. Machine Learning (ML) is a subset of AI that
  focuses on teaching machines to learn from data and make predictions or decisions without
  being explicitly programmed. Deep Learning (DL) is a subset of ML that uses artificial neural
  networks with many layers to learn increasingly abstract features from data, and has 
  achieved significant breakthroughs in areas such as computer vision, natural language
  processing, and robotics. Therefore, DL is a specific type of ML, and ML is a specific type
  of AI.
  Question: Where are you in this hirarchy?
  As an AI language model, I am built using various ML techniques, such as deep learning and
  natural language processing. Therefore, I am a subset of AI, specifically falling under the
  category of ML-based AI.

•  Stable Diffusion 
  is a latent text-to-image diffusion model 
  capable of generating photo-realistic 
  Images given any text input 
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Categories of Machine Learning

• Machine Learning types are closely related to data available for the task

 - Supervised Learning 
   Here the model is trained on a labeled dataset, each data has an associated target 
   variable or label. The goal of the model is to learn a mapping between the input features 
   and the output label   →  make accurate predictions on new, unseen data.

 - Unsupervised Learning 
   The model is trained on unlabeled data.The goal of the model is to find patterns and 
   structure in the data, such as clusters, associations, or dependencies.

 - Reinforcement  Learning 
   The model learns to make decisions based on feedback it receives. The goal is to maximize
   a reward signal (a score or a profit)

 - Transfer Learning 
   A technique in machine learning where a pre-trained model is used as a starting point for a
   new task, rather than training a new model from scratch. Typically a pre-trained model has
   already learned useful features from a large dataset, that is then used for a new task with
   only a small amount of additional training data.



  

Multilayer Perceptron 

• Forward propagating perceptron

    

 Idea:  minimize a cost function to determine the weights and bias of the perceptron
 by comparing the predicted output and the true output.

        →  obtain a relation between the multidimensional input parameter
              space and some output 
 
 The input of the perceptron is passed through a non linear activation function, which 
 determines the output of the perceptron. There is only a contribution to the  
 perceptron if a threshold value is reached.

∫

input
weight

sum
non linearity

output

bias

The bias term shifts the activation
independent of the input.

Activation function



  

Multilayer Perceptron 

• Activation function
  
 - Activation functions are applied to each node of a neural network
 
 - Introduce non linearities into the network  →  allows to approximate complex shapes 

03_ml_basics_activation.ipynb

https://www.physi.uni-heidelberg.de/~marks/ml_einfuehrung/Beispiele/03_ml_basics_activation.ipynb


  

Deep Neural Networks (DNN)
• Single layer neural network

    

• Deep neural network

input hidden output

2nd element hidden layer 1 :

x x… x x…

ith element hidden layer k :

input hidden output

ith output :

nodes



  

Deep Neural Networks (DNN)
• Single layer neural network

    

• Deep neural network

input hidden output

2nd element hidden layer 1 :

x x… x x…

ith element hidden layer k :

input hidden output

ith output :

● Have to apply activation functions 
on nodes in each hidden layer and
the final output layer 

Non-linear activation functions 
are really the key  

Many different applications and data specific neural networks were developed

                →  Deep Learning: training of a deep neural network 



  

Deep Neural Networks (DNN)

https://towardsdatascience.com/deep-learning-framework-power-scores-2018-23607ddf297a

(Deep) Neural Network

• Deep learning
  - Part of a broader family of machine learning methods based on artificial neural networks 
    that use multiple layers to progressively extract higher level features from raw input 

• Deep neural network 
  - Network with an input layer, at least a hidden layer and  an output layer
  - Each layer performs specific types of sorting and ordering in a process that some refer to  
    as “feature hierarchy” 
  - Deal with unlabeled or unstructured data
  - Algorithms are called deep if the input data is passed through a series of hidden layers with
    nonlinearities (nonlinear transformations)  before it becomes output.

• Most Deep Learning frameworks (user interface) are based on Python   
                    →  TensorFlow and Keras are one of the most popular frameworks
                      →   scikit-learn
                      →   PyTorch

Hidden Layer(s)

https://towardsdatascience.com/deep-learning-framework-power-scores-2018-23607ddf297a


  

Scikit learn

• Scikit-learn is an open-source machine learning library for 
 Python   https://scikit-learn.org/stable/

 ○ Current version 1.6.1 
 ○ Includes simple tools for data mining and analysis
 ○ Software is based on NumPy SciPy and matplotlib

• Various classification, regression and clustering algorithms
  Many algorithms are included: k-nearest neighbors, multi-layer, perceptrons, support vector
  machines, random forests, gradient boosting, k-means

•  Dimensionality reduction with PCA, feature selection, non-negative matrix 
  factorization

•  Model selection  with comparing, validating and choosing parameters and models.

•  Preprocessing:  feature extraction and normalization

• Examples from various areas are available via the web site

https://scikit-learn.org/stable/


  

Introduction to Tensorflow
TensorFlow (TF), developed by the Google Brain team, is an open source software 
library for numerical computation using data flow graphs

 - Tensors are multidimensional data, e.g a rank-0 tensor is a scalar, a rank-1 tensor is a
    vector, a rank-2 tensor is a matrix, ….

 - Tensors represent in deep learning algorithms  input data, model parameters and    
    intermediate activations of the model during training and inference. They can be created 
    and manipulated using TensorFlow operations, and are passed between operations

 - TF implements standard mathematical operations on tensors, as well as many  
   operations specialized for machine
   learning

 - TF runs on CPU, GPU and TPU

 - TF handles datasets, splitting 
    data in test and training samples
    and compiles models 

 - TF implements automatic 
    differentiation (autodiff) to compute
    loss functions

 -  Processes training loops and
    keeps track of weights 

source google  



  

Computational Graphs 

• Computational graphs are the basic concept of TensorFlow (TF)

- Nodes in the graph represent mathematical operations
- Edges are represented by multidimensional data arrays (tensors) which communicate
  between the nodes
- The nodes take 1 or more input tensors, does the computation and produces 1 or more
  output tensor which are then passed on to the next nodes
- TensorFlow can optimize the graph by reordering and merging operations, eliminating
   redundant computations, and parallelizing operations
-  Computational graph can be modified dynamically during runtime, allowing to build models
   that can adapt to different inputs and perform different computations depending on the input
-  Computational graph can be visualized using tools like TensorBoard, to understand the 
   structure of your model

• Eager execution → Calculations are performed on demand (as other python code) 

 

Graph:  S. Wunsch, IML workshop, 2019

           Neural Network                →             Computational Graph 



  

Introduction to Tensorflow

• Tensors                                  for details, see https://www.tensorflow.org/guide/tensor
  rank_0_tensor = tf.constant(4)                # int32 tensor
 rank_1_tensor = tf.constant([2.0, 3.0, 4.0])  # float32 tensor
 rank_3_tensor = tf.constant([                 # int32 tensor 
  [[0, 1, 2, 3, 4],                            # shape(3,2,5)
   [5, 6, 7, 8, 9]],
  [[10, 11, 12, 13, 14],
   [15, 16, 17, 18, 19]],
  [[20, 21, 22, 23, 24],
   [25, 26, 27, 28, 29]],])

 - can contain also complex and string
  - can be created with arbitrary dimensions
    rank_4_tensor = tf.zeros([3, 2, 4, 5]) 

 - axis are refered to by their indices
  important:    
    keep in mind the meaning
 

https://www.tensorflow.org/guide/tensor


  

Introduction to Tensorflow
• Tensor operations                               
 - Export and import tensors to numpy arrays
  tensor = tf.constant([[1,2,3], [4,5,6], [7,8,9]]) # rank 3 tensor
  arr = tensor.numpy()                              # numpy array

  arr = np.array([[1,2,3], [4,5,6], [7,8,9]])       # numpy array
  tensor = tf.constant(arr)                         # imported tensor

 - Accessing parts of tensors via numpy
  rank_2_tensor[1, 1].numpy()         # access single tensor elements
  rank_2_tensor[-1, :].numpy()        # last row
  rank_2_tensor[1:, :].numpy()        # skip first row 
  rank_2_tensor[:, 1].numpy()         # 2nd column 

 - Reshaping of tensors, a new tensor is created pointing to the same data
  rank_3_tensor = tf.reshape(rank_3_tensor, [-1]) 
  -1 means, shape it to whatever fits  → in this case a 1 D tensor is created
  tf.Tensor([ 0  1  2  3  4……. 26 27 28 29], shape=(30,), dtype=int32)
  tf.reshape(rank_3_tensor, [3*2, 5]) # reshaping to (3x2)x5
  tf.reshape(rank_3_tensor, [3, -1])  # reshaping to 3x(2x5)
  Axis are swaped using tf.transpose 

 - Tensors are rectangular structures, but there is tf.RaggedTensor (a non
    rectangular structure) and SparseTensor (only few elements are nonzero)
 



  

Introduction to Tensorflow
• Tensor operations

 - Basic math on tensors
    tf.add(a,b) and tf.multiply(a,b)    # elementwise operation 
    tf.matmult(a,b)                     # matrix multiplication
  tf.reduce_sum(a)                    # Sum all elements in the tensor
  tf.square(a)                        # Square all elements
  tf.divide(b, a)                     # Element-wise division
  tf.negative(a)                      # Element-wise negation
  tf.abs(tf.constant([-1, 2, -3, 4], dtype=tf.float32))  
                                      # Element-wise absolute value

  c = tf.constant([[4.0, 5.0], [10.0, 1.0]])
  tf.reduce_max(c)               # Find the largest value
  tf.math.argmax(c)              # Find the index of the largest value
  tf.nn.softmax(c)               # Compute softmax from tf.nn module

  rank_3_tensor.dtype            # type of the elements  dtype:'int32' 
  rank_3_tensor.ndim             # number of axes        3
  rank_3_tensor.shape            # shape of tensor       (3, 2, 5) 
  rank_3_tensor.shape[0]         # elements along axis 0 of tensor
  rank_3_tensor.shape[-1]        # elem along the last axis of tensor  
  tf.size(rank_3_tensor).numpy() # total number of elements



  

Introduction to Tensorflow
• Tensor operations

 - Broadcasting is a feature in TensorFlow that allows operations to be performed on 
   tensors of different shapes, so that there is no need to manually reshape tensors 
   to match each other.
   Broadcasting works by replicating tensor elements along one or more dimensions
   to match the shape of the other tensor(s) in the operation. 
   Broadcasting rule:
   ○ If the two tensors have the same rank, they are compatible if their shapes are    
      equal in each dimension.
   ○ if the two tensors have different ranks, the smaller tensor is broadcast to match 
      the shape of the larger tensor. The smaller tensor is pre-padded with 1s on the 
      left until it has the same rank as the larger tensor.
   ○ If the two tensors have different shapes and cannot be broadcasted according to
      rules 1 and 2, an error is raised.

  - Example of broadcasting in TensorFlow:          
  import tensorflow as tf
  a=tf.constant([[1,2,3], [4,5,6]])     # Define 2 tensors with different shapes
  b=tf.constant([10, 20, 30])
  c = a * b                                    # Perform element-wise multiplication using broadcasting
  print(c)                  [[ 10  40  90]
                             [ 40 100 180]],shape=(2, 3),dtype=int32)

03_ml_basics_tf_broadcasting.ipynb

https://www.physi.uni-heidelberg.de/~reygers/lectures/2023/ml/examples/03_ml_basics_tf_broadcasting.ipynb


  

Introduction to Tensorflow                     

• Variables in TF  

- Variables are created and tracked via the tf.Variable class, they can be modified 
  after intialization

  tensor = tf.constant([[1.0, 2.0], [3.0, 4.0]])
  variable = tf.Variable(tensor)     # same type as the initialization
  variable.numpy()                   # convert to numpy   
  tf.convert_to_tensor(variable)     # convert to a tensor   
  tf.math.argmax(variable))          # index of highest value 

  b = tf.Variable([1, 2, 3])         # creates a variable tensor 
  b.assign_add([1, 1, 1])            # and then modify its values 
  a = tf.Variable([2.0, 3.0])        # create variable a
  b = tf.Variable(a)                 # Create b based on value of a
  a.assign([5, 6])                   # asign a new value to a
  a.assign_add([2,3]).numpy()        # add element wise to a
  a.assign_sub([2,3]).numpy()        # subtract element wise from a 

  a = tf.Variable([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
  b = tf.Variable([[1.0, 2.0, 3.0]])
  k = a*b                            # element-wise multiply

  a = tf.Variable([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
  b = tf.constant([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]])
  c = tf.matmul(a, b)                # new tensor



  

Introduction to Tensorflow
• Gradients and differentiation in TF

 To differentiate automatically, TF needs to remember what operations happen in
 which order during the forward pass. In backward pass the list of operations is done
 in reverse order. GradientTape.gradient(target, sources) is used 
 to calculate the gradient of some target (often a loss) relative to some source. 
 - Example with a scalar
  x = tf.Variable(3.0)               # variable  = 3 
  with tf.GradientTape() as tape:
     y = x**2
  dy_dx = tape.gradient(y, x)        # dy = 2x * dx 
  dy_dx.numpy()                      # convert to a number     = 6.0 

 - Example with tensors
  w = tf.Variable(tf.random.normal((3, 2)), name='w')
  b = tf.Variable(tf.zeros(2, dtype=tf.float32), name='b')
  x = [[1., 2., 3.]]
  with tf.GradientTape(persistent=True) as tape:
     y = x @ w + b    # tape can be used multiple times to calc grad
     loss = tf.reduce_mean(y**2) # get the mean value
 [dl_dw, dl_db] = tape.gradient(loss, [w, b]) # gradients to both vars

03_ml_basics_tf_differentiate.ipynb

https://www.physi.uni-heidelberg.de/~marks/ml_einfuehrung/Beispiele/03_ml_basics_tf_differentiate.ipynb


  

Machine Learning Datasets
• Machine Learning datasets in TF 

 - TensorFlow provides several built-in datasets for machine learning tasks from
   various areas and different topics, e.g.  3d - 2d image detection, classification
   and generation, categorical solutions, abstractive text summarization, anomaly 
   detection and  language modeling
   detailed infos in https://www.tensorflow.org/datasets/catalog/overview

 - cached locally in ~/tensorflow_datasets in one directory per dataset
  import tensorflow as tf
  (x_train,y_train),(x_test,y_test)=tf.keras.datasets.mnist.load_data()

 - Example:  import horses_or_humans dataset, select horses and preprocessing 
  import tensorflow_datasets as tfds
  dataset, info = tfds.load('horses_or_humans', with_info=True)
  horse_ds = dataset['train'].filter(lambda x: x['label'] == 0)        # horses
  horse_examples = horse_ds.take(5)                 # 5 horses from the dataset

  train_dataset, valid_dataset = tfds.load('horses_or_humans', 
                           split=['train','test'], as_supervised=True)

  def preprocess(image, label):
    image = tf.cast(image, tf.float32)      
    image = tf.image.resize(image, (IMG_SIZE, IMG_SIZE))#resize to a fixed size
    image = image / 255.0       #rescale the pixel values to be between 0 and 1    
    label = tf.one_hot(label, NUM_CLASSES)                        #asign labels 
    return image, label

03_ml_basics_display_HorseOrHuman.ipynb

https://www.tensorflow.org/datasets/catalog/overview
https://www.physi.uni-heidelberg.de/~marks/ml_einfuehrung/Beispiele/03_ml_basics_display_HorseOrHuman.ipynb


  

Machine Learning Datasets
• Input data usually has to be pre processed 

  - Needed for numerical stability

  - Want to have the mean around zero and the variance order of one 

     ○  gaussian like distributed data →  subtract mean and divide by standard deviation

     ○  data peaking at zero → apply  logarithm  and then  subtract mean and divide by
                                               standard deviation

• Example datasets in the  MNIST database (Modified National Institute of Standards and
 Technology database) used for machine learning and practicing techniques
 The data can be loaded directly in Tensorflow using e.g. tf.keras.datasets.mnist.load_data()   

 - MNIST handwriting
   60000 images 
     

      

 - Fashion-MNIST dataset
   60000 images

28 x 28 array with greyscale 
values, 0 – 255
   → preprocessing:  divide by 255

use pixel array and label  

28 x 28 array with greyscale 
values, 0 – 255 and labels  

- Input data needs often reshaping 

03_ml_basics_display_HandWrt.ipynb

03_ml_basics_display_Clothing.ipynb

https://www.physi.uni-heidelberg.de/~marks/ml_einfuehrung/Beispiele/03_ml_basics_display_HandWrt.ipynb
https://www.physi.uni-heidelberg.de/~marks/ml_einfuehrung/Beispiele/03_ml_basics_display_Clothing.ipynb


  

Machine Learning Datasets
• Example datasets for classification applications

 - Iris dataset from Fisher (1936) with 3 classes, Iris Setosa, Iris Versicolour and Iris Virginica
   with 50 instances each. There are 4 attributes:

   ▫ sepal length [cm]
   ▫ sepal width [cm]
   ▫ petal length [cm]
   ▫ petal width [cm]

   The application is for classification
                                                                                      https://archive.ics.uci.edu/ml/datasets/iris

   
 - Cifar-10 and Cifar-100 dataset of 32 x 32 color pictures in 10 classes (100 classes) with 
   60000 images per class and 
   10000 test images for Cifar-10.

   The 100 classes in the CIFAR-100 are 
   grouped also into 20 superclasses. There are
   500 training images and 100 testing images
   per class 

   https://www.cs.toronto.edu/~kriz/cifar.html

     

  

  

https://archive.ics.uci.edu/ml/datasets/iris
https://www.cs.toronto.edu/~kriz/cifar.html


  

Exercise 1
• Read/load the cifar10 dataset using tf.keras.datasets
 There are the following classes
 class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog',
               'frog', 'horse', 'ship', 'truck']

 Display the first 25 images

• They are color images, try to convert them to grey scale images by reducing the 
 3 colors (r,g,b) to one grey scale with the formula
 gray = 0.2989 * r + 0.5870 * g + 0.1140 * b
 Normalize the data to the interval  [0,1] 
 Display the first 25 greyscale images

03_ml_basics_ex_2_display_Cifar10_Greyscale.ipynb

https://www.physi.uni-heidelberg.de/~marks/ml_einfuehrung/Beispiele/03_ml_basics_ex_2_display_Cifar10_Greyscale.ipynb
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DNN Training
• Metric

 Machine learning datasets contain truth information to allow an independent quality measure 
 of the neural network. Metrics are typically defined in terms of the neural network model's 
 predictions and the true labels.  They quantify how well the model is doing at its task.

 - accuracy:  number of correctly classified data points over the total number.
 - precision: ratio of true positive (TP) predictions to the total number of positive (TP + false
   positive) predictions.
 - recall: ratio of true positives to the sum of true positives and false negatives
 - F1 score: F1 score = 2 * (precision * recall) / (precision + recall)

• Splitting the dataset in 2 or 3 parts

  - Traing dataset – Do all the parameter determination (training) of the neural network. 

  - Validation dataset – Used to evaluate the model during training and to tune its
    hyperparameters ( e.g. handled by tensorflow during minimization)

  - Test dataset – Use it for evaluating the optimized parameters and the final performance 
    of the model after it has been fully trained. 

  Splitting:     Traing:Validation:Test      →   60%:20%:20% 

    



  

DNN Loss Function
• Quantifying quality/success of a neural network
  - Compare predicted output with the true output → loss function

    

- Empirical loss
  total loss over the entire dataset

- Cross entropy loss for models
  with output 

- Mean squared error loss for regression with continuous real  numbers

 predicted   true

 true           predicted                  true                    predicted

 true           predicted     
   

test minimizer in python:
03_ml_basics_minimizer.ipynb

https://www.physi.uni-heidelberg.de/~marks/ml_einfuehrung/Beispiele/03_ml_basics_minimizer.ipynb


  

DNN Minimization
• Find the network weights such that the loss function is minimal 
  

 - Initialize weights randomly
 - Loop until convergence:
   
   compute

   update weights 

 - return weights

 - derivative calculation with chain rule 
   
     

backpropagation



  

Example - Backward Propagation
●  Finding weights that minimizes the error function
 

 1

True Output Prediction

error = 0.5 (Prediction - True)2

 Change weights to reduce the error function: 

prediction =

backward propagation updates the weights by calculating the gradient of the error function with 
respect to the neural network’s weights.



  

Example - Backward Propagation
●  New weights after the backward propagation 

updated prediction after backward 
propagation  



  

Introduction to Deep Neural Networks
• Find the network weights such that the loss function is minimal 
  

 - Initialize weights randomly
 - Loop until convergence:
   
   compute

   update weights 

 - return weights

 - derivative calculation with chain rule 

   
     

backpropagation



  

DNN Minimization
• Training strategies

  - Minimization: difficult to converge to a global minimum with large number of parameters.

  - Learning rate   
                                              
                                                                       is called learning rate
  

                                                                                          
       choosing the right learning rate is                            learning rate is too large
       important for convergence 

   - Adaptive moment estimation (Adam) uses adaptive learning rates which reduces α 
     during minimization for each parameter separately

                                                                                   β    change in W from previous step



  

DNN Minimization
• Output to the last node(s)

  - The output function(s) of the neural network (nodes in the final layer) are determined by 
    activation functions. Their choice depends on the problem to be solved.

  - For binary classification problems the sigmoid function is used and interpreted as
    probability.

  - For regression problems a linear activation function or no activation function is used.

  - For multi-class classification problems the softmax function is mostly in use and gives 
    a probability distribution over the classes.
    Softmax assigns decimal probabilities to each class i of a multi class problem with its N  
    multiclass output values:



  

Exercise 2
The following page illustrates a classification task which can be configured online 
via the web page  https://playground.tensorflow.org/  
- Try different activation functions and change the learning rate

https://playground.tensorflow.org/


  

Example Python Code of a Neural Network

• A simple feed forward neural network with one hidden layer
 is programmed in pure python without using machine 
 learning libraries 

03_ml_basics_simple_neural_network.ipynb

https://www.physi.uni-heidelberg.de/~marks/ml_einfuehrung/Beispiele/03_ml_basics_simple_neural_network.ipynb


  

Exercise 3
• Modify the activation function of the simple neural network in python from the
 sigmoid function to the Rectified Linear Unit (ReLU) function     

03_ml_basics_simple_neural_network_exercise_solution.ipynb

https://www.physi.uni-heidelberg.de/~marks/ml_einfuehrung/Beispiele/03_ml_basics_simple_neural_network_exercise_solution.ipynb


  

DNN Minimization
• Minimizer algorithms: difficult to converge to global minimum with large number of parameters

  - various minimizers are available in the tf.keras.optimizers module of TensorFlow
•

    ▫ Stochastic Gradient Descent (SGD)
       gradient descent algorithm updates the model parameters (weights and biases) in small batches 
       based on the gradients computed on each batch in the direction of the negative gradient scaled by α
    ▫ Momentum optimizer
      updates the parameters by computing the gradient of the loss function with respect to the parameters 
       and adjusting the parameters in the direction of the negative gradient taking into account previous 
       updates to get the direction and magnitude
    ▫ AdaGrad optimizer
      adapt the learning rate for each parameter based on the historical gradient by keeping a
      running sum of the squared gradients for each parameter (accumulator) and divide the
      learning rate by the square root of the accumulator for each parameter, which adapts it. 
    ▫ RMSProp optimizer
      In RMSprop (Root Mean Square Propagation) the learning rate is adaptively scaled for
      each weight parameter based on the root mean square (RMS) of the gradients. This 
      reduces the learning rate for parameters with large and rapidly changing gradients
    ▫ Adaptive Moment Estimation (Adam)
    ▫ AdaDelta optimizer
    ▫ Ftrl optimizer

  - Choice of optimizer often depends on the specifics of the problem
               →   experiment with different optimizers 

03_ml_basics_minimizer_methods.ipynb

https://www.physi.uni-heidelberg.de/~marks/ml_einfuehrung/Beispiele/03_ml_basics_minimizer_methods.ipynb


  

DNN Minimization 
• Start values for the neural network parameters are needed to achieve good 
 performance and convergence speed 

  - Random initialization:  sample from a uniform or normal distribution with zero mean and 
    a small standard deviation.
  - Xavier initialization: randomly sampled from a normal distribution with  zero mean, 
    the standard deviation scales with 1 / sqrt (number of input layers)
  - Pretraining initialization: If a model has been pretrained, the weights can be initialized 
    from the pretrained model.  
  - In general:    
        var(input) ≈ var(output)    with    var ≈ 2 / (N

input nodes
 + N

output nodes
)  

        draw from gaussian or uniform distributions within a range  

• Usually the input range of the variables differ largely  →  scale input variables

  - Important because the model converges faster and improves its accuracy. 
  - Standardization: scales the input variables so that they have a mean of zero and 
    a standard deviation of one. 
  - Min-Max scaling: scales the input variables to a fixed range, usually between 0 and 1.
  - Robust scaling: scales the input variables using the median instead of the mean and
    standard deviation. To be used when the input variables have outliers or are not normally
    distributed. 

  - Perform de-correlation of input data



  

Examples - Deep Neural Networks
•  Example of a binary classification using TensorFlow (TF) 

  - Generate toy sample with 2 normalized gaussian distributions with mean (-1,-1) and (1,1)
  - Each sample gets a label to belong to one of the distributions
  - The data is combined to a training dataset 
  - The data is plotted and colored in blue and red according to their labels 
  - In TensorFlow a model is set up specifying the network  → shape of the input data, number 
    of neurons in each layer, the activation functions in each layer
  - The model is a sequential MLP model that consists of a series of layers stacked one on 
    top of the other.
  - In the next step the model is compiled → here we choose the optimizer, the loss function,
    and the metrics
    As optimizer we use adam
    As loss function we choose  BinaryCrossentropy() because we have 2 classes 
    of data. It measures the dissimilarity between the predicted probabilities of the model and 
    the true labels, which are either 0 or 1 for each example. The goal is to minimize this 
    dissimilarity, or loss, during the training process.
    accuracy as metric is calculated as the number of correct predictions divided by the total 
    number of predictions made by the model.
  - The data and labels are given to the fit method, also the training iterations and the 
    batch size. The model doesn't process the entire dataset at once, but rather in batches.
  - Loss and accuracy are plotted as number of iterations
  - Display classification results for sample points together with labeled data points  

03_ml_basics_tf_binary_classification_example.ipynb

https://www.physi.uni-heidelberg.de/~marks/ml_einfuehrung/Beispiele/03_ml_basics_tf_binary_classification_example.ipynb


  

Examples - Deep Neural Networks
•  Using the handwriting MNIST example with TensorFlow (TF)

  - Read in the dataset with a pre defined function in TF. There are 10 categories

  - Each sample has a label and the 28 x 28 pixel gray scale data array

  - The data is normalized and reshaped to a 1D array.

  - In TensorFlow a model is set up specifying a first dense layer with 512 nodes
    and a Rectified Linear Unit (ReLU) activation function. Dense means all nodes are 
    fully connected.  There is a second layer also with 512 nodes and ReLU activation.
    The 3rd layer is the output layer with 10 nodes and Softmax is used as activation.

  - As optimizer adam is used to find the minimum and accuracy as metrics

  - The data and labels are given to the fit method, also the training iterations and the 
    batch size. The model doesn't process the entire dataset at once, but rather in batches.

  - The weights of the output layer are plotted

  - Loss and Accuracy are plotted as number of iterations (epoch)

  - Test accuracy  =  0.98  

  - The data is plotted and true and predicted label are shown     

03_ml_basics_tf_mlp_mnist_digits.ipynb

https://www.physi.uni-heidelberg.de/~marks/ml_einfuehrung/Beispiele/03_ml_basics_tf_mlp_mnist_digits.ipynb


  

Examples - Deep Neural Networks
•  Overtraining: We observe a difference in loss and accuracy in training and test data
 

  - Don’t want the NN to rely heavily on 
    individual features 

  - The neural net learns features of the data 
     which are not existing. To prevent this 
     reduce  the number of nodes or refine the 
     model. 
  - There are methods to reduce the number 
     input nodes nodes: 
     tf.keras.layers.Dropout(p) 
  p = 0.5 half of the input nodes are dropped.
     



  

Examples - Deep Neural Networks
•  Overtraining: We observe a difference in loss and accuracy in training and test data
 

General idea: When multiple models describe the training data choose the simplest.

Add penalty terms to the loss function   →  L2 regularization

                                                                                weight decay

With kernel_regularizer=tf.keras.regularizers.l2(0.001) L2 regularization
can be added to the layer which applies a penalty term to the loss function of the model, 
based on the squared magnitude of the weights of the layer. 

Both methods can be switched on in the example 03_ml_basics_tf_mlp_mnist_digits.ipynb

https://www.physi.uni-heidelberg.de/~marks/ml_einfuehrung/Beispiele/03_ml_basics_tf_mlp_mnist_digits.ipynb


  

Exercise 4

Use the fashion mnist dataset and read it in tensorflow. Learn the different clothing
categories.
 - reshape the data to a 1D array and normalize it
 - set up an MLP with 10 output categories
 - plot the loss function and accuracy
 - Do you see overfitting? Try to get rid of overfitting effects

03_ml_basics_ex_4_mlp_clothing.ipynb

https://www.physi.uni-heidelberg.de/~marks/ml_einfuehrung/Beispiele/03_ml_basics_ex_4_mlp_clothing.ipynb
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