

Books / Material

 - Books on Machine Learning
 ○ Ian Goodfellow and Yoshua Bengio and Aaron Courville, MIT Press Book
 Deep Learning
 free online http://www.deeplearningbook.org/
 ○ Aurelien Geron, Hands-On Machine Learning with Scikit-Learn and
 TensorFlow
 ○ Francois Chollet, Deep Learning with Python
 ○ Deep Learning for Physics Research, Martin Erdmann, Jonas Glombitza,
 Gregor Kasieczka, Uwe Klemradt (available via Kindle)

 - Papers
 ○ A high-bias, low-variance introduction to Machine Learning for physicists
 https://arxiv.org/abs/1803.08823
 ○ Machine learning and the physical sciences
 https://arxiv.org/abs/1903.10563

 - Credits: The talk contains material of a tutorial at the 3rd IML workshop 2019 at
 CERN by Yannik Rath, Train-the-Trainer Workshop "Deep Learning Basics"
 in February 2023 and “Introduction to Data Analysis and Machine Learning in Physics”
 by Jörg Marks and Klaus Reygers in April 2023

http://www.deeplearningbook.org/
https://arxiv.org/abs/1803.08823
https://arxiv.org/abs/1903.10563

Introduction
• ChatGPTs opinion on the relation of Artificial Intelligence (AI) Machine Learning (ML)
 and Deep Learning

 AI (Artificial Intelligence) is a broad field that encompasses a range of techniques and
 approaches for developing intelligent systems. Machine Learning (ML) is a subset of AI that
 focuses on teaching machines to learn from data and make predictions or decisions without
 being explicitly programmed. Deep Learning (DL) is a subset of ML that uses artificial neural
 networks with many layers to learn increasingly abstract features from data, and has
 achieved significant breakthroughs in areas such as computer vision, natural language
 processing, and robotics. Therefore, DL is a specific type of ML, and ML is a specific type
 of AI.
 Question: Where are you in this hirarchy?
 As an AI language model, I am built using various ML techniques, such as deep learning and
 natural language processing. Therefore, I am a subset of AI, specifically falling under the
 category of ML-based AI.

• Stable Diffusion
 is a latent text-to-image diffusion model
 capable of generating photo-realistic
 Images given any text input

Introduction Machine Learning

Johannes Erdmann, Train the Trainer workshop 2023

Introduction Machine Learning

Johannes Erdmann, Train the Trainer workshop 2023

Categories of Machine Learning

• Machine Learning types are closely related to data available for the task

 - Supervised Learning
 Here the model is trained on a labeled dataset, each data has an associated target
 variable or label. The goal of the model is to learn a mapping between the input features
 and the output label → make accurate predictions on new, unseen data.

 - Unsupervised Learning
 The model is trained on unlabeled data.The goal of the model is to find patterns and
 structure in the data, such as clusters, associations, or dependencies.

 - Reinforcement Learning
 The model learns to make decisions based on feedback it receives. The goal is to maximize
 a reward signal (a score or a profit)

 - Transfer Learning
 A technique in machine learning where a pre-trained model is used as a starting point for a
 new task, rather than training a new model from scratch. Typically a pre-trained model has
 already learned useful features from a large dataset, that is then used for a new task with
 only a small amount of additional training data.

Multilayer Perceptron

• Forward propagating perceptron

 Idea: minimize a cost function to determine the weights and bias of the perceptron
 by comparing the predicted output and the true output.

 → obtain a relation between the multidimensional input parameter
 space and some output

 The input of the perceptron is passed through a non linear activation function, which
 determines the output of the perceptron. There is only a contribution to the
 perceptron if a threshold value is reached.

∫

input
weight

sum
non linearity

output

bias

The bias term shifts the activation
independent of the input.

Activation function

Multilayer Perceptron

• Activation function

 - Activation functions are applied to each node of a neural network

 - Introduce non linearities into the network → allows to approximate complex shapes

03_ml_basics_activation.ipynb

https://www.physi.uni-heidelberg.de/~marks/ml_einfuehrung/Beispiele/03_ml_basics_activation.ipynb

Deep Neural Networks (DNN)
• Single layer neural network

• Deep neural network

input hidden output

2nd element hidden layer 1 :

x x… x x…

ith element hidden layer k :

input hidden output

ith output :

nodes

Deep Neural Networks (DNN)
• Single layer neural network

• Deep neural network

input hidden output

2nd element hidden layer 1 :

x x… x x…

ith element hidden layer k :

input hidden output

ith output :

● Have to apply activation functions
on nodes in each hidden layer and
the final output layer

Non-linear activation functions
are really the key

Many different applications and data specific neural networks were developed

 → Deep Learning: training of a deep neural network

Deep Neural Networks (DNN)

https://towardsdatascience.com/deep-learning-framework-power-scores-2018-23607ddf297a

(Deep) Neural Network

• Deep learning
 - Part of a broader family of machine learning methods based on artificial neural networks
 that use multiple layers to progressively extract higher level features from raw input

• Deep neural network
 - Network with an input layer, at least a hidden layer and an output layer
 - Each layer performs specific types of sorting and ordering in a process that some refer to
 as “feature hierarchy”
 - Deal with unlabeled or unstructured data
 - Algorithms are called deep if the input data is passed through a series of hidden layers with
 nonlinearities (nonlinear transformations) before it becomes output.

• Most Deep Learning frameworks (user interface) are based on Python
 → TensorFlow and Keras are one of the most popular frameworks
 → scikit-learn
 → PyTorch

Hidden Layer(s)

https://towardsdatascience.com/deep-learning-framework-power-scores-2018-23607ddf297a

Scikit learn

• Scikit-learn is an open-source machine learning library for
 Python https://scikit-learn.org/stable/

 ○ Current version 1.6.1
 ○ Includes simple tools for data mining and analysis
 ○ Software is based on NumPy SciPy and matplotlib

• Various classification, regression and clustering algorithms
 Many algorithms are included: k-nearest neighbors, multi-layer, perceptrons, support vector
 machines, random forests, gradient boosting, k-means

• Dimensionality reduction with PCA, feature selection, non-negative matrix
 factorization

• Model selection with comparing, validating and choosing parameters and models.

• Preprocessing: feature extraction and normalization

• Examples from various areas are available via the web site

https://scikit-learn.org/stable/

Introduction to Tensorflow
TensorFlow (TF), developed by the Google Brain team, is an open source software
library for numerical computation using data flow graphs

 - Tensors are multidimensional data, e.g a rank-0 tensor is a scalar, a rank-1 tensor is a
 vector, a rank-2 tensor is a matrix, ….

 - Tensors represent in deep learning algorithms input data, model parameters and
 intermediate activations of the model during training and inference. They can be created
 and manipulated using TensorFlow operations, and are passed between operations

 - TF implements standard mathematical operations on tensors, as well as many
 operations specialized for machine
 learning

 - TF runs on CPU, GPU and TPU

 - TF handles datasets, splitting
 data in test and training samples
 and compiles models

 - TF implements automatic
 differentiation (autodiff) to compute
 loss functions

 - Processes training loops and
 keeps track of weights

source google

Computational Graphs

• Computational graphs are the basic concept of TensorFlow (TF)

- Nodes in the graph represent mathematical operations
- Edges are represented by multidimensional data arrays (tensors) which communicate
 between the nodes
- The nodes take 1 or more input tensors, does the computation and produces 1 or more
 output tensor which are then passed on to the next nodes
- TensorFlow can optimize the graph by reordering and merging operations, eliminating
 redundant computations, and parallelizing operations
- Computational graph can be modified dynamically during runtime, allowing to build models
 that can adapt to different inputs and perform different computations depending on the input
- Computational graph can be visualized using tools like TensorBoard, to understand the
 structure of your model

• Eager execution → Calculations are performed on demand (as other python code)

Graph: S. Wunsch, IML workshop, 2019

 Neural Network → Computational Graph

Introduction to Tensorflow

• Tensors for details, see https://www.tensorflow.org/guide/tensor
 rank_0_tensor = tf.constant(4) # int32 tensor
 rank_1_tensor = tf.constant([2.0, 3.0, 4.0]) # float32 tensor
 rank_3_tensor = tf.constant([# int32 tensor
 [[0, 1, 2, 3, 4], # shape(3,2,5)
 [5, 6, 7, 8, 9]],
 [[10, 11, 12, 13, 14],
 [15, 16, 17, 18, 19]],
 [[20, 21, 22, 23, 24],
 [25, 26, 27, 28, 29]],])

 - can contain also complex and string
 - can be created with arbitrary dimensions
 rank_4_tensor = tf.zeros([3, 2, 4, 5])

 - axis are refered to by their indices
 important:
 keep in mind the meaning

https://www.tensorflow.org/guide/tensor

Introduction to Tensorflow
• Tensor operations
 - Export and import tensors to numpy arrays
 tensor = tf.constant([[1,2,3], [4,5,6], [7,8,9]]) # rank 3 tensor
 arr = tensor.numpy() # numpy array

 arr = np.array([[1,2,3], [4,5,6], [7,8,9]]) # numpy array
 tensor = tf.constant(arr) # imported tensor

 - Accessing parts of tensors via numpy
 rank_2_tensor[1, 1].numpy() # access single tensor elements
 rank_2_tensor[-1, :].numpy() # last row
 rank_2_tensor[1:, :].numpy() # skip first row
 rank_2_tensor[:, 1].numpy() # 2nd column

 - Reshaping of tensors, a new tensor is created pointing to the same data
 rank_3_tensor = tf.reshape(rank_3_tensor, [-1])
 -1 means, shape it to whatever fits → in this case a 1 D tensor is created
 tf.Tensor([0 1 2 3 4……. 26 27 28 29], shape=(30,), dtype=int32)
 tf.reshape(rank_3_tensor, [3*2, 5]) # reshaping to (3x2)x5
 tf.reshape(rank_3_tensor, [3, -1]) # reshaping to 3x(2x5)
 Axis are swaped using tf.transpose

 - Tensors are rectangular structures, but there is tf.RaggedTensor (a non
 rectangular structure) and SparseTensor (only few elements are nonzero)

Introduction to Tensorflow
• Tensor operations

 - Basic math on tensors
 tf.add(a,b) and tf.multiply(a,b) # elementwise operation
 tf.matmult(a,b) # matrix multiplication
 tf.reduce_sum(a) # Sum all elements in the tensor
 tf.square(a) # Square all elements
 tf.divide(b, a) # Element-wise division
 tf.negative(a) # Element-wise negation
 tf.abs(tf.constant([-1, 2, -3, 4], dtype=tf.float32))
 # Element-wise absolute value

 c = tf.constant([[4.0, 5.0], [10.0, 1.0]])
 tf.reduce_max(c) # Find the largest value
 tf.math.argmax(c) # Find the index of the largest value
 tf.nn.softmax(c) # Compute softmax from tf.nn module

 rank_3_tensor.dtype # type of the elements dtype:'int32'
 rank_3_tensor.ndim # number of axes 3
 rank_3_tensor.shape # shape of tensor (3, 2, 5)
 rank_3_tensor.shape[0] # elements along axis 0 of tensor
 rank_3_tensor.shape[-1] # elem along the last axis of tensor
 tf.size(rank_3_tensor).numpy() # total number of elements

Introduction to Tensorflow
• Tensor operations

 - Broadcasting is a feature in TensorFlow that allows operations to be performed on
 tensors of different shapes, so that there is no need to manually reshape tensors
 to match each other.
 Broadcasting works by replicating tensor elements along one or more dimensions
 to match the shape of the other tensor(s) in the operation.
 Broadcasting rule:
 ○ If the two tensors have the same rank, they are compatible if their shapes are
 equal in each dimension.
 ○ if the two tensors have different ranks, the smaller tensor is broadcast to match
 the shape of the larger tensor. The smaller tensor is pre-padded with 1s on the
 left until it has the same rank as the larger tensor.
 ○ If the two tensors have different shapes and cannot be broadcasted according to
 rules 1 and 2, an error is raised.

 - Example of broadcasting in TensorFlow:
 import tensorflow as tf
 a=tf.constant([[1,2,3], [4,5,6]]) # Define 2 tensors with different shapes
 b=tf.constant([10, 20, 30])
 c = a * b # Perform element-wise multiplication using broadcasting
 print(c) [[10 40 90]
 [40 100 180]],shape=(2, 3),dtype=int32)

03_ml_basics_tf_broadcasting.ipynb

https://www.physi.uni-heidelberg.de/~reygers/lectures/2023/ml/examples/03_ml_basics_tf_broadcasting.ipynb

Introduction to Tensorflow

• Variables in TF

- Variables are created and tracked via the tf.Variable class, they can be modified
 after intialization

 tensor = tf.constant([[1.0, 2.0], [3.0, 4.0]])
 variable = tf.Variable(tensor) # same type as the initialization
 variable.numpy() # convert to numpy
 tf.convert_to_tensor(variable) # convert to a tensor
 tf.math.argmax(variable)) # index of highest value

 b = tf.Variable([1, 2, 3]) # creates a variable tensor
 b.assign_add([1, 1, 1]) # and then modify its values
 a = tf.Variable([2.0, 3.0]) # create variable a
 b = tf.Variable(a) # Create b based on value of a
 a.assign([5, 6]) # asign a new value to a
 a.assign_add([2,3]).numpy() # add element wise to a
 a.assign_sub([2,3]).numpy() # subtract element wise from a

 a = tf.Variable([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
 b = tf.Variable([[1.0, 2.0, 3.0]])
 k = a*b # element-wise multiply

 a = tf.Variable([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
 b = tf.constant([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]])
 c = tf.matmul(a, b) # new tensor

Introduction to Tensorflow
• Gradients and differentiation in TF

 To differentiate automatically, TF needs to remember what operations happen in
 which order during the forward pass. In backward pass the list of operations is done
 in reverse order. GradientTape.gradient(target, sources) is used
 to calculate the gradient of some target (often a loss) relative to some source.
 - Example with a scalar
 x = tf.Variable(3.0) # variable = 3
 with tf.GradientTape() as tape:
 y = x**2
 dy_dx = tape.gradient(y, x) # dy = 2x * dx
 dy_dx.numpy() # convert to a number = 6.0

 - Example with tensors
 w = tf.Variable(tf.random.normal((3, 2)), name='w')
 b = tf.Variable(tf.zeros(2, dtype=tf.float32), name='b')
 x = [[1., 2., 3.]]
 with tf.GradientTape(persistent=True) as tape:
 y = x @ w + b # tape can be used multiple times to calc grad
 loss = tf.reduce_mean(y**2) # get the mean value
 [dl_dw, dl_db] = tape.gradient(loss, [w, b]) # gradients to both vars

03_ml_basics_tf_differentiate.ipynb

https://www.physi.uni-heidelberg.de/~marks/ml_einfuehrung/Beispiele/03_ml_basics_tf_differentiate.ipynb

Machine Learning Datasets
• Machine Learning datasets in TF

 - TensorFlow provides several built-in datasets for machine learning tasks from
 various areas and different topics, e.g. 3d - 2d image detection, classification
 and generation, categorical solutions, abstractive text summarization, anomaly
 detection and language modeling
 detailed infos in https://www.tensorflow.org/datasets/catalog/overview

 - cached locally in ~/tensorflow_datasets in one directory per dataset
 import tensorflow as tf
 (x_train,y_train),(x_test,y_test)=tf.keras.datasets.mnist.load_data()

 - Example: import horses_or_humans dataset, select horses and preprocessing
 import tensorflow_datasets as tfds
 dataset, info = tfds.load('horses_or_humans', with_info=True)
 horse_ds = dataset['train'].filter(lambda x: x['label'] == 0) # horses
 horse_examples = horse_ds.take(5) # 5 horses from the dataset

 train_dataset, valid_dataset = tfds.load('horses_or_humans',
 split=['train','test'], as_supervised=True)

 def preprocess(image, label):
 image = tf.cast(image, tf.float32)
 image = tf.image.resize(image, (IMG_SIZE, IMG_SIZE))#resize to a fixed size
 image = image / 255.0 #rescale the pixel values to be between 0 and 1
 label = tf.one_hot(label, NUM_CLASSES) #asign labels
 return image, label

03_ml_basics_display_HorseOrHuman.ipynb

https://www.tensorflow.org/datasets/catalog/overview
https://www.physi.uni-heidelberg.de/~marks/ml_einfuehrung/Beispiele/03_ml_basics_display_HorseOrHuman.ipynb

Machine Learning Datasets
• Input data usually has to be pre processed

 - Needed for numerical stability

 - Want to have the mean around zero and the variance order of one

 ○ gaussian like distributed data → subtract mean and divide by standard deviation

 ○ data peaking at zero → apply logarithm and then subtract mean and divide by
 standard deviation

• Example datasets in the MNIST database (Modified National Institute of Standards and
 Technology database) used for machine learning and practicing techniques
 The data can be loaded directly in Tensorflow using e.g. tf.keras.datasets.mnist.load_data()

 - MNIST handwriting
 60000 images

 - Fashion-MNIST dataset
 60000 images

28 x 28 array with greyscale
values, 0 – 255
 → preprocessing: divide by 255

use pixel array and label

28 x 28 array with greyscale
values, 0 – 255 and labels

- Input data needs often reshaping

03_ml_basics_display_HandWrt.ipynb

03_ml_basics_display_Clothing.ipynb

https://www.physi.uni-heidelberg.de/~marks/ml_einfuehrung/Beispiele/03_ml_basics_display_HandWrt.ipynb
https://www.physi.uni-heidelberg.de/~marks/ml_einfuehrung/Beispiele/03_ml_basics_display_Clothing.ipynb

Machine Learning Datasets
• Example datasets for classification applications

 - Iris dataset from Fisher (1936) with 3 classes, Iris Setosa, Iris Versicolour and Iris Virginica
 with 50 instances each. There are 4 attributes:

 ▫ sepal length [cm]
 ▫ sepal width [cm]
 ▫ petal length [cm]
 ▫ petal width [cm]

 The application is for classification
 https://archive.ics.uci.edu/ml/datasets/iris

 - Cifar-10 and Cifar-100 dataset of 32 x 32 color pictures in 10 classes (100 classes) with
 60000 images per class and
 10000 test images for Cifar-10.

 The 100 classes in the CIFAR-100 are
 grouped also into 20 superclasses. There are
 500 training images and 100 testing images
 per class

 https://www.cs.toronto.edu/~kriz/cifar.html

https://archive.ics.uci.edu/ml/datasets/iris
https://www.cs.toronto.edu/~kriz/cifar.html

Exercise 1
• Read/load the cifar10 dataset using tf.keras.datasets
 There are the following classes
 class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog',
 'frog', 'horse', 'ship', 'truck']

 Display the first 25 images

• They are color images, try to convert them to grey scale images by reducing the
 3 colors (r,g,b) to one grey scale with the formula
 gray = 0.2989 * r + 0.5870 * g + 0.1140 * b
 Normalize the data to the interval [0,1]
 Display the first 25 greyscale images

03_ml_basics_ex_2_display_Cifar10_Greyscale.ipynb

https://www.physi.uni-heidelberg.de/~marks/ml_einfuehrung/Beispiele/03_ml_basics_ex_2_display_Cifar10_Greyscale.ipynb

Introduction Machine Learning

Johannes Erdmann, Train the Trainer workshop 2023

DNN Training
• Metric

 Machine learning datasets contain truth information to allow an independent quality measure
 of the neural network. Metrics are typically defined in terms of the neural network model's
 predictions and the true labels. They quantify how well the model is doing at its task.

 - accuracy: number of correctly classified data points over the total number.
 - precision: ratio of true positive (TP) predictions to the total number of positive (TP + false
 positive) predictions.
 - recall: ratio of true positives to the sum of true positives and false negatives
 - F1 score: F1 score = 2 * (precision * recall) / (precision + recall)

• Splitting the dataset in 2 or 3 parts

 - Traing dataset – Do all the parameter determination (training) of the neural network.

 - Validation dataset – Used to evaluate the model during training and to tune its
 hyperparameters (e.g. handled by tensorflow during minimization)

 - Test dataset – Use it for evaluating the optimized parameters and the final performance
 of the model after it has been fully trained.

 Splitting: Traing:Validation:Test → 60%:20%:20%

DNN Loss Function
• Quantifying quality/success of a neural network
 - Compare predicted output with the true output → loss function

- Empirical loss
 total loss over the entire dataset

- Cross entropy loss for models
 with output

- Mean squared error loss for regression with continuous real numbers

 predicted true

 true predicted true predicted

 true predicted

test minimizer in python:
03_ml_basics_minimizer.ipynb

https://www.physi.uni-heidelberg.de/~marks/ml_einfuehrung/Beispiele/03_ml_basics_minimizer.ipynb

DNN Minimization
• Find the network weights such that the loss function is minimal

 - Initialize weights randomly
 - Loop until convergence:

 compute

 update weights

 - return weights

 - derivative calculation with chain rule

backpropagation

Example - Backward Propagation
● Finding weights that minimizes the error function

 1

True Output Prediction

error = 0.5 (Prediction - True)2

 Change weights to reduce the error function:

prediction =

backward propagation updates the weights by calculating the gradient of the error function with
respect to the neural network’s weights.

Example - Backward Propagation
● New weights after the backward propagation

updated prediction after backward
propagation

Introduction to Deep Neural Networks
• Find the network weights such that the loss function is minimal

 - Initialize weights randomly
 - Loop until convergence:

 compute

 update weights

 - return weights

 - derivative calculation with chain rule

backpropagation

DNN Minimization
• Training strategies

 - Minimization: difficult to converge to a global minimum with large number of parameters.

 - Learning rate

 is called learning rate

 choosing the right learning rate is learning rate is too large
 important for convergence

 - Adaptive moment estimation (Adam) uses adaptive learning rates which reduces α
 during minimization for each parameter separately

 β change in W from previous step

DNN Minimization
• Output to the last node(s)

 - The output function(s) of the neural network (nodes in the final layer) are determined by
 activation functions. Their choice depends on the problem to be solved.

 - For binary classification problems the sigmoid function is used and interpreted as
 probability.

 - For regression problems a linear activation function or no activation function is used.

 - For multi-class classification problems the softmax function is mostly in use and gives
 a probability distribution over the classes.
 Softmax assigns decimal probabilities to each class i of a multi class problem with its N
 multiclass output values:

Exercise 2
The following page illustrates a classification task which can be configured online
via the web page https://playground.tensorflow.org/
- Try different activation functions and change the learning rate

https://playground.tensorflow.org/

Example Python Code of a Neural Network

• A simple feed forward neural network with one hidden layer
 is programmed in pure python without using machine
 learning libraries

03_ml_basics_simple_neural_network.ipynb

https://www.physi.uni-heidelberg.de/~marks/ml_einfuehrung/Beispiele/03_ml_basics_simple_neural_network.ipynb

Exercise 3
• Modify the activation function of the simple neural network in python from the
 sigmoid function to the Rectified Linear Unit (ReLU) function

03_ml_basics_simple_neural_network_exercise_solution.ipynb

https://www.physi.uni-heidelberg.de/~marks/ml_einfuehrung/Beispiele/03_ml_basics_simple_neural_network_exercise_solution.ipynb

DNN Minimization
• Minimizer algorithms: difficult to converge to global minimum with large number of parameters

 - various minimizers are available in the tf.keras.optimizers module of TensorFlow
•

 ▫ Stochastic Gradient Descent (SGD)
 gradient descent algorithm updates the model parameters (weights and biases) in small batches
 based on the gradients computed on each batch in the direction of the negative gradient scaled by α
 ▫ Momentum optimizer
 updates the parameters by computing the gradient of the loss function with respect to the parameters
 and adjusting the parameters in the direction of the negative gradient taking into account previous
 updates to get the direction and magnitude
 ▫ AdaGrad optimizer
 adapt the learning rate for each parameter based on the historical gradient by keeping a
 running sum of the squared gradients for each parameter (accumulator) and divide the
 learning rate by the square root of the accumulator for each parameter, which adapts it.
 ▫ RMSProp optimizer
 In RMSprop (Root Mean Square Propagation) the learning rate is adaptively scaled for
 each weight parameter based on the root mean square (RMS) of the gradients. This
 reduces the learning rate for parameters with large and rapidly changing gradients
 ▫ Adaptive Moment Estimation (Adam)
 ▫ AdaDelta optimizer
 ▫ Ftrl optimizer

 - Choice of optimizer often depends on the specifics of the problem
 → experiment with different optimizers

03_ml_basics_minimizer_methods.ipynb

https://www.physi.uni-heidelberg.de/~marks/ml_einfuehrung/Beispiele/03_ml_basics_minimizer_methods.ipynb

DNN Minimization
• Start values for the neural network parameters are needed to achieve good
 performance and convergence speed

 - Random initialization: sample from a uniform or normal distribution with zero mean and
 a small standard deviation.
 - Xavier initialization: randomly sampled from a normal distribution with zero mean,
 the standard deviation scales with 1 / sqrt (number of input layers)
 - Pretraining initialization: If a model has been pretrained, the weights can be initialized
 from the pretrained model.
 - In general:
 var(input) ≈ var(output) with var ≈ 2 / (N

input nodes
 + N

output nodes
)

 draw from gaussian or uniform distributions within a range

• Usually the input range of the variables differ largely → scale input variables

 - Important because the model converges faster and improves its accuracy.
 - Standardization: scales the input variables so that they have a mean of zero and
 a standard deviation of one.
 - Min-Max scaling: scales the input variables to a fixed range, usually between 0 and 1.
 - Robust scaling: scales the input variables using the median instead of the mean and
 standard deviation. To be used when the input variables have outliers or are not normally
 distributed.

 - Perform de-correlation of input data

Examples - Deep Neural Networks
• Example of a binary classification using TensorFlow (TF)

 - Generate toy sample with 2 normalized gaussian distributions with mean (-1,-1) and (1,1)
 - Each sample gets a label to belong to one of the distributions
 - The data is combined to a training dataset
 - The data is plotted and colored in blue and red according to their labels
 - In TensorFlow a model is set up specifying the network → shape of the input data, number
 of neurons in each layer, the activation functions in each layer
 - The model is a sequential MLP model that consists of a series of layers stacked one on
 top of the other.
 - In the next step the model is compiled → here we choose the optimizer, the loss function,
 and the metrics
 As optimizer we use adam
 As loss function we choose BinaryCrossentropy() because we have 2 classes
 of data. It measures the dissimilarity between the predicted probabilities of the model and
 the true labels, which are either 0 or 1 for each example. The goal is to minimize this
 dissimilarity, or loss, during the training process.
 accuracy as metric is calculated as the number of correct predictions divided by the total
 number of predictions made by the model.
 - The data and labels are given to the fit method, also the training iterations and the
 batch size. The model doesn't process the entire dataset at once, but rather in batches.
 - Loss and accuracy are plotted as number of iterations
 - Display classification results for sample points together with labeled data points

03_ml_basics_tf_binary_classification_example.ipynb

https://www.physi.uni-heidelberg.de/~marks/ml_einfuehrung/Beispiele/03_ml_basics_tf_binary_classification_example.ipynb

Examples - Deep Neural Networks
• Using the handwriting MNIST example with TensorFlow (TF)

 - Read in the dataset with a pre defined function in TF. There are 10 categories

 - Each sample has a label and the 28 x 28 pixel gray scale data array

 - The data is normalized and reshaped to a 1D array.

 - In TensorFlow a model is set up specifying a first dense layer with 512 nodes
 and a Rectified Linear Unit (ReLU) activation function. Dense means all nodes are
 fully connected. There is a second layer also with 512 nodes and ReLU activation.
 The 3rd layer is the output layer with 10 nodes and Softmax is used as activation.

 - As optimizer adam is used to find the minimum and accuracy as metrics

 - The data and labels are given to the fit method, also the training iterations and the
 batch size. The model doesn't process the entire dataset at once, but rather in batches.

 - The weights of the output layer are plotted

 - Loss and Accuracy are plotted as number of iterations (epoch)

 - Test accuracy = 0.98

 - The data is plotted and true and predicted label are shown

03_ml_basics_tf_mlp_mnist_digits.ipynb

https://www.physi.uni-heidelberg.de/~marks/ml_einfuehrung/Beispiele/03_ml_basics_tf_mlp_mnist_digits.ipynb

Examples - Deep Neural Networks
• Overtraining: We observe a difference in loss and accuracy in training and test data

 - Don’t want the NN to rely heavily on
 individual features

 - The neural net learns features of the data
 which are not existing. To prevent this
 reduce the number of nodes or refine the
 model.
 - There are methods to reduce the number
 input nodes nodes:
 tf.keras.layers.Dropout(p)
 p = 0.5 half of the input nodes are dropped.

Examples - Deep Neural Networks
• Overtraining: We observe a difference in loss and accuracy in training and test data

General idea: When multiple models describe the training data choose the simplest.

Add penalty terms to the loss function → L2 regularization

 weight decay

With kernel_regularizer=tf.keras.regularizers.l2(0.001) L2 regularization
can be added to the layer which applies a penalty term to the loss function of the model,
based on the squared magnitude of the weights of the layer.

Both methods can be switched on in the example 03_ml_basics_tf_mlp_mnist_digits.ipynb

https://www.physi.uni-heidelberg.de/~marks/ml_einfuehrung/Beispiele/03_ml_basics_tf_mlp_mnist_digits.ipynb

Exercise 4

Use the fashion mnist dataset and read it in tensorflow. Learn the different clothing
categories.
 - reshape the data to a 1D array and normalize it
 - set up an MLP with 10 output categories
 - plot the loss function and accuracy
 - Do you see overfitting? Try to get rid of overfitting effects

03_ml_basics_ex_4_mlp_clothing.ipynb

https://www.physi.uni-heidelberg.de/~marks/ml_einfuehrung/Beispiele/03_ml_basics_ex_4_mlp_clothing.ipynb

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

