*slides made in Canva

Studierendentage 2025

Version Control & Continuous Integration

for Analysis Preservation using Git and Docker

Integrate

7th - 11th April 2025
Physics Institute, Heidelberg University

Tamasl| Kar

https://www.physi.uni-heidelberg.de/~kar/teaching/versionControl_CI/

About Me
Hi! I'm Tamasi Kar,
a Post Doc. in Experimental Particle Physics

| am currently working on the Mu3e experiment and getting my
hands dirty with Graph Neural Networks (learning).

Background:

= I’ve been primarily involved in the design and development of detector
simulations and particle tracking algorithms for the past nine years.

In the past, | have worked on the ATLAS experiment @ CERN and
performed a physics analysis for the Future Circular Collider Study.

Collaborative version control has been the backbone of the success
of these projects.

07/04

Introduction
to Docker

We'll start with a
brief overview of
basic Linux
commands and
dive into docker
containers,
followed by a
hands-on session.

08/04

Hands-on +
Version Control

The hands-on
session continues,
where you'll learn
to containerize
your code and run
Inside a container.
An introduction to
git will follow.

09/04

Collaborative
git usage

You'll create your
own git repository
on GitHub and
dive deep into git
by making
changes to your
code and
recording them.

10/04

Continuous
Integration

Introduction to
Continuous
Integration with
Github followed
by writing a Cl
pipeline code.

Preliminary Timeline

11/04

Cl tutorial
continuation

We'll put
everything we've
learned so far
together to
produce an
automated Cl
pipeline triggered
with every commit

Open your Terminal and
try out some of these
commands...

-
2.
3.
4.
5.
6.
7
8.
0.

—
O

Top 50 Linux Commands

11.
12:
13.
14.
15.
16.
17.
18.
19.

you must know

cat 21. diff 31. kill and killall
echo 22.cmp 32. df

less 23. comm 33. mount

man 24. sort 34.chmod
uname 25. export 35. chown
whoami 26. zip 36. ifconfig

tar 27. unzip 37. traceroute
grep 28. ssh 38. wget

head 29. service 39. ufw

20. tail 20. ps 40. iptables

41. apt, pacman, yum, rpm
42. sudo

43. cal

44. alias

45. dd

46. wheris

47. whatis

48. top

49. useradd

50. passwd

e mkdir -p docker-git-tutorial/data

e cd docker-git-tutorial

Introduction to Docker

Overview

e containers
e components

e installation
® exercises

Introduction to Docker

Have you run into the following problems?

Official documentation: link

>3 colleague saying: “Works on my machine!”

> conflicting package versions, missing dependencies and libraries

> Incompatible instructions due to a different operating system

> spent a lot of time on StackExchange and ChatGPT just to compile the code you recelved.

https://docs.docker.com/get-started/

Introduction to Docker

What is a Container?

An application and all its essential dependencies can be
packaged into a single, isolated unit called a container.

Containerized Applications

O
oL
Q

<

< o
Q o}
Q Q
< <<

Host Operating System

Infrastructure

B

You can share containers and be sure that everyone you share with

Virtual Machine | | Virtual Machine | | Virtual Machine

Guest Guest Guest
Operating Operating Operating
System System System

Infrastructure

Container-based architecture vs virtual machines

gets the same container that works in the same way!

d c
 ISolated, indepe"
Containers:

« share the host machine’'s OS5

system kernel, and SO QOn’.t
require an OS5 per application.

3s much memory
very

. take up only .
as necessary, making them

lightweight 1nd fast to spin up

to run

https://hsf-training.github.io/hsf-training-docker/01-introduction/index.html
https://docs.docker.com/get-started/

Introduction to Docker

What is Docker?

It Is an open-source containerization platform that provides the ability Official documentation: link
to package and run an application consistently on different platforms,
ensuring reproducibility across systems.

\> The isolation and security lets you run many containers simultaneously
on a given host.

> It allows developers to work In standardized environments using local
containers which provide your applications and services.

Alternatives to Docker:

Podman: Lightweight and rootless alternative. It Is based on a daemonless architecture.

Apptainer: 1t is designed for scientific computing and HPC environments (emphasis on security).

https://docs.docker.com/get-started/
https://podman.io/
https://apptainer.org/

Introduction to Docker

Do :
cker Architecture
Client
Docker Host
L 1
- Regi
- gistry
docker run Images Official d
» Containers ocumentation: link
1_ T Image T
—— S
(7 A LTl
L NGiNX
t\‘_ ‘mdlﬁ ‘ @
07 |
2 o .
o Bocker e i I"_ w@: e UUSES d d'\ent-ser\/er
er pull """ T e e | L1 \
¢ el 2 ' architecture
----------- - - = .
o client and daemon
Ecrnsons commun'\cate using a REST AP,
. Qver UNIX sockets oOf d network
interface.
Plugins
. F
s B D

https://docs.docker.com/get-started/
https://docs.docker.com/get-started/docker-overview/

Introduction to Docker

Docker Components:

Official documentation: link

\S Docker Registry: A storage distribution system for docker images, where the images can be stored
in both public and private modes.

\S Docker Hub: A public registry that anyone can use. Docker looks for images on Docker Hub by
default.

\S Docker Engine: A core part of docker (server, REST API, client). Handles the creation and
management of containers.

10

https://docs.docker.com/get-started/

Introduction to Docker

Docker Objects:

Official documentation: link

\S Dockerfile: A script containing instructions to build a docker image
\S Docker Image: Read-Only. Used to create containers containing application code & dependencies.

\S Docker Container: A runnable instance of an image. One can create, start, stop, move, or delete a
container. Can connect It to networks, attach storage to It, create a new image from current state.

ild
Docker | Buld _Run Docker
File Container

Docker
Image

11

https://docs.docker.com/get-started/

Home / Getstarted / Get Docker

Get Docker
‘ n t rO d u Ctl O n tO D O C ‘<e r Docker is an open platform for developing, shipping, and running applications.

Docker allows you to separate your applications from your infrastructure so you can deliver software quickly. With Docker, you

can manage your infrastructure in the same ways you manage your applications.

M []
D O C I(e r I n Sta l latl O n ° By taking advantage of Docker's methodologies for shipping, testing, and deploying code quickly, you can significantly reduce

httpS //d OCSd OCke FCO m /get_Sta I’ted /get—d OCke r/ the delay between writing code and running it in production.

You can download and install Docker on multiple platforms. Refer to the following section and choose the best installation path

for you.

Docker Desktop terms

Commercial use of Docker Desktop in larger enterprises (more than 250 employees OR more than $10 million USD in

annual revenue) requires a paid subscription 3.

@ Docker Desktop for Mac

A native application using the macOS sandbox security model that delivers all Docker tools to your Mac.

am Docker Desktop for Windows

A native Windows application that delivers all Docker tools to your Windows computer.

Official documentation: link

O Docker Desktop for Linux

A native Linux application that delivers all Docker tools to your Linux computer.

o Note

If you're looking for information on how to install Docker Engine, see Docker Engine installation overview. 12

https://docs.docker.com/get-started/
https://docs.docker.com/get-started/get-docker/
https://docs.docker.com/get-started/get-docker/

Example Docker Commands

. . Assuming that Docker is installed, the following commands can be used to interact with
EXercises:

e First open a terminal and check if Docker is installed by running docker --version

Follow the tutorial:

, , e Run the following commands in the terminal:
docker-tutorial-and-exercises

Start docker service by running the following or open Docker Desktop

google doc guestions & suggestions

Ul
[[}

sudo systemctl start docker

Check if Docker service is running by running

sudo systemctl status docker

Pull a Docker image from Docker Hub by running

Official documentation: link docker pull hello-world

Run the Docker image by running

13

docker run hello-world

https://docs.docker.com/get-started/
https://github.com/tkar-git/docker-git-ci-basics/tree/main/docker
https://docs.google.com/document/d/13i1DeQyk1Jgih774mVrvtkYknydvYdP8w9UBTGOx48g/edit?usp=sharing

o1t

Version Control with Git

Overview

e version control basics
e git (core concepts)

e git branching

® exercises

14

https://git-scm.com/

Introduction to Version Control

What is Version Control (source control)?

It 1S a practice of tracking and managing changes to your TRACK PRUIECT HISTORY

software code over time. | B —

_draft doc - L= = F =
-ftinal dec - : f\ . :.
L L =ik i

Version Control Systems (VCS):
> Software tools that help developers to work in teams and thus
faster, smarter and efficiently.

\S> History tracking allows developers to turn back to earlier Ref: The Turing Way Community. This
. ill ion i d by Scriberi ith
versions and fix a mistake without disrupting the team members. e Tating Way commonty and usec
_ . under a CC-BY 4.0 |licence. DOL:

\> Examples include Google Docs, Overleaf for document tracking. 10.5281/zen0d0.3332807

\> Advanced VCS like SVN, Mercurial and Git offer powerful tools.
15

https://www.atlassian.com/git/tutorials/what-is-version-control

https://doi.org/10.5281/zenodo.3332807
https://www.atlassian.com/git/tutorials/what-is-version-control

Software Version Control using Git

What iIs Git?
Git 1s by far the most widely used modern VCS

(Distributed VCS) that is a mature and actively
maintained open-source project.

\> Originally developed in 2005 by Linus Torvalds, the
famous creator of the Linux operating system kernel.

\> Has been designed with performance, security and
flexibility in mind (agile development).

\> Being DVCS, it stores snapshots and not differences.

https://www.atlassian.com/git/tutorials/what-is-git

Ref: Chacon, S., & Straub, B. Pro Git (Version 2) [Computer software].

Checkins Over Time

File A
File B 1 B [B k B1 B2
- r [T |
File C Ci 52 ‘ G2) c3
Snapshots

——————————————

File } linkto an unchanged file from a previous version

changed file from a new version 16

https://www.atlassian.com/git/tutorials/what-is-git
https://github.com/progit/progit2
https://git-scm.com/

Software Version Control using Git

Git's Architecture

\> Working Directory: the directory on
your local machine/computer where
you make changes.

\> Staging Area: an intermediate area
where commits can be formatted
and reviewed before committing.

> Repository: where Git permanently
stores all the snapshots and history
(.git folder on your local machine).

r working directory

. ' mmit?
git add What Is a €O

staging area :
L IR

it commi - 3t a certal |
git : directory tain point 1N

e §
the

. includes metadata like:
Ref: https://git-scm.com/about/staging-area - uthor it message, nd 3

reference 10 previous commit.

17

https://www.atlassian.com/git/tutorials/what-is-git
https://git-scm.com/

Software Version Control using Git

Git's Architecture

\> Working Directory: the directory on
your local machine/computer where

you make changes. r oo G CIIED

REMOTE REPOSITORY

> Staging Area: an intermediate area gitadd | l
where commits can be formatted '-> j
and reviewed before committing. git commit il =
\> Repository: where Git permanently ‘J MCOPY . REPOSITORY

stores all the SﬂapShOtS and history Ref: https://git-scm.com /about/staging-area REVERT LOG STATUS
(.git folder on your local machine). BRANCH) (MERGE)(BLAME

COMMIT

Ref: M. Soni, DevOps for Web Development 18

https://www.atlassian.com/git/tutorials/what-is-git
https://git-scm.com/

Software Version Control using Git

The Three Main States (that your files can reside in)

\>Modified: means that you have changed . .
the file but have not committed it to your —

database vyet. Add the file

\> Staged: means that you have marked a
modified file in 1ts current version to go
INto your next commit snapshot. e BT ED

Edit the file

Stage the file

> Committed: means that the data is safely

stored in your local database (.git folder
on your local maChine) Ref: Chacon, S., & Straub, B. Pro Git (Version 2) [Computer software]v2

19

https://git-scm.com/
https://www.atlassian.com/git/tutorials/what-is-git
https://git-scm.com/book/en/v2

Software Version Control using Git

Git Branch

A branch n Git 1s simply a lightweight movable pointer

(HEAD) to one of the commits. The default branch is master.

Branching strategies:

Depending on the size and project requirements, a
particular branching strategy can be good or bad.

\> Zero Branch Strategy (master): e.g. personal projects,
unstable.

\> Development Branch Strategy: small size projects, stable,
multiple features can’'t be developed concurrently.

S Branch Strategy: large teams, easy to track active

features and releases, overkill for small projects.

MASTER

Ref: https://www.sitepoint.com/use-git-branches-buddy/

20

https://git-scm.com/
https://www.sitepoint.com/use-git-branches-buddy/

Software Version Control using Git

What will you typically do using Git?

Typical Git Commands:

\> Clone repository from Github/Gitlab e git clone <url_of_the_remote_repo>

e git branch <branch_name>

\> Create your own branch and switch (recommended) o git checkout <branch_name>

o git add <modified_file(s)>

> Work in local workspace (edit files on your PC)

e git commit -m “<meaningful message>

o git pull
> Add changes and commit changes (.git repository: local)

e git push

\> Push commit(s) to remote repository (Github/Gitlab)

21

https://git-scm.com/

Git take aways

r:l'hings to keep in mind

e Pull before you push

Otherwise you will end up with merge conflicts

Write meaningful commit messages ("Fixed a bug” is not meaningful)
Commit regularly

Work on your branch and merge master into your branch regularly
Don’t break the master branch

IN CASE OF FIRE
o L g

Git Commit Git Push Git Out

https://git-scm.com/

Git Configuration

To be done once on a machine
https://training.github.com/downloads/github-git-cheat-sheet.pdf

Configure user information for all local repositories

$ git config ——global user.name "[name]"
Sets the name you want attached to your commit transactions

$ git config —-—-global user.email "[email address]"
Sets the email you want attached to your commit transactions

$ git config —-global color.ui auto
Enables helpful colorization of command line output

23

https://git-scm.com/
https://training.github.com/downloads/github-git-cheat-sheet.pdf

Starting a Git Project

https://training.github.com/downloads/github-git-cheat-sheet.pdf

When starting out with a new repository, you only need to do it
once; either locally, then push to GitHub, or by cloning an
existing repository.

$ git init
Turn an existing directory into a git repository

$ git clone [url]

Clone (download) a repository that already exists on
GitHub, including all of the files, branches, and commits

24

https://training.github.com/downloads/github-git-cheat-sheet.pdf
https://git-scm.com/

Branches are an important part of working with Git. Any
commits you make will be made on the branch you're currently
“checked out” to. Use git status to see which branch that is.

$ git branch [branch-name]
Creates a new branch

Branch“’]g |n Glt $ git checkout [branch-name]

Switches to the specified branch and updates the
https://training.github.com/downloads/github-git-cheat-sheet.pdf WO rkl ng d I reCtory

$ git merge [branch]

Combines the specified branch’s history into the
current branch. This is usually done in pull requests,
but is an important Git operation.

$ git branch -d [branch-namel
Deletes the specified branch 25

https://training.github.com/downloads/github-git-cheat-sheet.pdf
https://git-scm.com/

Day-To-Day Work

https://training.github.com/downloads/github-git-cheat-sheet.pdf

Browse and inspect the evolution of project files

$

git log
Lists version history for the current branch

git log —--follow [file]
Lists version history for a file, including renames

git diff [first-branch]...[second-branch]
Shows content differences between two branches

git show [commit]
Outputs metadata and content changes of the specified commit

git add [filel]
Snapshots the file in preparation for versioning

git commit -m "[descriptive message]"
Records file snapshots permanently in version history 26

https://training.github.com/downloads/github-git-cheat-sheet.pdf
https://git-scm.com/

Synchronize your local repository with the remote repository
on GitHub.com

$ git fetch
Downloads all history from the remote tracking branches

. $ git merge
Syn C h ronize Combines remote tracking branch into current local branch

https://training.github.com/downloads/github-git-cheat-sheet.pdf $ git pUSh

Uploads all local branch commits to GitHub

$ git pull

Updates your current local working branch with all new
commits from the corresponding remote branch on GitHub.
git pull is acombination of git fetch and git merge

27

https://training.github.com/downloads/github-git-cheat-sheet.pdf
https://git-scm.com/

Merge Types

lukemerrett.com/different-merge-types-in-git/

Base Branch

—

% h 3 o ——% B —— % n

i

Branch Being Merged

J,,,.-ri::

Eranch created —

28

https://lukemerrett.com/different-merge-types-in-git/
https://git-scm.com/

Merge

lukemerrett.com

different-

merge-types-in-git/

T

|
|
|
|
|

1

o\

Merge

N\

Eranch created

T

E
E, -\. r, ", F;
w, - . & ", &
., - ., - ., -

L

29

https://lukemerrett.com/different-merge-types-in-git/
https://git-scm.com/

Fast Forward

Merge

lukemerrett.com/different-merge-types-in-git/

4
ﬂm
.

EBranch creaisd

ﬂf__ﬂ-r"

) F y F iy
'_'p- [— | m |] |
%, # -\. # ' #
Y - Y - Y "

— % P — @ T2 — @ m ——w 3
- - L - L -'.

i

30

https://lukemerrett.com/different-merge-types-in-git/
https://git-scm.com/

Squash and

Merge

lukemerrett.com/different-merge-types-in-git/

"Branch PR title’ f/-
k_

|
|
%
%
|

.

Mergs

N\

F
ﬂm
"

Branch created

f

E
-\. r, -\. r,
| - —_— m —_— 2 |
. - . - . -
., e ., - ., -

"Branch PR title

L 4

p

pS

- N W % = —— @ o ——» @ |

N

31

https://lukemerrett.com/different-merge-types-in-git/
https://git-scm.com/

Rebase and

Merge

lukemerrett.com/different-merge-types-in-git/

— S —— W —— B —— N

—ty

Rebase and Merge

;
ﬂx
.

Erznch cresied

H_F'_'_,_,_:-'-""'-F

v

—— % P ——F W ——— & ——— o —— @ B ——— @ @ —— @ ()

i

32

https://lukemerrett.com/different-merge-types-in-git/
https://git-scm.com/

Exercises:

Follow the tutorial:
git-tutorial-and-exercises

[0 README

Git Play Ground

This is a repository for you to familiarize yourself with git. Some instructions/commands below introduce you
to the very basics of git. But of course there's much more...

Setting up your git environment

Create a GitHub account

If you do not have one follow the instructions here to create a GitHub account.

Add your SSH key to your GitHub account

This step is optional but highly recommended if you want to avoid entering username and password every
time you push (pull) to (from) remote.
It includes the following steps:

1. Generate an 55H key on your machine (steps 1 and 2 of prerequisites)

2. Add the SSH key to your GitHub account (steps 1-9 of Adding a new 55H key to your account) Follow the
instructions here to add SSH key to your GitHub account.

Install git

Follow the instructions here to install git on your machine. You can also use the docker container we created
previously. The container has git installed and is ready to use.

Windows users should use the Unix subsystem (W5SL) terminal (e.g. Ubuntu) and follow install instructions for
Linux.

Check git installation by running git --wversion inyour terminal. You should see the version of git installed

33

on your machine.

Configure git (to be done once on a machine)

https://github.com/tkar-git/git-playground

Integrate

Continuous Integration

Overview

Concept
Exit codes
YAML and GitHub Actions

exercises

34

Integrate

Continuous Integration (Cl)

Typical Software Release Cycle

't follows a structured process that helps teams plan, build, test,
and deploy software efficiently. Here's a standard flow:

Code Source Control Release
patch,
Software release cycle minor
Typical software release cycle: major
. . t
\'>Planmng and Design (tags)
\> Code Development (including Code Integration)
\> Code Building with dependencies
\S> Code testing
\> Release
> Maintainance a5

https://www.atlassian.com/continuous-delivery/continuous-integration

https://www.atlassian.com/continuous-delivery/continuous-integration

Integrate

Continuous Integration (Cl)

Typical Software Release Cycle

't follows a structured process that helps teams plan, build, test,
and deploy software efficiently. Here's a standard flow:

Code Source Control Release

Software release cycle Fr;ait::rf

Typical software release cycle: major
> Planning and Design (tags)
\> Code Development (including Code Integration) 0
\> Code Building with dependencies
\S> Code testing -
> Release
> Maintainance 36

https://www.atlassian.com/continuous-delivery/continuous-integration

https://git-scm.com/
https://www.atlassian.com/continuous-delivery/continuous-integration

Integrate

Continuous Integration (Cl)

What is CI?

Cl is the practice of automating the integration of code changes
from multiple contributors into a single software project.

Why is Cl Important?
> Early bug detection due to automatic tests (e.g. for every push)

Without Cl:

e Last-minute bugs slipping

S Prevents worked on my machine situations Into production.
e Delayed releases due to

\> Stable and fast integration unstable code

s e Tedious manual testing
> Faster software releases (developers are more confident) and debugging

o : e Poor team coordination
> Automated Quality Control and stressful merges

\S Better Team Collaboration -

https://www.atlassian.com/continuous-delivery/continuous-integration

https://www.atlassian.com/continuous-delivery/continuous-integration

Continuous Integration (Cl)

YAML and Exit Codes

YAML (YAML Ain't Markup Language, originally standing for Yet
Another Markup Language) is a human-readable data-
serialization language.

S It is commonly used for configuration files and in applications
where data 1s being stored or transmitted. Cl systems’ modus
operandi typically rely on YAML for configuration.

Exit Codes are integer values returned by a command or a
program to indicate the result of 1ts execution.

\> An exit code of zero refers to a successful execution

> A non-zero exit code refers to a failure.

https://www.atlassian.com/continuous-delivery/continuous-integration

Code

Integrate

Source Controi

38

https://www.atlassian.com/continuous-delivery/continuous-integration

Exercises:

Follow the tutorial:
ci-tutorial-and-exercises

CI pipeline

A CI pipeline is a series of automated steps that are executed whenever code changes are made. The pipeline typically includes the
following stages:

1. Build: The code is compiled and built into an executable or deployable artifact. This step ensures that the code can be successfully
built without any errors.

2. Test: Automated tests are run to verify that the code behaves as expected. This step helps catch bugs and ensures that new
changes do not break existing functionality.

3. Deploy: The built artifact is deployed to a staging or production environment. This step ensures that the code is ready for release
and can be tested in a real-world environment.

CI configuration

The CI configuration file defines the steps and stages of the CI pipeline. The configuration file is typically written in YAML or JSON
format and includes the following sections:

name: <name of your workflow=> &
on: <event or list of events>

jobs:
job_1:
name: <name of the first job>
runs-on: <type of machine to run the job on>
steps:
- name: <step 1>
run: |
<commands>
- name: <step 2>
run: |
<commands>
job_2:
name: <name of the second job>
runs-on: <type of machine to run the job on>
steps:

39

https://github.com/tkar-git/docker-git-ci-basics/tree/main/ci

