
Tamasi Kar

Studierendentage 2025

Version Control & Continuous Integration
for Analysis Preservation using Git and Docker

7th - 11th April, 2025
Physics Institute, Heidelberg University

*slides made in Canva

https://www.physi.uni-heidelberg.de/~kar/teaching/versionControl_CI/

About Me
Hi! I'm Tamasi Kar,
a Post Doc. in Experimental Particle Physics

-
I am currently working on the Mu3e experiment and getting my
hands dirty with Graph Neural Networks (learning).

- I’ve been primarily involved in the design and development of detector
simulations and particle tracking algorithms for the past nine years.

In the past, I have worked on the ATLAS experiment @ CERN and
performed a physics analysis for the Future Circular Collider Study.

-

Background:

Collaborative version control has been the backbone of the success
of these projects.

-

2

Preliminary Timeline

07/04
Introduction
to Docker
We’ll start with a
brief overview of
basic Linux
commands and
dive into docker
containers,
followed by a
hands-on session.

08/04
Hands-on +
Version Control
The hands-on
session continues,
where you’ll learn
to containerize
your code and run
inside a container.
An introduction to
git will follow.

09/04
Collaborative
git usage
You’ll create your
own git repository
on GitHub and
dive deep into git
by making
changes to your
code and
recording them.

10/04
Continuous
Integration
Introduction to
Continuous
Integration with
Github followed
by writing a CI
pipeline code.

11/04
CI tutorial
continuation
We’ll put
everything we've
learned so far
together to
produce an
automated CI
pipeline triggered
with every commit

3

Quick
Review

Open your Terminal and
try out some of these
commands...

4

mkdir -p docker-git-tutorial/data
cd docker-git-tutorial

Introduction to Docker
Overview

containers
components
installation
exercises

5

Introduction to Docker
Have you run into the following problems?

a colleague saying: “Works on my machine!”

conflicting package versions, missing dependencies and libraries

incompatible instructions due to a different operating system

spent a lot of time on StackExchange and ChatGPT just to compile the code you received.
6

O�cial documentation: link

https://docs.docker.com/get-started/

self-contained, isolated, independent, p
orta

ble
!

O�cial documentation: link

 Containers:

share the host machine’s OS

 system kernel, and so don’t

 require an OS per application.

take up only as much memory

as necessary, making them very

lightweight and fast to spin up

to run

Introduction to Docker
What is a Container?

7

An application and all its essential dependencies can be
packaged into a single, isolated unit called a container .

Container-based architecture vs virtual machines

You can share containers and be sure that everyone you share with
gets the same container that works in the same way!

https://hsf-training.github.io/hsf-training-docker/01-introduction/index.html
https://docs.docker.com/get-started/

Introduction to Docker
What is Docker?

8

O�cial documentation: linkIt is an open-source containerization platform that provides the ability
to package and run an application consistently on different platforms,
ensuring reproducibility across systems.

The isolation and security lets you run many containers simultaneously
on a given host.

It allows developers to work in standardized environments using local
containers which provide your applications and services.

Alternatives to Docker:
Podman : Lightweight and rootless alternative. It is based on a daemonless architecture.
Apptainer : It is designed for scientific computing and HPC environments (emphasis on security).

https://docs.docker.com/get-started/
https://podman.io/
https://apptainer.org/

O�cial documentation: link

Introduction to Docker
Docker Architecture

9

 Docker:

uses a client-server

 architecture

client and daemon

 communicate using a REST API,

 over UNIX sockets or a network

 interface.

https://docs.docker.com/get-started/
https://docs.docker.com/get-started/docker-overview/

Introduction to Docker
Docker Components:

Docker Hub: A public registry that anyone can use. Docker looks for images on Docker Hub by
default.

10

O�cial documentation: link

Docker Registry: A storage distribution system for docker images, where the images can be stored
in both public and private modes.

Docker Engine: A core part of docker (server, REST API, client). Handles the creation and
management of containers.

https://docs.docker.com/get-started/

O�cial documentation: link

Introduction to Docker
Docker Objects:

Docker Container: A runnable instance of an image. One can create, start, stop, move, or delete a
container. Can connect it to networks, attach storage to it, create a new image from current state.

Docker Image: Read-Only. Used to create containers containing application code & dependencies.

Dockerfile: A script containing instructions to build a docker image

11

https://docs.docker.com/get-started/

Official documentation: link

Introduction to Docker
Docker Installation:

12

https://docs.docker.com/get-started/get-docker/

https://docs.docker.com/get-started/
https://docs.docker.com/get-started/get-docker/
https://docs.docker.com/get-started/get-docker/

Official documentation: link

Exercises:
Follow the tutorial:

13

docker-tutorial-and-exercises

google_doc_questions & suggestions

https://docs.docker.com/get-started/
https://github.com/tkar-git/docker-git-ci-basics/tree/main/docker
https://docs.google.com/document/d/13i1DeQyk1Jgih774mVrvtkYknydvYdP8w9UBTGOx48g/edit?usp=sharing

Version Control with Git
Overview

version control basics
git (core concepts)
git branching
exercises

14

https://git-scm.com/

It is a practice of tracking and managing changes to your
software code over time.

Software tools that help developers to work in teams and thus
faster, smarter and efficiently.

History tracking allows developers to turn back to earlier
versions and fix a mistake without disrupting the team members .

Examples include Google Docs, Overleaf for document tracking.

Advanced VCS like SVN, Mercurial and Git offer powerful tools.

Introduction to Version Control
What is Version Control (source control)?

Ref: The Turing Way Community. This
illustration is created by Scriberia with
the Turing Way community and used
under a CC-BY 4.0 licence. DOI:
10.5281/zenodo.3332807

Version Control Systems (VCS):

https://www.atlassian.com/git/tutorials/what-is-version-control

15

https://doi.org/10.5281/zenodo.3332807
https://www.atlassian.com/git/tutorials/what-is-version-control

Git is by far the most widely used modern VCS
(D istributed VCS) that is a mature and actively
maintained open-source project.

Originally developed in 2005 by Linus Torvalds, the
famous creator of the Linux operating system kernel.

Has been designed with performance, security and
flexibility in mind (agile development) .

Being DVCS, it stores snapshots and not differences.

Software Version Control using Git
What is Git?

https://www.atlassian.com/git/tutorials/what-is-git

16

Snapshots

link to an unchanged file from a previous version

changed file from a new version

File

File

Ref: Chacon, S., & Straub, B. Pro Git (Version 2) [Computer software].

https://www.atlassian.com/git/tutorials/what-is-git
https://github.com/progit/progit2
https://git-scm.com/

17

Working Directory : the directory on
your local machine/computer where
you make changes.

Staging Area : an intermediate area
where commits can be formatted
and reviewed before committing .

Repository : where Git permanently
stores all the snapshots and history
(.git folder on your local machine).

Software Version Control using Git
Git’s Architecture

Ref: https://git-scm.com/about/staging-area

 What is a commit?

pointer to a snapshot of working

directory at a certain point in

time.

includes metadata like: the

author, commit message, and a

reference to previous commit.

https://www.atlassian.com/git/tutorials/what-is-git
https://git-scm.com/

18

Working Directory : the directory on
your local machine/computer where
you make changes.

Staging Area : an intermediate area
where commits can be formatted
and reviewed before committing .

Repository : where Git permanently
stores all the snapshots and history
(.git folder on your local machine).

Software Version Control using Git
Git’s Architecture

Ref: https://git-scm.com/about/staging-area

Ref: M. Soni, DevOps for Web Development

e.
g.

 G
ith

ub, Gitlab, Bitbucket

https://www.atlassian.com/git/tutorials/what-is-git
https://git-scm.com/

19

Modified : means that you have changed
the file but have not committed it to your
database yet.

Staged : means that you have marked a
modified file in its current version to go
into your next commit snapshot .

Committed : means that the data is safely
stored in your local database (.git folder
on your local machine).

Software Version Control using Git
The Three Main States (that your files can reside in)

Ref: Chacon, S., & Straub, B. Pro Git (Version 2) [Computer software]v2

 / committed

https://git-scm.com/
https://www.atlassian.com/git/tutorials/what-is-git
https://git-scm.com/book/en/v2

20

Depending on the size and project requirements, a
particular branching strategy can be good or bad .

Software Version Control using Git
Git Branch

Ref: https://www.sitepoint.com/use-git-branches-buddy/

Branching strategies:

A branch in Git is simply a lightweight movable pointer
(HEAD) to one of the commits. The default branch is master .

Zero Branch Strategy (master): e.g. personal projects,
unstable.

Development Branch Strategy : small size projects, stable,
multiple features can’t be developed concurrently.

Git flow Branch Strategy : large teams, easy to track active
features and releases, overkill for small projects.

 Git Branches:

are essential in software

development as they allow

developers to work on

diff erent features or bug

fixes simultaneously without

affecting the main codebase.

https://git-scm.com/
https://www.sitepoint.com/use-git-branches-buddy/

 Typical Git Commands:

git clone <url_of_the_remote_repo>

git branch <branch_name>

git checkout <branch_name>

git add <modified_file(s)>

git commit -m “<meaningful message>”

git pull

git push

Clone repository from Github/Gitlab

Create your own branch and switch (recommended)

Work in local workspace (edit files on your PC)

Add changes and commit changes (.git repository: local)

21

Software Version Control using Git
What will you typically do using Git?

Push commit(s) to remote repository (Github/Gitlab)

https://git-scm.com/

Git take aways

22

https://git-scm.com/

Git Configuration
To be done once on a machine

23

https://training.github.com/downloads/github-git-cheat-sheet.pdf

https://git-scm.com/
https://training.github.com/downloads/github-git-cheat-sheet.pdf

Starting a Git Project

24

https://training.github.com/downloads/github-git-cheat-sheet.pdf

https://training.github.com/downloads/github-git-cheat-sheet.pdf
https://git-scm.com/

Branching in Git
https://training.github.com/downloads/github-git-cheat-sheet.pdf

25

https://training.github.com/downloads/github-git-cheat-sheet.pdf
https://git-scm.com/

Day-To-Day Work
https://training.github.com/downloads/github-git-cheat-sheet.pdf

26

https://training.github.com/downloads/github-git-cheat-sheet.pdf
https://git-scm.com/

Synchronize
https://training.github.com/downloads/github-git-cheat-sheet.pdf

27

https://training.github.com/downloads/github-git-cheat-sheet.pdf
https://git-scm.com/

Merge Types
https://lukemerrett.com/different-merge-types-in-git/

28

https://lukemerrett.com/different-merge-types-in-git/
https://git-scm.com/

Merge
https://lukemerrett.com/different-merge-types-in-git/

29

https://lukemerrett.com/different-merge-types-in-git/
https://git-scm.com/

Fast Forward
Merge

https://lukemerrett.com/different-merge-types-in-git/

30

https://lukemerrett.com/different-merge-types-in-git/
https://git-scm.com/

Squash and
Merge

https://lukemerrett.com/different-merge-types-in-git/

31

https://lukemerrett.com/different-merge-types-in-git/
https://git-scm.com/

Rebase and
Merge

https://lukemerrett.com/different-merge-types-in-git/

32

https://lukemerrett.com/different-merge-types-in-git/
https://git-scm.com/

Exercises:
Follow the tutorial:

33

git-tutorial-and-exercises

https://github.com/tkar-git/git-playground

Continuous Integration
Overview

Concept
Exit codes
YAML and GitHub Actions
exercises

34

It follows a structured process that helps teams plan, build, test,
and deploy software efficiently. Here's a standard flow:

Planning and Design

Code Development (including Code Integration)

Code Building with dependencies

Code testing

Release

Maintainance

Continuous Integration (CI)
Typical Software Release Cycle

Software release cycle

Typical software release cycle:

https://www.atlassian.com/continuous-delivery/continuous-integration

35

patch,patch,patch,
minorminorminor
majormajormajor
(tags)(tags)(tags)

https://www.atlassian.com/continuous-delivery/continuous-integration

It follows a structured process that helps teams plan, build, test,
and deploy software efficiently. Here's a standard flow:

Planning and Design

Code Development (including Code Integration)

Code Building with dependencies

Code testing

Release

Maintainance

Continuous Integration (CI)
Typical Software Release Cycle

Software release cycle

Typical software release cycle:

https://www.atlassian.com/continuous-delivery/continuous-integration

36

patch,patch,patch,
minorminorminor
majormajormajor
(tags)(tags)(tags)

https://git-scm.com/
https://www.atlassian.com/continuous-delivery/continuous-integration

CI is the practice of automating the integration of code changes
from multiple contributors into a single software project .

Early bug detection due to automatic tests (e.g. for every push)

Prevents worked on my machine situations

Stable and fast integration

Faster software releases (developers are more confident)

Automated Quality Control

Better Team Collaboration

Continuous Integration (CI)
What is CI?

Why is CI Important?

https://www.atlassian.com/continuous-delivery/continuous-integration

37

Without CI:

Last-minute bugs slipping
into production.
Delayed releases due to
unstable code
Tedious manual testing
and debugging
Poor team coordination
and stressful merges

https://www.atlassian.com/continuous-delivery/continuous-integration

YAML (Y AML A in’t M arkup L anguage, originally standing for Yet
Another Markup Language) is a human-readable data-
serialization language.

It is commonly used for configuration files and in applications
where data is being stored or transmitted. CI systems’ modus
operandi typically rely on YAML for configuration.

Exit Codes are integer values returned by a command or a
program to indicate the result of its execution.

An exit code of zero refers to a successful execution

A non-zero exit code refers to a failure.

Continuous Integration (CI)
YAML and Exit Codes

https://www.atlassian.com/continuous-delivery/continuous-integration

38

https://www.atlassian.com/continuous-delivery/continuous-integration

Exercises:
Follow the tutorial:

39

ci-tutorial-and-exercises

https://github.com/tkar-git/docker-git-ci-basics/tree/main/ci

