Production of superheavy elements

Seminar: "Key experiments in particle physics" 26.06.09 Supervisor: Kai Schweda Thorsten Heußer

- 1. Introduction
- 2. Nuclear shell model
- 3. Production of superheavy elements (SHE's)
- 4. Experiments at Helmholtz Center for Heavy-Ion Research (GSI), Darmstadt
- 5. Results on elements 111 and 112

6. Summary

1. Introduction

- How many elements and nuclei (may) exist?
- What are their properties?

1. Introduction Table of nuclides

2. Nuclear shell model

- Nuclei with certain proton and/or neutron numbers have remarkable properties:
 - \cdot High excitation and separation energies for nucleons
 - \cdot Large number of stable isotopes and isotones

2. Nuclear shell model Single-particle shell-model

Single-particle distribution

Spherical potential (Woods-Saxon or harmonic oscillator), which is created by the other nucleons

LS-coupling

The correct magic numbers are received by taking into account the coupling of \vec{L} and \vec{S} due to the strong potential.

(Jensen and Haxel, Goeppert-Mayer; 1948)

2. Nuclear shell model Nilsson-model

• Most heavy nuclei are not spherical, which is mainly due to the increasing coulomb-force between the protons.

=> spheroidal; deformation is described by

Nilsson-model (1955)

Production of superheavy elements

2. Nuclear shell model Nilsson-model

Different theoretical methods agree with N = 184 for the next magic neutron number but the value for the next magic proton number is not as obvious (Z = 114, 120, 126).

3. Production of superheavy elements

- Heaviest (stable) natural element: Uranium (Z = 92)
- The next elements up to fermium (Z = 100) can be created by neutron capture and following β^- - decay.

$${}^{238}_{92}\mathrm{U} + {}^{1}_{0}\mathrm{n} \longrightarrow {}^{239}_{92}\mathrm{U} \xrightarrow{\beta^{-}}_{23 \mathrm{min}} {}^{239}_{93}\mathrm{Np} \xrightarrow{\beta^{-}}_{2.355 \mathrm{d}} {}^{239}_{94}\mathrm{Pu}$$

• For elements with Z > 100 this process ends because of short lifetimes due fission and α - emission.

Elements with Z > 100 can be obtained by fusion of heavy-ion projectiles and heavy-element targets.

General reaction:
$$a + A \rightarrow C^* \rightarrow B + b$$

Two challenges:

- Coulomb-barrier between projectile and target has to be overcome
- Excitation energy of the Compound-nucleus has to be reduced (by evaporation of neutrons) to prevent spontaneous fission

Hot fusion led to the discovery of the elements nobelium (Z = 102) to seaborgium (Z = 106) at the Lawrence Berkeley National Lab, California (Seaborg, Ghiorso).

- Light ions and actinoid targets (Z = 89 to Z = 99) are used
- Excitation energy of the Compound nucleus is about 40-50 MeV
- Evaporation of four or five neutrons reduces the excitation energy of the Compound nucleus below the fission barrier

With the technique of the Cold fusion, the elements bohrium (Z = 107) to Z = 112 (not yet named) were produced at GSI, Darmstadt (Armbruster, Münzenberg, Hofmann).

- Medium heavy projectiles like isotopes of Fe, Ni or Zn are accelerated and shot on lead (Z = 82) or bismuth (Z = 83)
- Excitation energy of the Compound-nucleus is only 10-15 MeV
- Evaporation of one neutron is necessary to prevent the Compoundnucleus from spontaneous fission

3. Production of SHE's Excitation energies

Estimation of the excitation energy:

$$E^* = E_{Beam} + \Delta mc^2$$

The beam energy can be approximated with the Coulomb energy

$$E_{Coul} = \frac{q_p q_t}{4 \pi \epsilon_0 (R_p + R_t)}$$

The mass-difference before and after the fusion is

$$\Delta m = m_p + m_t - m_{RP}$$

=> for the hot fusion on slide 11: $E^* = 55,7 MeV$

Production of superheavy elements

- The cross section is very low and decreases with higher Z (by a factor 10⁴ from Z = 104 to Z = 112)
- For cold fusion, the highest cross section was measured for beam energies *below* the fusion-barrier.

3. Production of SHE's Fusion initiated by transfer

- Below the barrier, the kinetic energy (CMS) is converted into potential energy until the reaction partners come to rest in the CMS.
- At this touching configuration, only nucleons on the outer surface are in contact.

Fusion Initiated by Transfer (FIT)

 Transfer of some nucleons (usually pairs) reduces the Coulomb-barrier allowing the fusion.

Decay properties of SHE's 3. Production of SHE's

 Superheavy elements exist only because of nuclear shell- corrections to the Liquid-Drop- Model.

They are a lot more stable against fission than predicted by the LDM.

(a) lg(TA=ee/s) 120 elements, α - decay is the α Ζ dominant decay process. 114 110 Calculated half-life and dominant decay-process 104 184 200 170 180 190 150 160 Production of superheavy elements 16 ► N

3. Production of SHE's Alpha - decay

- Superheavy elements are α emitter
- The energy of the α particle is discrete and characteristic for each nuclei

Solution => Measurements of α decay chains allow for the identification of the original nuclei

- Creation of superheavy elements
 - => ion source accelerator target
- Separation and detection of the reaction products
 - => separation filter detector system for α - decay

4. Experiments at GSI

Helmholtz Center for Heavy-Ion Reasearch, Darmstadt

(Gesellschaft für Schwerionenforschung, GSI)

- One of the few laboratories in the world, where heavy ions can be accelerated
- research program:
 - Nuclear and atomic physics
 - Plasma and materials research
 - \cdot Medical and biophysics

Universal Linear Accelerator

Ion source: Electron cyclotron resonance (ECR) causes ionisation of atoms in a low pressure gas.
 Multiple ionisation is possible, e.g.

 ${}^{58}Fe^{8+}$, ${}^{70}Zn^{10+}$, ${}^{82}Se^{12+}$

- Accelerator:
 - particles from protons to uranium with energies up to 11,4 MeV/u
 - \cdot about 10¹³ particles/s in the target area (for cold fusion)

Projectiles

SHIP is a velocity filter, only particles with a certain velocity get through.

Target

- Thin foils of Pb (Z = 82) and Bi (Z = 83) targets are used (cold fusion)
- Low melting points of both materials
 => maximum beam intensity is limited to currently 2×10¹² particles/s

- The reaction products show an angular distribution caused by scattering in the target and neutron evaporation
- Quadrupole lenses focus the beam

4. Experiments at GSI SHIP

Velocity filter

• Momentum conservation:

$$v_{RP} = \frac{m_p}{m_p + m_t} v_p$$

 A combination of electric and magnetic fields allow only particles with a certain velocity to pass.

$$F_{mag} = F_{el} \Leftrightarrow v = \frac{L}{B}$$

Electric deflectors: \pm 330 kV Dipole magnets: 0.7 T max

• Independent of the electric charge and mass!

=> slow beam particles may pass the velocity filter

Time-of-flight detector

• To distinguish between signals created by α - particles and signals from beam particles

=> only anticoincident signals between Si - and TOF - detector are taken into account

- Consists of three pairs of thin carbon foils
- Efficiency is nearly 100%

Silicon detector

- Reaction products are stopped (Bethe-Bloch) in the detector
- α energies are measured

- Advantages of silicon:
 - High energy resolution: $\Delta E = 40 \, keV$ for α - particles
 - · Position senstive:
 - $\Delta x = 150 \,\mu m$

4. Experiments at GSI Background

- Up to ^τ×^ν, ^ν particles/s in target area
- Velocity filter suppresses the original beam intensity by a factor 10[°] 1.[°] (beam stop)

 Beam particles are deflected differently by an additional bending magnet than the reaction products

=> background of about 1 particle/min is left

⁶⁴Ni + ²⁰⁹Bi → ²⁷²111 + 1n

The irradiation time was 17 days => a total of only three decay-chains was measured

Date	Time (day)	Target isotope	$ \begin{array}{c} {\rm Thickness} \\ (\mu {\rm g/cm^2}) \end{array} $	Beam isotope	$E_{\rm proj}$ (MeV)	Compound nucleus	E^* (MeV)	Ion dose (10^{18})	Observed events	σ (pb)
01.1206.12.1994	5.0	^{209}Bi	450	64 Ni	316.1	²⁷³ 111	9.4	1.0	0	< 2.9
$06.12.{-}12.12.1994$	5.8				318.1		11.0	1.1	1	$1.7^{+3.3}_{-1.4}$
12.1218.12.1994	5.9				320.0		12.5	1.1	2	$3.5^{+4.6}_{-2.3}$

- The beam energy was varied to obtain higher cross sections.
- The measured half-life is $(1.5^{+2.0}_{-0.5})$ ms.
- In a second experiment in 2000, the results were reproduced (again three decay-chains were measured) and officially confirmed.

The two measured decay chains of element 112 (not yet named) by using the reaction ${}^{70}Zn + {}^{208}Pb \rightarrow {}^{277}112 + 1n$

Official naming of element 111 (roentgenium)

Darmstadt, June 10, 2009

A New Chemical Element in the Periodic Table

The element 112, discovered at the GSI Helmholtzzentrum für Schwerionenforschung (Centre for Heavy Ion Research) in Darmstadt, has been officially recognized as a new element by the International Union of Pure and Applied Chemistry (IUPAC).

(www.gsi.de/portrait/Pressemeldungen/10062009-2_e.html)

6. Summary

Atomic number	Name	Symbol	Generation	Half-life of the longest-living Isotope	
107	Bohrium	Bh	February 24, 1981	17 s	
108	Hassium	Hs	March 14, 1984	25 s	
109	Meitnerium	Mt	August 29, 1982	42 ms	
110	Darmstadtium	Ds	November 9, 1994	56 ms	
111	Roentgenium	Rg	December 8, 1994	6.4 ms	
112	prel. Ununbium	Uub	February 9, 1996	0.6 ms	

- Experiments have shown that the cross section for the synthesis of superheavy elements decreases almost continuously with higher Z
 - => Improvements on beam, target and separator required to create heavier elements

References

- The discovery of the heaviest elements, S. Hofmann and G. Münzenberg, Rev. Mod. Phys., 72, 733-767, (2000)
- On the spontaneous fission of nuclei with Z near 114 and N near 184
 S. G. Nilsson and J.R. Nix
- Nucl. Phys. A115, 545-562, (1968)
- Shell effects in masses and deformation energies
 - V. M. Strutinsky

Nucl. Phys A95, 420-442, (1967)

• Formation of superheavy elements in cold fusion reactions

V. Yu. Denisov and S. Hofmann Phys. Rev. C61, 034606, 1-15, (2000)

 The velocity filter SHIP, a separator of unslowed heavy ion fusion products
 G. Münzenberg
 Nucl. Instr. Meth., 161, 65-82, 1979

- New results on elements 111 and 112
 S. Hofmann et al.
 Eur. Phys. J. A 14, 147-157, (2002)
- Chemie superschwerer Elemente M. Schädel Angew. Chem., 118, 378-414, (2006)
- *Kernphysik*Bethge, Walter, Wiedemann
 3. Auflage, Springer, 2008
- *Teilchen und Kerne*Povh, Rith, Scholz, Zetsche
 6. Auflage, Springer, 2004
- Experimentalphysik 4 Demtröder
 2. Auflage, Springer, 2005
- www.gsi.de
- www.transfermium.net
- en.wikipedia.org