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About me

Sebastian Dittmeier 
PostDoc

Experimental 
Particle Physics

● Started working with Machine Learning in 2021
● Focus: Graph Neural Networks
● Context: Online Track Reconstruction with FPGAs 

for the ATLAS experiment @ CERN
● Specialisation: Hardware Awareness
● Background

○ Trigger and data acquisition developments 
for various experiments since 2012
(DEAP3600, Mu3e, ATLAS)

○ PhD in Physics 2018 (Heidelberg)
○ Also studied in Heidelberg before
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The Basics
MNIST, Linear Regression Today, 08.04.2024

A deeper dive
CNNs @ MNIST,  RNNs @ namesTuesday, 09.04.2024

The Problem
Tracking, TrackML kNN searchWednesday, 10.04.2024

The Solution
Graph Neural Networks, PyTorch Geometric, TrackML GNNThursday, 11.04.2024

The Add-On
Fun & GamesFriday, 12.04.2024

What can you expect in the coming days?
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How does it work?
● Slides in English → Should we talk in German or English?
● Slides are linked on the website of this course
● Links to corresponding notebooks are given on the slides, 

and also available via the website of this course
● You can run the notebooks via

○ https://colab.research.google.com (possibly with GPU)
○ https://jupyter.kip.uni-heidelberg.de 
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https://www.physi.uni-heidelberg.de/~dittmeier/pytorch/slides.pdf
https://www.physi.uni-heidelberg.de/~dittmeier/pytorch/
https://colab.research.google.com
https://jupyter.kip.uni-heidelberg.de


Quick Intro
Machine Learning
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What is Machine Learning? 
● Arthur Samuel (1959): Field of study 

that gives computers the ability to 
learn without being explicitly 
programmed

● Tom Mitchell (1998): It is a computer 
program that learns from experience 
E with respect to some task T and 
some performance measure P, if its 
performance on T, as measured by P, 
improves with E.
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On February 24, 1956, Arthur Samuel’s Checkers 
program, which was developed for play on the IBM 
701, was demonstrated on public television. [source]

https://www.forbes.com/sites/gilpress/2021/05/28/on-thinking-machines-machine-learning-and-how-ai-took-over-statistics/


Supervised Learning
● Data set 

(inputs x, labels y)
learn mapping x →y

● Regression: continuous y
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Supervised Learning
● Data set 

(inputs x, labels y)
learn mapping x →y
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● In general: 
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Supervised Learning
● Data set 

(inputs x, labels y)
learn mapping x →y

● Regression: continuous y
● Classification: discrete y
● In general: 

multidimensional x  and y
● Unsupervised learning

○ No labels
○ Find interesting structure in data

● Reinforcement learning
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http://www.youtube.com/watch?v=xAXvfVTgqr0


Deep Learning
● Subset of machine learning based on 

artificial neural networks with 
representation learning

● Multiple layers of interconnected 
neurons

● Many different architectures
○ Deep Neural Networks 

(or Multi-Layer Perceptrons)
○ Convolutional Neural Networks
○ Recurrent Neural Networks
○ Transformers 
○ Graph Neural Networks
○ …
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Input layer

Multiple 
hidden layers

Output layer



PyTorch is an optimized tensor library for 
deep learning using GPUs and CPUs.

15https://pytorch.org/ 

https://pytorch.org/


The BASICS
Tensors, Datasets 
& Models
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 created with https://designer.microsoft.com/image-creator→ PyTorch Cheat Sheet

https://designer.microsoft.com/image-creator
https://pytorch.org/tutorials/beginner/ptcheat.html


Tensors
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● Specialized data structure, very similar to 
arrays and matrices

● Similar to NumPy’s ndarrays
→ but can run on GPU

○ Share same underlying memory!
● Optimized for automatic differentiation

import torch
import numpy as np

# initialize a tensor from data
data = [[1, 2],[3, 4]]
x_data = torch.tensor(data)

# initialize a tensor from a numpy array
np_array = np.array(data)
x_np = torch.from_numpy(np_array)

# initialize a tensor with random or constant values
shape = (2,3,)
rand_tensor = torch.rand(shape)
ones_tensor = torch.ones(shape)
zeros_tensor = torch.zeros(shape)

# initialize a tensor from another tensor
x_ones = torch.ones_like(x_data) 
# retains the properties of x_data
x_rand = torch.rand_like(x_data, dtype=torch.float) 
# overrides the datatype of x_data

→ Link to Notebook

→ Link to documentation 

https://www.physi.uni-heidelberg.de/~dittmeier/pytorch/notebooks/pytorch_tensors.ipynb
https://pytorch.org/docs/stable/torch.html


Tensors
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● Specialized data structure, very similar to 
arrays and matrices

● Similar to NumPy’s ndarrays
→ but can run on GPU

○ Share same underlying memory!
● Optimized for automatic differentiation

# Attributes of a Tensor
tensor = torch.rand(3,4)

print(f"Shape of tensor: {tensor.shape}")
print(f"Datatype of tensor: {tensor.dtype}")
print(f"Device tensor is stored on: {tensor.device}")

→ Link to Notebook

→ Link to documentation 

https://www.physi.uni-heidelberg.de/~dittmeier/pytorch/notebooks/pytorch_tensors.ipynb
https://pytorch.org/docs/stable/torch.html


Tensors
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● Specialized data structure, very similar to 
arrays and matrices

● Similar to NumPy’s ndarrays
→ but can run on GPU

○ Share same underlying memory!
● Optimized for automatic differentiation

# Operations on Tensors
# We move our tensor to the GPU if available
if torch.cuda.is_available():
    tensor = tensor.to("cuda")

# Standard numpy-like indexing and slicing
tensor = torch.ones(4, 4)
print(f"First row: {tensor[0]}")
print(f"First column: {tensor[:, 0]}")
print(f"Last column: {tensor[..., -1]}")
tensor[:,1] = 0
print(tensor)

# Joining tensors
t1 = torch.cat([tensor, tensor], dim=0) 
# along existing dimension
print(t1)
t2 = torch.stack([tensor, tensor], dim=0) 
# creates a new dimension
print(t2)

→ Link to Notebook

→ Link to documentation 

https://www.physi.uni-heidelberg.de/~dittmeier/pytorch/notebooks/pytorch_tensors.ipynb
https://pytorch.org/docs/stable/torch.html


Tensors
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● Specialized data structure, very similar to 
arrays and matrices

● Similar to NumPy’s ndarrays
→ but can run on GPU

○ Share same underlying memory!
● Optimized for automatic differentiation

# Arithmetic operations
# This computes the matrix multiplication between two 
tensors. y1, y2, y3 will have the same value
# ``tensor.T`` returns the transpose of a tensor
y1 = tensor @ tensor.T
y2 = tensor.matmul(tensor.T)
y3 = torch.rand_like(y1)
torch.matmul(tensor, tensor.T, out=y3)
print(f"y1 = {y1} \ny2 = {y2} \ny3 = {y3}")

# This computes the element-wise product. z1, z2, z3 will 
have the same value
z1 = tensor * tensor
z2 = tensor.mul(tensor)

z3 = torch.rand_like(tensor)
torch.mul(tensor, tensor, out=z3)
print(f"z1 = {z1} \nz2 = {z2} \nz3 = {z3}")

→ Link to Notebook

→ Link to documentation 

https://www.physi.uni-heidelberg.de/~dittmeier/pytorch/notebooks/pytorch_tensors.ipynb
https://pytorch.org/docs/stable/torch.html


Tensors
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● Specialized data structure, very similar to 
arrays and matrices

● Similar to NumPy’s ndarrays
→ but can run on GPU

○ Share same underlying memory!
● Optimized for automatic differentiation

# Bridge with NumPy
# Tensor to NumPy array
t = torch.ones(5)
print(f"t: {t}")
n = t.numpy()
print(f"n: {n}")

# A change in the tensor reflects in the NumPy array
t.add_(1)   # in-place addition
print(f"t: {t}")
print(f"n: {n}")

# NumPy array to Tensor
n = np.ones(5)
t = torch.from_numpy(n)

# Changes in the NumPy array reflects in the tensor
np.add(n, 1, out=n)
print(f"t: {t}")
print(f"n: {n}")

→ Link to Notebook

→ Link to documentation 

https://www.physi.uni-heidelberg.de/~dittmeier/pytorch/notebooks/pytorch_tensors.ipynb
https://pytorch.org/docs/stable/torch.html


Datasets & DataLoaders
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● Decouple code
dataset ↔ model training

● torch.utils.data.Dataset

stores samples and labels 
● torch.utils.data.DataLoader

wraps iterable around it

# Loading a dataset: MNIST
import torch
from torch.utils.data import Dataset
from torchvision import datasets
from torchvision.transforms import ToTensor
import matplotlib.pyplot as plt

training_data = datasets.MNIST(
    root="data",
    train=True,
    download=True,
    transform=ToTensor()
)

test_data = datasets.MNIST(
    root="data",
    train=False,
    download=True,
    transform=ToTensor()
)

→ Link to Notebook

→ Link to documentation 

https://www.physi.uni-heidelberg.de/~dittmeier/pytorch/notebooks/pytorch_datasets_dataloaders.ipynb
https://pytorch.org/docs/stable/data.html


Datasets & DataLoaders
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● Decouple code
dataset ↔ model training

● torch.utils.data.Dataset

stores samples and labels 
● torch.utils.data.DataLoader

wraps iterable around it

# Iterating and Visualizing the Dataset
figure = plt.figure(figsize=(4, 10))
cols, rows = 2, 5
label = -1
for i in range(1, cols * rows + 1):
    while (label != (i-1)):
        sample_idx = torch.randint(len(training_data), 
size=(1,)).item()
        img, label = training_data[sample_idx]
    figure.add_subplot(rows, cols, i)
    plt.title(label)
    plt.axis("off")
    plt.imshow(img.squeeze(), cmap="gray")
plt.show()

→ Link to Notebook

→ Link to documentation 

https://www.physi.uni-heidelberg.de/~dittmeier/pytorch/notebooks/pytorch_datasets_dataloaders.ipynb
https://pytorch.org/docs/stable/data.html


Datasets & DataLoaders
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● Decouple code
dataset ↔ model training

● torch.utils.data.Dataset

stores samples and labels 
● torch.utils.data.DataLoader

wraps iterable around it

# Creating a custom dataset
import os
import pandas as pd
from torchvision.io import read_image

class CustomImageDataset (Dataset):
    # The __init__ method is run once when instantiating the Dataset object.
    # img_dir is the directory where the images are stored
    # annotations_file could be a CSV file with image file names and labels
    # example: img1.jpg, 0
    def __init__(self, annotations_file , img_dir, transform=None, 
target_transform =None):
        self.img_labels  = pd.read_csv(annotations_file )
        self.img_dir = img_dir
        self.transform = transform
        self.target_transform  = target_transform

    # The __len__ method returns the number of samples in our dataset.
    def __len__(self):
        return len(self.img_labels )

    # The __getitem__ method loads and returns a sample from the dataset at the 
given index idx.
    def __getitem__ (self, idx):
        img_path = os.path.join(self.img_dir, self.img_labels .iloc[idx, 0])
        image = read_image( img_path)
        label = self.img_labels .iloc[idx, 1]
        if self.transform:
            image = self.transform(image)
        if self.target_transform :
            label = self.target_transform (label)
        return image, label
   

→ Link to Notebook

→ Link to documentation 

https://www.physi.uni-heidelberg.de/~dittmeier/pytorch/notebooks/pytorch_datasets_dataloaders.ipynb
https://pytorch.org/docs/stable/data.html


Datasets & DataLoaders
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● Decouple code
dataset ↔ model training

● torch.utils.data.Dataset

stores samples and labels 
● torch.utils.data.DataLoader

wraps iterable around it

# Preparing the data for training with DataLoaders
from torch.utils.data import DataLoader

train_dataloader = DataLoader(training_data, batch_size=64, 
shuffle=True)
test_dataloader = DataLoader(test_data, batch_size=64, 
shuffle=True)

# Iterate through the DataLoader
# Display image and label.
train_features, train_labels = next(iter(train_dataloader))
print(f"Feature batch shape: {train_features.size()}")
print(f"Labels batch shape: {train_labels.size()}")
img = train_features[0].squeeze() 
# squeeze removes all dimensions of size 1
label = train_labels[0]
plt.imshow(img, cmap="gray")
plt.show()
print(f"Label: {label}")

→ Link to Notebook

→ Link to documentation 

https://www.physi.uni-heidelberg.de/~dittmeier/pytorch/notebooks/pytorch_datasets_dataloaders.ipynb
https://pytorch.org/docs/stable/data.html


Transforms
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● Data does not always come in form required 
for machine learning

● torchvision.transforms 

modify features and labels

from torchvision.transforms import Lambda

ds = datasets.MNIST(
    root="data",
    train=True,
    download=True,
    transform=ToTensor(),
    target_transform=Lambda(lambda y: torch.zeros(10, 
dtype=torch.float).scatter_(0, torch.tensor(y), value=1))
)
# Lambda transforms apply any user-defined lambda function. 
Here, we define a function to turn the integer into a one-hot 
encoded tensor. It first creates a zero tensor of size 10 
(the number of labels in MNIST), and calls scatter_ which 
assigns a value=1 on the index as given by the label y.

ds_dl = DataLoader(ds, batch_size=64, shuffle=True)
train_features, train_labels = next(iter(ds_dl))
print(f"Feature batch shape: {train_features.size()}")
print(f"Labels batch shape: {train_labels.size()}")
img = train_features[0].squeeze()    
label = train_labels[0]
plt.imshow(img, cmap="gray")
plt.show()
print(f"Label: {label}")

→ Link to Notebook

→ Link to documentation 

https://www.physi.uni-heidelberg.de/~dittmeier/pytorch/notebooks/pytorch_datasets_dataloaders.ipynb
https://pytorch.org/vision/stable/transforms.html


Build the Neural Network
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● Neural Networks comprise of layers/modules
● torch.nn

provides all building blocks
● Nested structure allows building complex 

structures

import os
import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets, transforms

device = (
    "cuda"
    if torch.cuda.is_available()
    else "mps"
    if torch.backends.mps.is_available()
    else "cpu"
)
print(f"Using {device} device")

→ Link to Notebook

→ Link to documentation 

https://www.physi.uni-heidelberg.de/~dittmeier/pytorch/notebooks/pytorch_neural_networks.ipynb
https://pytorch.org/docs/stable/nn.html


Build the Neural Network
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● Neural Networks comprise of layers/modules
● torch.nn

provides all building blocks
● Nested structure allows building complex 

structures

# Neural Network definition for processing MNIST dataset
# Initialization and definition of forward pass
# The forward pass is the sequence of computations
# that are applied to the input data to generate the output.
class NeuralNetwork(nn.Module):
    def __init__(self):
        super().__init__()
        self.flatten = nn.Flatten()             
# 2D image flattened to 1D tensor
        self.linear_relu_stack = nn.Sequential( 
# Sequential container
            nn.Linear(28*28, 128),
            nn.ReLU(),
            nn.Linear(128, 128),
            nn.ReLU(),
            nn.Linear(128, 10),
        )

    def forward(self, x):
        x = self.flatten(x)
        logits = self.linear_relu_stack(x)
        return logits

→ Link to Notebook

→ Link to documentation 

https://www.physi.uni-heidelberg.de/~dittmeier/pytorch/notebooks/pytorch_neural_networks.ipynb
https://pytorch.org/docs/stable/nn.html


Build the Neural Network
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● Neural Networks comprise of layers/modules
● torch.nn

provides all building blocks
● Nested structure allows building complex 

structures

# Create an instance of the NeuralNetwork class
model = NeuralNetwork().to(device)
print(model)

# pass input data through the model (with background 
operations)
# don't call model.forward() directly!
X = torch.rand(1, 28, 28, device=device)
logits = model(X)
pred_probab = nn.Softmax(dim=1)(logits)
y_pred = pred_probab.argmax(1)
print(f"Predicted class: {y_pred}")
# Applies the Softmax function to an n-dimensional input 
Tensor
# rescaling them so that the elements of the n-dimensional 
output
# Tensor lie in the range [0,1] and sum to 1.

→ Link to Notebook

→ Link to documentation 

https://www.physi.uni-heidelberg.de/~dittmeier/pytorch/notebooks/pytorch_neural_networks.ipynb
https://pytorch.org/docs/stable/nn.html


Build the Neural Network
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● Neural Networks comprise of layers/modules
● torch.nn

provides all building blocks
● Nested structure allows building complex 

structures

# Model Layers
input_image = torch.rand(3, 28, 28)
print(input_image.size())

flatten = nn.Flatten()
flat_image = flatten(input_image)
print(flat_image.size())

layer1 = nn.Linear(in_features=28*28, out_features=20)
hidden1 = layer1(flat_image)
print(hidden1.size())

print(f"Before ReLU: {hidden1}\n\n")
hidden1 = nn.ReLU()(hidden1)
print(f"After ReLU: {hidden1}")
seq_modules = nn.Sequential(
    flatten,
    layer1,
    nn.ReLU(),
    nn.Linear(20, 10)
)
input_image = torch.rand(3, 28, 28)
logits = seq_modules(input_image)

print(f"logits: {logits}")
softmax_fn = nn.Softmax(dim=1)
pred_probab = softmax_fn(logits)
print(f"pred_probab: {pred_probab}")→ Link to Notebook

→ Link to documentation 

https://www.physi.uni-heidelberg.de/~dittmeier/pytorch/notebooks/pytorch_neural_networks.ipynb
https://pytorch.org/docs/stable/nn.html


Build the Neural Network
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● Neural Networks comprise of layers/modules
● torch.nn

provides all building blocks
● Nested structure allows building complex 

structures

#Model Parameters

print("Model structure: ", model, "\n\n")

for name, param in model.named_parameters():
    print(f"Layer: {name} | Size: {param.size()} | 
Values : {param[:2]} \n")

→ Link to Notebook

→ Link to documentation 

https://www.physi.uni-heidelberg.de/~dittmeier/pytorch/notebooks/pytorch_neural_networks.ipynb
https://pytorch.org/docs/stable/nn.html


Automatic 
Differentiation 
& Optimization
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Automatic Differentiation
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● Training neural networks 
→ back propagation

● Parameters are adjusted according to the 
gradient of the loss function wrt parameters

● torch.autograd

supports automatic computation of gradient 
for any computational graph

# simple one-layer neural network
import torch

x = torch.ones(5)  # input tensor
y = torch.zeros(3)  # expected output
w = torch.randn(5, 3, requires_grad=True) # weights
b = torch.randn(3, requires_grad=True)  # bias
z = torch.matmul(x, w)+b
loss = 
torch.nn.functional.binary_cross_entropy_with_logits(z, y)

print(f"Gradient function for z = {z.grad_fn}")
print(f"Gradient function for loss = {loss.grad_fn}")

→ Link to Notebook

→ Link to documentation 

https://www.physi.uni-heidelberg.de/~dittmeier/pytorch/notebooks/pytorch_autograd.ipynb
https://pytorch.org/docs/stable/autograd.html


Automatic Differentiation
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● Training neural networks 
→ back propagation

● Parameters are adjusted according to the 
gradient of the loss function wrt parameters

● torch.autograd

supports automatic computation of gradient 
for any computational graph

# Computing Gradients
loss.backward()
print(w.grad)
print(b.grad)

# Disabling Gradient Tracking
z = torch.matmul(x, w)+b
print(z.requires_grad)

with torch.no_grad():
    z = torch.matmul(x, w)+b
print(z.requires_grad)

z = torch.matmul(x, w)+b
z_det = z.detach()
print(z_det.requires_grad)

→ Link to Notebook

→ Link to documentation 

https://www.physi.uni-heidelberg.de/~dittmeier/pytorch/notebooks/pytorch_autograd.ipynb
https://pytorch.org/docs/stable/autograd.html


Training & Optimization
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● Train, validate and test the model
● Training: iterative process

○ Guess the output
○ Calculate the loss
○ Collect derivatives
○ Optimize using gradient descent

● Choice of optimizer depends on the task, 
data, resources, …

# Re-using the code from previous notebooks
import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor

training_data = datasets.MNIST(
    root="data",
    train=True,
    download=True,
    transform=ToTensor()
)

test_data = datasets.MNIST(
    root="data",
    train=False,
    download=True,
    transform=ToTensor()
)

train_dataloader = DataLoader(training_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)

class NeuralNetwork(nn.Module):
    def __init__(self):
        super().__init__()
        self.flatten = nn.Flatten()
        self.linear_relu_stack = nn.Sequential(
            nn.Linear(28*28, 128),
            nn.ReLU(),
            nn.Linear(128, 128),
            nn.ReLU(),
            nn.Linear(128, 10),
        )

    def forward(self, x):
        x = self.flatten(x)
        logits = self.linear_relu_stack(x)
        return logits

model = NeuralNetwork()
→ Link to Notebook

→ Link to documentation 

https://www.physi.uni-heidelberg.de/~dittmeier/pytorch/notebooks/pytorch_optimization.ipynb
https://pytorch.org/docs/stable/optim.html


Training & Optimization
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● Train, validate and test the model
● Training: iterative process

○ Guess the output
○ Calculate the loss
○ Collect derivatives
○ Optimize using gradient descent

● Choice of optimizer depends on the task, 
data, resources, …

# set hyperparameters
learning_rate = 1e-3
batch_size = 64
epochs = 10

# Initialize the loss function
# In this case, we use CrossEntropyLoss for classification
# Regression problems would use MSELoss
loss_fn = nn.CrossEntropyLoss()

# Initialize the optimizer, here: Stochastic Gradient 
Descent
# other options: Adam, RMSprop, etc.
optimizer = torch.optim.SGD(model.parameters(), 
lr=learning_rate)

→ Link to Notebook

→ Link to documentation 

https://www.physi.uni-heidelberg.de/~dittmeier/pytorch/notebooks/pytorch_optimization.ipynb
https://pytorch.org/docs/stable/optim.html


Training & Optimization
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● Train, validate and test the model
● Training: iterative process

○ Guess the output
○ Calculate the loss
○ Collect derivatives
○ Optimize using gradient descent

● Choice of optimizer depends on the task, 
data, resources, …

# loops over our optimization code
def train_loop(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)
    # Set the model to training mode - important for batch 
normalization and dropout layers
    # Unnecessary in this situation but added for best 
practices
    model.train()
    for batch, (X, y) in enumerate(dataloader):
        # Compute prediction and loss
        pred = model(X)
        loss = loss_fn(pred, y)

        # Backpropagation
        loss.backward()
        optimizer.step()
        optimizer.zero_grad()

        if batch % 100 == 0:
            loss, current = loss.item(), batch * batch_size 
+ len(X)
            print(f"loss: {loss:>7f}  
[{current:>5d}/{size:>5d}]")

→ Link to Notebook

→ Link to documentation 

https://www.physi.uni-heidelberg.de/~dittmeier/pytorch/notebooks/pytorch_optimization.ipynb
https://pytorch.org/docs/stable/optim.html


Training & Optimization
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● Train, validate and test the model
● Training: iterative process

○ Guess the output
○ Calculate the loss
○ Collect derivatives
○ Optimize using gradient descent

● Choice of optimizer depends on the task, 
data, resources, …

# evaluate the model's performance against the test dataset
def test_loop(dataloader, model, loss_fn):
    # Set the model to evaluation mode - important for batch 
normalization and dropout layers
    # Unnecessary in this situation but added for best 
practices
    model.eval()
    size = len(dataloader.dataset)
    num_batches = len(dataloader)
    test_loss, correct = 0, 0

    # Evaluating the model with torch.no_grad() ensures that 
no gradients are computed during test mode
    # also serves to reduce unnecessary gradient 
computations and memory usage for tensors with 
requires_grad=True
    with torch.no_grad():
        for X, y in dataloader:
            pred = model(X)
            test_loss += loss_fn(pred, y).item()
            correct += (pred.argmax(1) == 
y).type(torch.float).sum().item()

    test_loss /= num_batches
    correct /= size
    print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, 
Avg loss: {test_loss:>8f} \n")

→ Link to Notebook

→ Link to documentation 

https://www.physi.uni-heidelberg.de/~dittmeier/pytorch/notebooks/pytorch_optimization.ipynb
https://pytorch.org/docs/stable/optim.html


Training & Optimization

39

● Train, validate and test the model
● Training: iterative process

○ Guess the output
○ Calculate the loss
○ Collect derivatives
○ Optimize using gradient descent

● Choice of optimizer depends on the task, 
data, resources, …

for t in range(epochs):
    print(f"Epoch {t+1}\n-------------------------------")
    train_loop(train_dataloader, model, loss_fn, optimizer)
    test_loop(test_dataloader, model, loss_fn)
print("Done!")

# saving the model
torch.save(model, 'model.pth')
# lading it again from disk
model = torch.load('model.pth')

→ Link to Notebook

→ Link to documentation 

https://www.physi.uni-heidelberg.de/~dittmeier/pytorch/notebooks/pytorch_optimization.ipynb
https://pytorch.org/docs/stable/optim.html


Coding Time
Linear Regression

40
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Task Description: y = ∑ ai xi

Get the Data

Download the Data
Trainset, Testset

Visualize the Data y(xi)

Create a custom Dataset

Instantiate DataLoaders

Build the Model

Define the neural network

Define loss function 
and optimizer

Define train and test loops

Find the Results

Train the model

Visualize train loss 
per epoch

Retrieve linear coefficients

Submit your results here
(https://forms.gle/WpHMVeTXi93AbA9P8)
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https://www.physi.uni-heidelberg.de/~dittmeier/pytorch/notebooks/data.csv
https://www.physi.uni-heidelberg.de/~dittmeier/pytorch/notebooks/testdata.csv
https://forms.gle/WpHMVeTXi93AbA9P8
https://forms.gle/WpHMVeTXi93AbA9P8


Data Description
10 input features xi , 1 output feature y

in the csv: 
x1 , x2 ,      x3 ,         x4 ,        x5 ,        x6 ,       x7 ,        x8 ,       x9 ,        x10 ,         y 

y is a linear combination of xi’s (+ Gaussian noise)
Find the coefficients ai that fulfill
y = ∑ ai xi  

42



If you have spare time…
Check the effect of different noise levels in the data, 
if you train on one and infer on the other

The default data set linked before has Gaussian noise with 𝜎 = 0.1

Here is data with 𝜎 = 0  (Trainset, Testset)
Here is data with 𝜎 = 10 (Trainset, Testset)
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https://www.physi.uni-heidelberg.de/~dittmeier/pytorch/notebooks/data_noise0.csv
https://www.physi.uni-heidelberg.de/~dittmeier/pytorch/notebooks/testdata_noise0.csv
https://www.physi.uni-heidelberg.de/~dittmeier/pytorch/notebooks/data_noise10.csv
https://www.physi.uni-heidelberg.de/~dittmeier/pytorch/notebooks/data_noise10.csv


Happy Coding!
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Let’s see 
the results!
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The Basics
MNIST, Linear Regression Monday, 08.04.2024

A deeper dive
CNNs @ MNIST,  RNNs @ namesToday, 09.04.2024

The Problem
Tracking, TrackML kNN searchWednesday, 10.04.2024

The Solution
Graph Neural Networks, PyTorch Geometric, TrackML GNNThursday, 11.04.2024

The Add-On
Fun & GamesFriday, 12.04.2024

What can you expect in the coming days?
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A deeper dive
Optimizers, Losses,
Activations, 
Normalization, 
Regularization
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Optimizers in PyTorch – torch.optim
● Optimizer 

○ Takes the parameters and learning rate
○ Performs update through step() method

● Variety of algorithms, e.g
○ SGD: Stochastic Gradient Descent
○ AdaGrad: “adaptive gradient”, penalizes the learning rate for parameters that are frequently updated
○ RMSprop: Divide the gradient by a running average of its recent magnitude 
○ Adam: “adaptive moment estimation”, aimed at large datasets and/or high-dim parameter spaces.

             Running averages with exponential forgetting of gradients and second moments of gradients
○ AdamW: Adam with decoupled weight decay, to improve regularization in Adam
○ and more…
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https://pytorch.org/docs/stable/optim.html


Learning Rate
● Often useful to reduce the learning rate as training progresses
● Common schedules: Time based decay, step decay, exponential decay
● Adjusting the learning rate – torch.optim.lr_scheduler
● Several methods

○ LambdaLR: initial lr × λ (function)
○ StepLR: decays lr by 𝛾 every step_size epochs
○ ConstantLR: decays lr by a small constant factor until epochs reach total_iters
○ LinearLR: decays lr by a linearly changing small multiplicative factor until epochs reach total_iters
○ ExponentialLR: decays lr by 𝛾 every epoch
○ CosineAnnealingLR: rapidly decreasing large initial lr to a minimum, then rapidly increase again → 

“warm restart”
○ and many more
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https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate


optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
scheduler = ExponentialLR(optimizer, gamma=0.9)

for epoch in range(20):
    for input, target in dataset:
        optimizer.zero_grad()
        output = model(input)
        loss = loss_fn(output, target)
        loss.backward()
        optimizer.step()
    scheduler.step()

How to use adaptive learning rate scheduling?
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Loss Functions in PyTorch – torch.nn
● Evalautes how well ML algorithm models featured data set
● Optimizer: minimize to improve model performance
● Several functions available for classification

○ BCELoss: Binary Cross-Entropy Loss, most commonly used
○ HingeEmbeddingLoss: Hinge Loss, primarily developed for support 

vector machine, penalizes wrong and right, not confident, predictions
● And for regression

○ MSELoss: Mean Square Error 
○ L1Loss: Mean Absolute Error (MAE)
○ HuberLoss: Combination of MSE and MAE
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BCELoss

Hinge

https://builtin.com/machine-learning/common-loss-functions 

https://pytorch.org/docs/stable/nn.html#loss-functions
https://builtin.com/machine-learning/common-loss-functions


Activation Functions in PyTorch – torch.nn
● Adds non-linearity, helps the network to learn complex patterns in the data
● Vanishing gradients can be problem (Sigmoid, Tanh)
● Lots of functions available

○ ReLU, GELU, Sigmoid, Tanh, …
○ Softmax: rescales tensor to lie in [0,1], and sum = 1
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https://pytorch.org/docs/stable/nn.html#non-linear-activations-weighted-sum-nonlinearity


Normalization Layers in PyTorch – torch.nn
● Feature scaling – transform the range of features to a standard scale
● Improves performance and training stability
● Several methods:

○ BatchNormXd: normalization wrt batch statistics 
○ LayerNorm: normalization across all features

better for RNNs, transformers
○ InstanceNormXd:  normalization across batch 

and channel; helps generative models
○ and more

53
https://www.pinecone.io/learn/batch-layer-normalization/ 

BatchNorm

https://pytorch.org/docs/stable/nn.html#normalization-layers
https://www.pinecone.io/learn/batch-layer-normalization/


Normalization Layers in PyTorch – torch.nn
● Feature scaling – transform the range of features to a standard scale
● Improves performance and training stability
● Several methods:

○ BatchNormXd: normalization wrt batch statistics 
○ LayerNorm: normalization across all features

better for RNNs, transformers
○ InstanceNormXd:  normalization across batch 

and channel; helps generative models
○ and more

54
https://www.pinecone.io/learn/batch-layer-normalization/ 

LayerNorm

https://pytorch.org/docs/stable/nn.html#normalization-layers
https://www.pinecone.io/learn/batch-layer-normalization/


Regularization in PyTorch
● Regularization is used to prevent models from overfitting
● Dropout Layers: During training, randomly 

zeroes some of the elements of the input 
tensor with probability p.

● More general techniques:
● L1/L2 Regularization:  penalty for large weights

Ltraining = Lloss+ L1/2 ,    L1/2 = λ∑|wi|
1/2,

● Data Augmentation: Transformations, noise injections
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https://medium.com/analytics-vidhya/understanding-regularization-with-pytorch-26a838d94058 

https://pytorch.org/docs/stable/nn.html#dropout-layers
https://medium.com/analytics-vidhya/understanding-regularization-with-pytorch-26a838d94058


MNIST Experiment 
with CNNs

56

 created with https://designer.microsoft.com/image-creator

https://designer.microsoft.com/image-creator


Convolutional Neural Network
● Feed-Forward Neural Network 
● Applications in Computer Vision

○ Image and video recognition
○ Image & document analysis
○ Image classification

● Learns feature engineering via filter (= kernel) optimization

57https://commons.wikimedia.org/w/index.php?curid=99461951 

DeepDream
, https://commons.wikimedia.org/w/index.php?curid=11309460 

Face Recognition

Classical image processing: sharpen
https://en.wikipedia.org/wiki/Kernel_(image_processing) 

https://commons.wikimedia.org/w/index.php?curid=99461951
https://commons.wikimedia.org/w/index.php?curid=11309460
https://en.wikipedia.org/wiki/Kernel_(image_processing)


Convolutional Neural Network
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https://en.wikipedia.org/wiki/Convolutional_neural_network 

https://en.wikipedia.org/wiki/Convolutional_neural_network


Convolutional Layer

59

https://www.ibm.com/topics/convolutional-neural-networks 

https://www.ibm.com/topics/convolutional-neural-networks


Subsampling through Max Pooling

60

https://en.wikipedia.org/wiki/Convolutional_neural_network 

https://en.wikipedia.org/wiki/Convolutional_neural_network


Hyperparameters for convolutions
● Kernel size: Number of pixels processed together, expressed as kernel's dimensions, e.g., 2x2, or 3x3.

● Padding: Addition of 0-valued pixels on the borders of an image, so that the border pixels are not 
undervalued from the output.

● Stride: Number of pixels that the analysis window moves on each iteration.

● Dilation: Ignoring pixels, increases kernels

● Number of filters: Since feature map size decreases with depth, layers near the input layer tend to 
have fewer filters while higher layers can have more.

● Filter size: Chosen based on data set

● Pooling type and size: Typically used max pooling with 2x2 dimension
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CNNs with PyTorch – torch.nn
● ConvXd: 1-3D convolutions over an input signal composed of several input planes
● ConvTransposeXd: 1-3D transposed convolutions; can be seen as gradient of

                                 ConvXd with respect to its input
● LazyConv(Transpose)Xd: derive shape of parameters from their first input to the 

    forward method
● Unfold: Extracts sliding local blocks from a batched input tensor.
● Fold: Combines an array of sliding local blocks into a large containing tensor.

Convolution is equivalent to Unfold + MatMul + Fold

62

X = 1, 2 or 3

https://pytorch.org/docs/stable/nn.html#convolution-layers


Experimenting with MNIST

63

● Adapt the previous notebook by replacing the model with another neural network 
architecture of your choice

● Example: stacks of 2D convolutional layers (Conv2d) + ReLU + MaxPool2d

● Feel free to experiment with layers, optimizers, losses, activations, normalizations, 
regularizations!

https://www.physi.uni-heidelberg.de/~dittmeier/pytorch/notebooks/pytorch_optimization.ipynb
https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html#torch.nn.Conv2d
https://pytorch.org/docs/stable/generated/torch.nn.MaxPool2d.html#torch.nn.MaxPool2d


Let’s see 
the results!
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Classifying names
with RNNs
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Recurrent Neural Network
● Bi-directional neural network: allows output from some nodes to affect 

subsequent input to the same nodes (temporal, sequential flow)
● Use internal state (= memory) to process arbitrary sequences of inputs
● Applications in 

○ Handwriting recognition
○ Speech recognition
○ Natural language processing

● Various architectures:
○ Fully recurrent: outputs of all neurons to inputs of all neurons 
○ Long short-term memory (LSTM): avoids vanishing gradient 

problem, augmented by “forget gates”

66
https://www.youtube.com/watch?v=cUTMhmVh1qs&t=1780s

DeepMind, LSTM

https://www.youtube.com/watch?v=cUTMhmVh1qs&t=1780s


Recurrent Neural Network
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By fdeloche - Own work, CC BY-SA 
https://commons.wikimedia.org/w/index.php?curid=60109157 

time

https://commons.wikimedia.org/w/index.php?curid=60109157


RNNs with PyTorch – torch.nn

68

● RNNBase: aspects shared by RNN, LSTM, GRU; 
no forward

● RNN: multi-layer Elman RNN with tanh or ReLU
● LSTM: Long Short-Term Memory, 3 gates

    (input, forget, output)
● GRU: Gated Recurrent Unit, simplified compared

           to LSTM, 2 gates (update + reset)
           less prone to overfitting, on smaller datasets

● and their individual cells https://commons.wikimedia.org/w/index.php?curid=5837043 

Elman RNN

context units

https://pytorch.org/docs/stable/nn.html#recurrent-layers
https://commons.wikimedia.org/w/index.php?curid=5837043


Experimenting with RNNs

69

● Task: Classifying names with a character-level RNN
● Checkout the notebook, it includes a simple hand-made RNN model
● Data contains a few thousand surnames from 18 languages of origin
● Can the model predict your last name correctly?
● Experiment with model parameters, different RNN models, optimizers, …

Can you improve the performance?

https://www.physi.uni-heidelberg.de/~dittmeier/pytorch/notebooks/pytorch_rnn.ipynb


Let’s see 
the results!
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The Basics
MNIST, Linear Regression Monday, 08.04.2024

A deeper dive
CNNs @ MNIST,  RNNs @ namesTuesday, 09.04.2024

The Problem
Tracking, TrackML kNN searchToday, 10.04.2024

The Solution
Graph Neural Networks, PyTorch Geometric, TrackML GNNThursday, 11.04.2024

The Add-On
Fun & GamesFriday, 12.04.2024

What can you expect in the coming days?
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The Problem
Tracking @ HL-LHC
TrackML Challenge
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The Large Hadron Collider
The most powerful particle 
accelerator ever built!

73

https://cds.cern.ch/record/1708847 

Quantity Number (Run 2)

Circumference 26 659 m

Dipole operating temperature 1.9 K (-271.3°C)

Number of magnets 9593

Number of main dipoles 1232

Number of main quadrupoles 392

Number of RF cavities 8 per beam

Nominal energy, protons 6.5 TeV

Nominal energy, ions 2.56 TeV/u (energy per nucleon)

Nominal energy, protons collisions 13 TeV

No. of bunches per proton beam 2808

No. of protons per bunch (at start) 1.2 x 1011

Number of turns per second 11245

Number of collisions per second 1 billion

https://cds.cern.ch/record/1708847


The ATLAS Experiment
● ATLAS is one of two general- 

purpose detectors at the LHC
● Wide range of physics

○ Higgs boson properties
○ Standard Model parameters
○ Physics beyond the Standard Model

● Beams of particles collide at the 
centre of the ATLAS detector

● Six subdetectors and huge 
magnets: measure the paths, 
momentum, and energy of the 
particles

74

https://cds.cern.ch/record/1095924 

https://cds.cern.ch/record/1095924


General Purpose Collider Detector Concept

75

B→



Silicon Tracking Detectors

76

Principle of a semiconductor detector

A silicon strip module (ATLAS ITk)

A silicon pixel sensor (MuPix10, Mu3e)

https://indico.cern.ch/event/1064182/contributions/4485693/attachments/2316683/3944209/ITk-Strip-Assembly.pdf
https://arxiv.org/pdf/2012.05868.pdf


Track Reconstruction
“Track reconstruction is the task of finding and estimating the trajectory of a charged 
particle, usually embedded in a static magnetic field to determine its momentum and 
charge.”
Frühwirth, Brondolin, Strandlie

Involves pattern recognition and statistical estimation methods

● Pattern recognition / Track finding 
● Track parameter estimation / Track fitting
● Track hypothesis test 

77

https://arxiv.org/pdf/1904.06778.pdf 

https://doi.org/10.1007/978-3-030-35318-6_13
https://arxiv.org/pdf/1904.06778.pdf


Track Finding
● Task: associate points into tracks
● Currently conveniently solved by combinatorial 

optimization methods (based on Kalman filters)
● But: CPU time increases (worse than linearly) 

with number of simultaneous proton collisions
● This is where Machine Learning may help us!
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https://arxiv.org/pdf/1904.06778.pdf 

https://arxiv.org/pdf/1904.06778.pdf
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The Tracking Challenge for HL-LHC

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/EventDisplayRun2Physics 

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/EventDisplayRun2Physics


The TrackML Challenge
● Machine Learning Challenge 

in 2018, using the power of 
the “crowd”

● 100’000 points from 
10’000 particles from very 
high energy proton collisions

80

https://sites.google.com/site/trackmlparticle/home 

https://sites.google.com/site/trackmlparticle/home


Setup (I)
● An event is a set of particle measurements (hits) in the detector 
● The detector is formed of discrete layers
● An event has ~ 100’000 hits, corresponding to 10’000 particles.

○ Each particle is created close to, but not exactly, at the center of the detector.
○ Each hit is a 3D measurement in Cartesian coordinates (𝑥�, 𝑦,� 𝑧). 
○ For each particle, the number of hits is on average 12, but as low as 4 and as large as 20.
○ Target: associate the hits created by each particle together, to form tracks. 

At least 90% of the true tracks should be recovered.
○ The tracks are slightly distorted arc of helices with axes parallel to the 𝑧-axis, and pointing 

approximately to the interaction center.
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https://arxiv.org/pdf/1904.06778.pdf 

https://arxiv.org/pdf/1904.06778.pdf


Setup (II)
● In an ideal world:

○ Each particle would leave one and only one hit on each layer of the detector
○ The trajectories would be exact arcs of helices
○ The (𝑥�, 𝑦,� 𝑧) coordinates would be exact.
○ In this ideal world, fitting the parameters of the helices suffices to solve the problem.

● Subtleties:
○ Depending of the local geometry, each particle may leave multiple hits in a layer, and the layer may 

not record anything at all.
○ The arcs are often slightly distorted.
○ The measurements have some non isotropic uncertainty

82

https://arxiv.org/pdf/1904.06778.pdf 

https://arxiv.org/pdf/1904.06778.pdf


Pixel

Short Strips

Long Strips

B→

TrackML Detector

83

Detector Spatial resolution (𝜇m × 𝜇m)

Pixel 50 × 50

Short Strips 80 × 1200

Long Strips 1200 × 1800



Dataset (I)
● Data is stored per event. Events are statistically independent 
● Hits

○ hit_id: Unique hit identifier
○ x, y, z: Cartesian coordinates  in millimetres
○ volume_id: numerical identifier of the detector group.
○ layer_id: numerical identifier of the detector layer inside the group.
○ module_id: numerical identifier of the detector module inside the layer.

● Hit truth
○ hit_id: Unique hit identifier
○ particle_id: Particle identifier (0 = non-reconstructible)
○ tx, ty, tz: Truth hit positions
○ tpx, tpy, tpz: Truth particle momentum at hit (in GeV/c)
○ weight: don’t care for us
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Dataset (II)
● Data is stored per event. Events are statistically independent 
● Particles truth

○ particle_id: Particle identifier
○ vx, vy, vz: Truth initial position (vertex) in millimetres
○ px, py, pz: Truth initial particle momentum (in GeV/c)
○ q: Particle charge (in units of e)
○ nhits: Number of hits

● Cells: additional information per hit (individual pixels or strips)
○ hit_id: Hit identifier
○ ch0, ch1: coordinates within detector module
○ value: deposited charge within cell

● Detector geometry information

85



Coding Time
TrackML kNN search
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Task Description: Getting Started with TrackML (I)
Get the Data

Download the Data
(100 events, split 80, 10, 10 
in trainset, valset, testset)

You can load events / 
dataset using the 
trackml-library

Visualize the Data 
of an event

Create a Dataset

Include particle pT with 
add_momentum_quantities

Allow for a lower bound 
cut on particle pT 

Instantiate Datasets with 
cut pT > 2 (GeV)

DataLoaders:
batch size: 1 event

Build a kNN search

Goal: hits belonging to a 
track should be near, 
others far away

We can achieve this using 
an HingeEmbeddingLoss

Add label tensor to dataset
y [Nhits, Nhits]
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https://www.physi.uni-heidelberg.de/~dittmeier/pytorch/trackml_data
https://github.com/LAL/trackml-library
https://pytorch.org/docs/stable/generated/torch.nn.HingeEmbeddingLoss.html


Hinge loss function
"maximum-margin" classification

yn  = 1 for hits from same particle, 
yn = -1 for all other hits
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Neural 
Network

kNN search with TrackML

89

real space

r

latent space

search for k Nearest Neighbors 
within radius r

train with hinge loss

Goal: embed all hits belonging to a track 
such that they form a cluster in latent space



Task Description: Getting Started with TrackML (II)
Build a Model

Experiment here!

Choose a model 
architecture to embed hits 
into a latent space of 
arbitrary dimension

Choose which features you 
will use as input to your 
model (no truth!)

Train loop

Calculate pairwise 
distances between all 
embedded hits 
(=prediction)

→ input for loss function, 
together with labels

Set up Optimizer

Test loop evaluation

Add a kNN search 
NearestNeighbors to 
evaluate efficiency and 
purity; remove neighbors 
outside of radius

efficiency: 
true hits in circle / all true hits

purity: 
true hits in circle / all hits in circle
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https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.NearestNeighbors.html


Starting Notebooks
● We have plenty of time now for coding!
● Notebooks prepared for usage on Google Colab
● Minimal notebook → Link to Notebook

○ Installs external dependencies
○ Downloads and unpacks the data
○ Freedom to implement the way you want → Enjoy!

● If you want a little more help from the start (or to get some inspiration) 
→ Link to Notebook

○ You can spend more time in trying to find good model architectures
● Train and evaluate → and visualize your results!
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https://colab.research.google.com
https://www.physi.uni-heidelberg.de/~dittmeier/pytorch/notebooks/pytorch_trackml_colab_fresh.ipynb
https://www.physi.uni-heidelberg.de/~dittmeier/pytorch/notebooks/pytorch_trackml_colab_help.ipynb


If you have spare time…
You can relax the pT cut (1 GeV or remove it completely)
→ this may require that you create the labels tensor in the training loop (slow), or 
reduce number of events, due to memory constraints 

Or you can change the definition of the labels:
Only hits from same particle in neighboring layers are to be put close together
→ This is what we do in Metric Learning (Graph Construction for GNN Tracking)

92

Neural 
Network r



Let’s get started!
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Let’s see 
the results!
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Shortcomings of our kNN search
● We cluster around every hit (multiple times per track)

○ Which hit should be the center of the cluster? → Object condensation!
● We try to cluster full tracks in the latent space

○ We end up with a lot of wrong hits within the clusters, if we want to be efficient
○ Reduce task complexity by clustering only consecutive layers → metric learning

● Labels tensor is large (scales N2) 
○ Make use of sparsity
○ Hard negative mining (wrong hits outside of margin don’t contribute)
○ Custom hinge loss → label wrong combinations with 0 instead of -1 

We are actually creating here a set of hits connected with edges → a graph!
We can use similar techniques to construct a graph and apply a graph neural network 
for edge labeling → then we can later cut the graph 
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The Basics
MNIST, Linear Regression Monday, 08.04.2024

A deeper dive
CNNs @ MNIST,  RNNs @ namesTuesday, 09.04.2024

The Problem
Tracking, TrackML kNN searchWednesday, 10.04.2024

The Solution
Graph Neural Networks, PyTorch Geometric, TrackML GNNToday, 11.04.2024

The Add-On
Fun & GamesFriday, 12.04.2024

What can you expect in the coming days?
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ML with Graphs
Graph Neural 
Networks
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A network that helps define and visualize relationships between various components.

A graph G = (V, E) is a set of Vertices V and edges E, where each edge (u,v) is a 
connection between vertices, u, v ϵ V

What is a Graph?
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Undirected Graph Directed Graph
Edge (u,v) implies (v,u) Edges are unidirectional

Types of Graphs
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Connected graph Edges are unidirectional
All vertices are connected Connected components (subsets of vertices)

Connectivity
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Graph Representations

101

0

4

1

3

2

0 1 2 3 4

0 0 1 0 1 0

1 1 0 1 1 1

2 0 1 0 1 0

3 1 1 1 0 1

4 0 1 0 1 0

Adjacency Matrix



Graph Representations
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Graph Representations
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How does this apply to tracking?
● A graph is a natural representation for a collision 

event in a tracking detector
● Graphs consist of a set of nodes and edges

○ Represent each hit as a node
○ Edges suggest two hits belong to the same track

● Levels of information:
○ Node: position, energy deposited, …
○ Edge: geometric info, belongs to track, …
○ Graph: event, detector region, …

● Predictions possible with a GNN on each level
○ Track reconstruction uses edge-level predictions
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Node

Edge



Graph Neural Networks
Aim:

● Generalize classical deep learning concepts to irregular structured data 
(in contrast to images or text)

● Enable neural networks to reason about objects and their relations

How it’s done:

● Neural message passing scheme, where node features are iteratively updated by 
aggregating localized information from their neighbors
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Graph Neural Networks
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Graph Neural Networks
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Graph Neural Networks
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Graph Neural Networks
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Graph Neural Networks
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Current Neighbor 
States

Neural Message Passing
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0 1 0

1 0 1

0 1 0

Current Neighbor 
States

Neural Message Passing – Adjacency Matrix
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Current Node 
States

Interaction Network (Edge Update)
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Next Edge States

Interaction Network (Node Update)
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PyG

ML with Graphs
PyTorch Geometric
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# Install required packages.
import os
import torch
os.environ['TORCH'] = torch.__version__
print(torch.__version__)

!pip install -q torch-scatter -f 
https://data.pyg.org/whl/torch-${TORCH}.html
!pip install -q torch-sparse -f 
https://data.pyg.org/whl/torch-${TORCH}.html
!pip install -q 
git+https://github.com/pyg-team/pytorch_geometric.git

# Helper function for visualization.
%matplotlib inline
import networkx as nx
import matplotlib.pyplot as plt

GNNs with PyG
● Can all be done with plain 

PyTorch
○ Matrix multiplications with 

adjacency matrix, as seen here
● PyG provides some neat utilities 

for message passing
● We’ll do an introductory example: 

Karate Club
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→ Link to Notebook

→ Link to documentation 

https://en.wikipedia.org/wiki/Zachary%27s_karate_club
https://www.physi.uni-heidelberg.de/~dittmeier/pytorch/notebooks/pytorch_geometric.ipynb
https://pytorch-geometric.readthedocs.io/en/latest/


def visualize_graph(G, color):
    plt.figure(figsize=(7,7))
    plt.xticks([])
    plt.yticks([])
    nx.draw_networkx(G, pos=nx.spring_layout(G, seed=42), 
with_labels=False,
                     node_color=color, cmap="Set2")
    plt.show()

def visualize_embedding(h, color, epoch=None, loss=None):
    plt.figure(figsize=(7,7))
    plt.xticks([])
    plt.yticks([])
    h = h.detach().cpu().numpy()
    plt.scatter(h[:, 0], h[:, 1], s=140, c=color, 
cmap="Set2")
    if epoch is not None and loss is not None:
        plt.xlabel(f'Epoch: {epoch}, Loss: 
{loss.item():.4f}', fontsize=16)
    plt.show()

GNNs with PyG
● Can all be done with plain 

PyTorch
○ Matrix multiplications with 

adjacency matrix, as seen here
● PyG provides some neat utilities 

for message passing
● We’ll do an introductory example: 

Karate Club
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→ Link to Notebook

→ Link to documentation 

https://en.wikipedia.org/wiki/Zachary%27s_karate_club
https://www.physi.uni-heidelberg.de/~dittmeier/pytorch/notebooks/pytorch_geometric.ipynb
https://pytorch-geometric.readthedocs.io/en/latest/


from torch_geometric.datasets import KarateClub

dataset = KarateClub()
print(f'Dataset: {dataset}:')
print('======================')
print(f'Number of graphs: {len(dataset)}')
print(f'Number of features: {dataset.num_features}')
print(f'Number of classes: {dataset.num_classes}')

data = dataset[0]  # Get the first graph object.

print(data)
print('=====================================================
=========')

# Gather some statistics about the graph.
print(f'Number of nodes: {data.num_nodes}')
print(f'Number of edges: {data.num_edges}')
print(f'Average node degree: {data.num_edges / 
data.num_nodes:.2f}')
print(f'Number of training nodes: {data.train_mask.sum()}')
print(f'Training node label rate: 
{int(data.train_mask.sum()) / data.num_nodes:.2f}')
print(f'Has isolated nodes: {data.has_isolated_nodes()}')
print(f'Has self-loops: {data.has_self_loops()}')
print(f'Is undirected: {data.is_undirected()}')

GNNs with PyG
● Loading the dataset
● Property inspection
● Detailed look at the data
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→ Link to Notebook

→ Link to documentation 

https://www.physi.uni-heidelberg.de/~dittmeier/pytorch/notebooks/pytorch_geometric.ipynb
https://pytorch-geometric.readthedocs.io/en/latest/


edge_index = data.edge_index
print(edge_index.t())

from torch_geometric.utils import to_networkx

G = to_networkx(data, to_undirected=True)
visualize_graph(G, color=data.y)

GNNs with PyG
● edge_index holds a tuple of two 

node indices for each edge
● Edges are stored in COO format

(coordinate format)
● Visualization
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→ Link to Notebook

→ Link to documentation 

https://www.physi.uni-heidelberg.de/~dittmeier/pytorch/notebooks/pytorch_geometric.ipynb
https://pytorch-geometric.readthedocs.io/en/latest/


import torch
from torch.nn import Linear
from torch_geometric.nn import GCNConv

class GCN(torch.nn.Module):
    def __init__(self):
        super().__init__()
        torch.manual_seed(1234)
        self.conv1 = GCNConv(dataset.num_features, 4)
        self.conv2 = GCNConv(4, 4)
        self.conv3 = GCNConv(4, 2)
        self.classifier = Linear(2, dataset.num_classes)

    def forward(self, x, edge_index):
        h = self.conv1(x, edge_index)
        h = h.tanh()
        h = self.conv2(h, edge_index)
        h = h.tanh()
        h = self.conv3(h, edge_index)
        h = h.tanh()  # Final GNN embedding space.
       
        # Apply a final (linear) classifier.
        out = self.classifier(h)

        return out, h

model = GCN()
print(model)

GNNs with PyG
● Implementing a Graph Neural 

Network
● GCN layer 

(Graph Convolutional Network)
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→ Link to Notebook

→ Link to documentation 

W: trainable weight matrix
c: fixed normalization
   coefficient per edge

https://www.physi.uni-heidelberg.de/~dittmeier/pytorch/notebooks/pytorch_geometric.ipynb
https://pytorch-geometric.readthedocs.io/en/latest/


model = GCN()

_, h = model(data.x, data.edge_index)
print(f'Embedding shape: {list(h.shape)}')

visualize_embedding(h, color=data.y)

GNNs with PyG
● Visualization of embedding
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→ Link to Notebook

→ Link to documentation 

https://www.physi.uni-heidelberg.de/~dittmeier/pytorch/notebooks/pytorch_geometric.ipynb
https://pytorch-geometric.readthedocs.io/en/latest/


import time

model = GCN()
criterion = torch.nn.CrossEntropyLoss()  # Define loss 
criterion.
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)  # 
Define optimizer.

def train(data):
    optimizer.zero_grad()  # Clear gradients.
    out, h = model(data.x, data.edge_index)  # Perform a 
single forward pass.
    loss = criterion(out[data.train_mask], 
data.y[data.train_mask])  # Compute the loss solely based on 
the training nodes.
    loss.backward()  # Derive gradients.
    optimizer.step()  # Update parameters based on 
gradients.
    return loss, h

for epoch in range(1001):
    loss, h = train(data)
    if epoch % 10 == 0:
        visualize_embedding(h, color=data.y, epoch=epoch, 
loss=loss)
        time.sleep(0.3)

GNNs with PyG
● Loss
● Optimizer
● And training :)
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→ Link to Notebook

→ Link to documentation 

https://www.physi.uni-heidelberg.de/~dittmeier/pytorch/notebooks/pytorch_geometric.ipynb
https://pytorch-geometric.readthedocs.io/en/latest/


Coding Time
TrackML with graphs
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Tracking with Graph Neural Networks

124

● Task: Classifying track edges with GNNs
● Checkout the zip file, which contains a notebook and some utility files → all files 

are needed on Colab (Jupyterhub)
● We make use of graphs created with a pT > 2 GeV cut, constructed with 

about 99.7 % edge efficiency and 30 % edge purity
→ we want to improve purity, and keep a high efficiency!

● We will walk through the notebook together
● Experiment! Change the networks, parameters, weightings, … as you like!
● If you want, you can make use of larger graphs created without pT cut!

99.0 % efficiency, 1.6 % purity → takes longer to train! may require too much 
memory…

https://www.physi.uni-heidelberg.de/~dittmeier/pytorch/notebooks/pytorch_trackml_gnn.zip


Let’s see 
the results!
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The Basics
MNIST, Linear Regression Monday, 08.04.2024

A deeper dive
CNNs @ MNIST,  RNNs @ namesTuesday, 09.04.2024

The Problem
Tracking, TrackML kNN searchWednesday, 10.04.2024

The Solution
Graph Neural Networks, PyTorch Geometric, TrackML GNNThursday, 11.04.2024

The Add-On
PyTorch Lightning, Fun & GamesToday, 12.04.2024

What can you expect in the coming days?
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PyTorch Lightning
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What is Lightning?
● Lightning organizes PyTorch code to remove boilerplate and unlock scalability
● 7 steps to translate PyTorch to Lightning

○ Computational code goes into LightningModule (model architecture in __init__)
○ Set forward hook
○ Optimizes go into configure_optimizers hook
○ Training logic goes into training_step
○ Validation logic goes into validation_step
○ Remove device calls → lightning modules are hardware agnostic
○ Override more LightningModule hooks (if needed, +20 hooks for full flexibility)

● Lightning Trainer 
○ Automates engineering of loops, hardware calls, train, eval, zero_grad, …
○ Takes PyTorch DataLoaders
○ More functionalities via callbacks
○ Choose device for training

128

Let’s take a look at an example
→ Link to Notebook
compare to plain PyTorch

https://www.physi.uni-heidelberg.de/~dittmeier/pytorch/notebooks/pytorch_lightning.ipynb
https://www.physi.uni-heidelberg.de/~dittmeier/pytorch/notebooks/pytorch_optimization.ipynb


Generative AI
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Generative Adversarial Networks

130

● Two neural networks, Generator and Discriminator, contest each other in a 
zero-sum game

● The Discriminator tries to distinguish true images from fake images generated by 
the Generator

● The Generator tries to fool the Discriminator, such that it cannot distinguish 
anymore between true and fake images

https://commons.wikimedia.org/w/index.php?curid=133747411 

https://commons.wikimedia.org/w/index.php?curid=133747411


Generating new Pokemon with a DCGAN

131

● Checkout the notebook and the data
● This notebook is an adaption from the original PyTorch tutorial (which is about 

generating new celebrity faces)
● Play with it, let’s see some new shiny Pokemons!
● You can explore the code during training (this may take some time, especially 

without a GPU)
● Feel free to search for new image datasets, change the neural networks, 

hyperparameters, …
You may need to tweak parameters for good results
→ see in 2 slides what can happen

https://www.physi.uni-heidelberg.de/~dittmeier/pytorch/notebooks/pytorch_dcgan_pokemon.ipynb
https://www.physi.uni-heidelberg.de/~dittmeier/pytorch/notebooks/pokemon_images.zip
https://pytorch.org/tutorials/beginner/dcgan_faces_tutorial.html


Can you create better Pokemons?
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What can go wrong with GANs?
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What can go wrong with GANs?
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Reinforcement 
Learning
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Reinforcement Learning

136

● Machine Learning + optimal control
● Intelligent agent to take actions in a 

dynamic environment to maximize 
cumulative reward

● Markov decision process:
○ Set of environment and agent states S
○ Set of actions A
○ Probabilities Pa(s,s’) to transition from state s 

to s’ under action a
○ Immediate reward Ra(s,s’)
○ Optimization objective: 

find best action in state s

https://commons.wikimedia.org/w/index.php?curid=57895741 

https://commons.wikimedia.org/w/index.php?curid=57895741


Reinforcement Learning Agent playing Mario
● Check out the official PyTorch example notebook
● You can increase epochs to see how good your agent actually gets
● And checkout the code during training
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https://pytorch.org/tutorials/_downloads/c195adbae0504b6504c93e0fd18235ce/mario_rl_tutorial.ipynb


Revisit previous
notebooks
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To wrap things up

139

 created with https://designer.microsoft.com/image-creator

https://designer.microsoft.com/image-creator


Final Remarks
● I hope you learned something over the course of this week
● And feel ready to implement Machine Learning with PyTorch 

for any of your upcoming projects
● There are many more examples and tutorials around 
● For instance, we did not touch transformers

● If you are intrigued by the application of GNNs (ML) for track reconstruction 
and you are looking for a thesis project 
→ get in touch! (dittmeier@physi.uni-heidelberg.de)
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Please provide feedback! Thanks :)

mailto:dittmeier@physi.uni-heidelberg.de

