Ageing studies for the Straw Tube detectors in the LHCb outer tracking system

Sebastian Bachmann University of Heidelberg Germany

On behalf of the LHCb outer tracker collaboration

The LHCb experiment

6/3/2005

Outer tracker: demands

1. Measurement of momentum $(\delta p/p = 0.4\% @ 20 GeV)$ $\Rightarrow \sigma_x < 200 \mu m$

2. LHC bunch structure
 → fast charge collection

3. LHC environment

- → rate capability (~400kHz/cm²) ageing resistance up to 2C/cm (~10 years at LHCb)
- 4. Pattern recognition
 → Occupancy < 7%

Outer tracker: parameters

- 3 stations (6m x 5m)
 - 4 planes per station (X/U/V/X)2 layers of straw tubesper plane
 - → 55.000 straw tubes 137.5 km of straw tubes
 - modular design
 264 modules of 5 m x 0.34 m
 256 straws of 2.5 m

Detector technology: straw tubes

- Inner winding (cathode): Kapton XC
- Outer winding:
 - Kapton/Aluminium-laminate (25µm) (12.5 µm)

Detector modules I

A. Half modules (one straw layer):

- 1. Rohacel panels with CF skins, covered with Kapton/Al-laminat
- 2. PCB's
- 3. Straws
- 4. wires

6/3/2005

Detector modules II

Two half modules (see last slide) + side walls

Full module

Materials in contact with gas

Material	Used for	Approved by	LHCb test result
Straws	Cathode		o.k.
25 µm Au plated tungsten wire (CFW)	Anode Hera-B OT		o.k.
PCB	HV feed through	Hera-B OT	o.k.
solder tin	solder wires	Hera-B OT	o.k.
Noryl	Wire locator, endpieces	Atlas TRT	o.k.
Araldite 103+HY991	seal modules	CERN/GDD,	o.k.
		Atlas TRT	
Kapton-Al laminate	Seal sandwich panels		o.k.

Choice of the counting gas

Requirements to the counting gas

- 1) fast
- 2) good position resolution
- 3) no aging

Ar + CO_2 + CF_4 ? ?

Usage of CF₄: Pro: fast Contra: electronegative → degradation of resolution ??? Impact on aging ???

Wire breaking in gases with CF₄

Broken wire

- repeatedly observed breaking anode wires in irradiated regions.
- wires irradiated in CF₄ showed indications for wire etching
- never observed wire breaking in Ar/CO₂

Systematic study with X-rays to compare Ar/CO_2 (70/30) vs. $Ar/CO_2/CF_4$ (75/10/15)

Set-up:

- 1. Before irradiation: Measure gain along wire
- 2. Monitor gain during irradiation
- 3. Monitor gain of reference wire
- 4. After irradiation:

remeasure gain along wire optical inspection of wire inspection of wire by means of SEM and EDX

Operating conditions

6/3/2005

Results for Ar/CO₂

Optical inspection of wires after 1C/cm

- no gain loss
- no degradation of resolution
- no polymerisation (EDX)

Results for Ar/CO₂/CF₄

- Same test conditions as for Ar/CO_2 mixture:
- wire rupture after 0.6 C/cm !
- gain loss, not restricted to irradiated area
- degradation of resolution
- strong carbon and oxygen deposits
- no Si-pollutions observed

Summary of X-ray tests with Ar/CO ₂ /CF ₄									
# straws	Q _{int} [C/cm]	Irrad. length [cm]	acc. factor	gas flow [vol/h]	Irrad. of wire locator?	Water content [ppm]	Effects observed		
1	2,8	4	6-14	1	no	<50	C deposits		
2	0,7-1,4	4	10-20	1	no	<50	gain loss		
2	1,7-2,5	4	30-45	1	no	<50	C deposits wire rupture		
2	1,8-2,2	4	32-34	2	no	<50	gain loss C and O deposits		
2	1,7-2,3	4	32-38	3,5	no	500	gain loss C and O deposits		
2	1,7-2,3	4	32-34	2	no	3500	wire etching		
2	0,6-0,9	4	40-50	1,4	Yes	<50	gain loss + wire ruptures		
4	0,7-1,1	4	40-45	1,4	no	<50	gain loss + wire rupture C and O deposits		
2	1,1	8-10	45	1,4	yes	<50	gain loss C and O deposits		
2	0,5-0,7	10	40	1,4	no	<50	gain loss + wire ruptures C and O deposits		

Final choice of counting gas

<u>Ar/CO₂/CF₄ (75/10/15):</u> Long term operation in a large system risky

<u>Ar/CO₂ (70/30):</u>

Slower charge collection, but no major impact on physics performance

baseline gas mixture

Tests with low energetic protons

<u>Aim:</u> Validate cathode, i.e. straw tube materials Search for unwanted effects, e.g. Malter effect

Primary ionisation of protons

Thickness of VA foil adjusted to Bragg peak → maximum primary ionisation

Primary ionsation: up to 1600 MIP's, average 100 MIP's

Stability of gain:

Integrated charge: 0.6C/cm (~3 years at LHCb)

- no gain loss
- no Malter effect observed
- first streamers observed at gain 6x10⁵

6/3/2005

Outlook

• Detector design has been validated in many aging tests with X-rays and low energetic protons.

- Ar/CO₂ (70/30) chosen as counting gas
- Final tests with detectors build from materials taken out of the production are on the way with
 - lower acceleration factor (~10)
 - larger irradiated area (~50cm)

