The LHCb Outer Tracker: Production & Ageing studies

Kaffeepalaver MPI-K

Tanja Haas Physikalisches Institut

LHC at CERN

p-p collisions beam energy 7 TeV

Four experiments: Atlas, CMS, Alice and LHCb

First collisions: 2007

LHCb

LHCb: Designed to exploit CP violation and rare decays of B-mesons at LHC

$$\sigma_{tot} = 80 \text{ mb}$$

$$\sigma_{bb} = 500 \text{ µb}$$

$$\rightarrow 10^{12} \text{ b(b) per year}$$

Production mechanism: Gluon-gluon fusion

LHCb:

•Single arm forward spectrometer

12 mrad < θ < 300 mrad(1.8< η <4.9)

The LHCb experiment

typical event at LHCb: (simulation)

Challenge: Reconstruct decay vertex of B-meson, e.g. $B_s^0 \longrightarrow D_s K$

Contributions of the PI to LHCb

- 1. Construction of ~1/4 of Outer Tracker detector modules.
- 2. Development and test of TDC chip (OTIS) for drift time measurement.
- 3. Development and test of optical data transmission.

Outer tracker: demands

1. Measurement of momentum $(\delta p/p = 0.4\% @ 20 GeV)$

→ σ_x < 200µm

- 2. LHC bunch structure (40 MHz interaction rate)
 - fast charge collection
- 3. LHC environment
 - rate capability (~400kHz/cm²) ageing resistant
- 4. Pattern recognition
 → Occupancy < 7%

5. Low radiation length

Outer tracker: parameters

- 3 stations (6m x 5m)
 - 4 planes per station (X/U/V/X)2 layers of straw tubesper plane
 - → 55.000 straw tubes 137.5 km of straw tubes
 - modular design
 264 modules of 5 m x 0.34 m
 256 straws of 2.5 m

Detector technology: straw tubes

- Inner foil (cathode): Kapton XC
- Outer foil:
 - Kapton/Aluminium-laminate
- Anode:
 - 25 μ m wire (gold coated tungsten)

Design of detector modules

length : 5m width: 0.34m length of straws: 2.5m

2*64 straws per half module → 256 straws per module

0.34m, 64 straws

4.11.04

Tanja Haas Physikalisches Institut

Cross section

Detector modules I

A. Half modules (one straw layer):

- 1. Rohacel panels with CF skins, covered with Kapton/Al-laminat
- 2. PCB's
- 3. Straws + wire locator and endpieces
- 4. Wires

4.11.04

Module production

Module production II

Two half modules + side walls

Full module

Quality control

Half modules: HV tests dark current measurements wire tension measurements

Final modules: gas tightness dark current uniformity of response (pulse height from ⁵⁵Fe)

wire tension

Choice of the counting gas

Requirements to the counting gas

- 1) fast
- 2) good position resolution
- 3) no aging

Usage of CF₄: Pro: fast

Compare the gases

ArCO₂CF₄ (75:10:15): fast gas readout within 2 BX

ArCO₂ (70:30) readout within 3 BX

Choice of the counting gas

Requirements to the counting gas

- 1) fast
- 2) good position resolution
- 3) no aging

Ar + CO_2 + CF_4 ? ?

Usage of CF₄: Pro: fast Contra: electronegative → degradation of spatial resolution ??? Impact on aging ???

Ageing of gas detectors

Long term operation of gas detectors: Possible degradation of detector performance, induced by radiation

Symptons:

- gain loss \rightarrow reduced efficiency
- degradation of energy and spatial resolution
- dark currents

caused by:

- deposits on anode and cathode
- etching of wire (wire rupture!)

Examples for aged detectors

New wire

Deposits on wire

Wire etching and rupture

Parameters affecting ageing

- Accumulated charge per wire length (2 C/cm for 10 years operation at LHCb)
- 2. Intensity
- 3. Primary ionisation
- 4. Irradiated area
- 5. Counting gas
- 6. Impurities (e.g. Si) !

Precautions:

Careful choice of operating parameters Purity of complete system

Comparision of ionising particles

	minimal ionising particles	⁵⁵ Fe (5.9keV)	γ (9keV) X-ray	protons @ Bragg- Peak
number of primary ionisations	ca. 35	ca.220	ca. 330	ca. 3500

Motivation for tests at the MPIK

Procedure for ageing tests

Before irradiation:

measure gain along wire

During irradiation:

monitor gain and current of irradiated wire monitor gain and current of reference wire

After irradiation:

remeasure gain along wire inspection of wire by means of optical and electron microscope and energy dispersive X-ray analysis (EDX)

Operating conditions

Double chamber:

- test both gases at same time
- final materials

Parameters:

- HV: Ar/CO2 (70/30): 1520V
 - Ar/CO2/CF4 (75/10/15):

1550V

gas gain:

28000 (550 kHz) 40000 (low rate)

Results for Ar/CO₂

Optical inspection of wires after 1C/cm

•no gain loss

- no degradation of resolution
- no polymerisation (EDX)

Results for Ar/CO₂/CF₄

- Same test conditions as for Ar/CO₂ mixture:
- wire rupture after 0.6 C/cm !
- gain loss, not restricted to irradiated area
- degradation of resolution
- strong carbon and oxygen deposits
- no Si-pollutions observed

Final choice of counting gas

<u>Ar/CO₂/CF₄ (75/10/15):</u> Long term operation in a large system risky

<u>Ar/CO₂ (70/30):</u>

Slower charge collection, but no major impact on physics performance

Tests with low energetic protons

<u>Aim:</u> Validate cathode, i.e. straw tube materials Search for unwanted effects

e.g. Malter effect:

CATHODE DEPOSITS INDUCE DISCHARGES:

		Cathode
deposit	* * * * * *	POSITIVE IONS ACCUMULATION CREATES HIGH DIPOLE FIELD, INDUCING ELECTRON EXTRACTION (MALTER EFFECT)

Setup

- Rutherford scattering at Au target to reduce current and increase irradiated area
- Faraday cup to absorb the unscattered beam
- Stainless steel (VA) foil to reduce proton energy Bragg peak for highest ionization

Primary ionisation of protons

Thickness of VA foil adjusted to Bragg peak → maximum primary ionisation

Primary ionisation: up to 1600 MIP's, average 100 MIP's

Result I

Vertical beam profile

- 60 hours irradiated
- 9 straws under high voltage
- I reference straw
- Intensity: 50 90 x LHCb intensity
- accumulated charge correspond to 1 2 LHCb years

Horizontal beam profile

Results II

4.11.04

streamer

local gas discharge at high voltage

rate[streamer]

rate[signal @plateau]

Problems: - dead time

- huge charge

 \rightarrow ageing!

- possible damage of electronics

first Streamer @ 1700 V - operating point @ 1520 V gain x 16

- charge deposition @ 1700 V \approx 1600 MIPs

rate=

Summary/Outlook

- mass production started in May
- Detector design has been validated in many aging tests with X-rays and low energetic protons.
- Ar/CO₂ (70/30) chosen as counting gas
- Final tests with detectors build from materials taken out of the production are on the way with
 - lower acceleration factor (~10)
 - larger irradiated area (~50cm)
 - complete LHCb gas system

