Prospects for new physics in rare decays, mixing and related CP violation at LHCb

- 1. Motivation
- 2. The LHCb detector
- 3. Selected key measurements on
 - Mixing and CP-violation
 - Rare decays

Symposium on hadron collider physics Isola d'Elba, 21-25 May 2007 Sebastian Bachmann University of Heidelberg/CERN

Motivation

A lot of precise measurements are available from B-factories and Tevatron to test the CKM picture of flavour structure and CP violation.

However it is expected that New Physics is accessible from box and/or loop diagrams.

LHCb aims to find New Physics contributions in these processes.

What do we get from LHC?

bb cross section: 500µb +
 LHCb luminosity ~ 2-5 • 10³² cm⁻² s⁻¹
 c
 b-production rate ~100kHz

One year of nominal data taking corresponds to 2fb⁻¹

Inelastic pp collisions/crossing: For LHCb mainly single interactions

A signal event: $B_s \rightarrow D_s^-(K^+K^-\pi^-)K^+$

LHCb detector

LHCb detector in place

LHCb performance:

Momentum resolution:

NP from mixing and CP-asymmetries

 $\underline{B_{s}} \rightarrow \underline{D_{s}} \overline{\pi^{+:}}$ Precise measurement of Δm_s using $B_{s} \rightarrow D_{s}^{+} \pi^{-}$. \succ CDF: Δm_s = (17.77 ± 0.1^{stat} ±0.07^{syst}) ps⁻¹ \succ LHCb: Observation expected after few month data taking at nominal luminosity

<u>B_s→J/ψΦ</u>: Extract $Φ_s$ and $ΔΓ_s$ in golden mode $B_s → J/ψΦ$. (NP → contribution to box diagram)

 $B_{\underline{s}}$ →ΦΦ: Measure hadronic penguin $B_{\underline{s}}$ → ΦΦ. (NP → contribution to decay mode?)

CP-violation in the B_s-system

Decay into a final state f with $CP \; f \rightarrow \eta_{\rm f} f$

(assume only one amplitude contributes to decay)

CP-asymmetry:

$$A_{CP}(t) = \frac{\Gamma(\overline{B_s^0}(t) \to f_{CP}) - \Gamma(B_s^0(t) \to f_{CP})}{\Gamma(\overline{B_s^0}(t) \to f_{CP}) + \Gamma(B_s^0(t) \to f_{CP})}$$
$$= -\frac{\eta_f \sin(\phi_s - 2\omega) \sin(\Delta m_s t)}{\cosh\left(\frac{\Delta \Gamma_s t}{2}\right) - \eta_f \cos\phi_s \sinh\left(\frac{\Delta \Gamma_s t}{2}\right)}$$

NP by Tree↔Penguin comparison

B_d-system:

Penguin

 $\Phi_{s}(\text{tree}) - \Phi_{s}(\text{penguin}) = \delta \Phi_{s}(NP)$

 $\Phi_{d}(\text{tree})-\Phi_{d}(\text{penguin}) = \delta \Phi_{d}(\mathbf{NP})$

B-factories: Currently: $\delta \beta = 8$

5/21/2007

Currently: $\delta\beta = 8^{\circ} (2.6\sigma)$

And: $\Phi_{s}(SM)$ small!

B_s-system:

S.Bachmann/HCP'07

 $\begin{array}{c} \hline & \underline{If \ new \ physics \ contributes \ to} \\ \underline{B_{\underline{s}} \ mixing:} \\ & \phi_{s} \rightarrow \phi_{s} + \phi_{NP} \\ & \Delta \Gamma_{s} \rightarrow \Delta \Gamma_{s} \cos(\phi_{s}) \end{array} \end{array}$

Any sizeable CP violation in $B_s \rightarrow J/\psi \Phi$ or $B_s \rightarrow \Phi \Phi$ is a clear sign for NP!

<u>Advantages:</u> High branching ratio Good experimental signature

$$\overline{B}_{s} \underbrace{\int c \\ \overline{c} \\ \overline{s} \\ \overline{s}$$

$$CP(J/\psi\phi) = CP(J/\psi) CP(\phi) (-1)^{L}$$

 $\implies \begin{array}{c} L=0, 2: CP even \\ L=1: CP odd \end{array} \right\} \begin{array}{c} \text{Final state is} \\ a \text{ mixture of} \\ CP even/odd \end{array}$

Angular analysis needed to identify CP even and CP odd states!

 $B_s \rightarrow J/\psi(\mu^+\mu^-) \phi(K^+K^-)$

Use angle θ_{tr} between μ^+ and normal of ϕ decay plane:

 $cos(\theta_{tr})$

 $\theta_{\rm fr}$

([¶]tr

bkgnd

0.5

Selection and signal decay rate

•Yield:	130k events per 2fb ⁻¹
• B/S:	0.12
• $<\delta_t>:$	36 fs
• σ_{Mass} :	14 Mev/c^2
• W _{tag:}	33%
• E _{tag} :	57%

Signal decay rates including:

- Trigger and selection bias on τ
- Background parametrization
- Mass resolution
- Proper time resolution
- Tagging efficiency and dilution
- Transversity angle distribution

Projection for Φ_s and $\Delta\Gamma_s$ with 2fb⁻¹

Parameter	Exp. error	Channel	
$\phi_{\rm s}$	0.023 rad	$B_s \rightarrow J/\psi(\mu^+\mu^-) \Phi(K^+K^-)$	
$\Delta\Gamma/\Gamma$	0.0092	$B_s \rightarrow J/\psi(\mu^+\mu^-) \Phi(K^+K^-)$	
Δm_{s}	0.007 ps ⁻¹	$B_s \rightarrow D_s^- (K^+ K^- \pi^-) \pi^+$	Control
W _{tag}	0.0036	$B_s \rightarrow D_s^- (K^+ K^- \pi^-) \pi^+$	channel

Sensitivity can be improved by adding more channels. Using $B_s \rightarrow J/\psi\eta$, $B_s \rightarrow \eta_C \phi$, $B_s \rightarrow D_s D_s gives \sigma_{\Phi}=0.021$ rad.

CP-Eigenstates

$B_s \rightarrow \phi \phi$: Sensitvity to ϕ_s

LHCb profits from excellent PID and hadronic trigger!

 Expected yield: 4000 events per 2fb⁻¹
 BG estimate limited by MC statistics: 0.4<B/S<2.1 at 90%CL

Sensitivity to φ_s is 0.1rad at 2 fb⁻¹.
 No significant variation as a function of input φ_s, R_t and proper time resolution.

Distribution from 500 MC experiments:

Rare decays

Decay	Sensitivity to	Example for model
1. $B_{d,s} \rightarrow \mu^+ \mu^-$	$-$ large tan β	CMSSM
2. B _d →K ^{*0} μμ	 small tanβ right handed currents 	non-MFV MSSM MIA MSSM SUGRA
3. $B_u \rightarrow K^+ll$ (in combination	- no right handed currents	MFV
with 1.)	- (pseudo-)scalar couplings	

4

1. $B_{d,s} \rightarrow \mu^+ \mu^-$

SM expectation:

BR(B_s $\rightarrow \mu^+\mu^-$) = (3.4±0.4) x 10⁻⁹ BR(B_d $\rightarrow \mu^+\mu^-$) = (1.0±0.5) x 10⁻¹⁰

World best limit by D0: BR($B_s \rightarrow \mu^+\mu^-$) < 7.5 x 10⁻⁸@90%CL

In Supersymmetry: Large contributions e.g. by Higgs penguins $\sim \tan^6\beta$, i.e.

BR($B_{d,s} \rightarrow \mu + \mu -)$ is very sensitive to high values of tan β .

Sensitivity by LHCb

 $\begin{array}{l} \underline{\text{Main background:}}\\ & \succ \text{ Combinatoric } b \rightarrow \mu, \ b \rightarrow \mu\\ & \geq B_c^{\ \pm} \rightarrow J/\psi(\mu^+\mu^-)\mu^\pm\nu \\ & \searrow B_{d,s} \rightarrow h^+h^-\end{array}$

Adressed by excellent mass resolution (18MeV), vertex resolution and particle ID

3.) $B_u^+ \rightarrow K^+ ll$

Use the ratio

$$R_{\mathbf{X}} = \frac{\frac{4m_{\mu}^{2}}{\int} \mathrm{d}s \frac{\mathrm{d}\Gamma(\mathbf{B} \to \mathbf{X}\mu^{+}\mu^{-})}{\mathrm{d}s}}{\int \frac{4m_{\mu}^{2}}{4m_{\mu}^{2}} \mathrm{d}s \frac{\mathrm{d}\Gamma(\mathbf{B} \to \mathbf{X}\mathbf{e}^{+}\mathbf{e}^{-})}{\mathrm{d}s}} \stackrel{\mathrm{SM}}{=} \begin{cases} 1.000 \pm 0.001 & \mathbf{X} = \mathbf{K} \\ 0.991 \pm 0.002 & \mathbf{X} = \mathbf{K}^{*} \end{cases} \stackrel{\mathrm{cm}_{\mathbf{R}}}{=} \mathbf{K}^{*}$$

b
w
$$H^0/A^0?$$

SM prediction can get corrections of ~10% by neutral Higgs boson exchange due to couplings

Hiller & Krüger, PRD69 (2004) 074020)

	Signal	Mean	Sigma
eeK	349±34	5245 MeV	74 MeV
μμΚ	1550 ± 50	5279 MeV	15 MeV

 $\sigma_{\rm Rk}(2fb^{-1}) \approx 10\%$ $\sigma_{\rm Rk}(10fb^{-1}) \approx 4-6\%$

R_k in a MFV model

∠_{1.5}

1.4

1.3

Assume

- o (Pseudo-)scalar couplings lepton masses
- o No CP-phases beyond the SM

 $R_k-1 \sim BR(B_s \rightarrow \mu \mu)$

Hiller & Krüger, PRD69 (2004) 074020)

1.2 Predicted by MFV model 1.1 LHCb projection if SM is holds 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.9 But we hope for **10⁶× BR(B** →μμ) something else...

Excluded by Babar & Belle (Rk) Babar & D0 (BR(Bs-+µµ)) CDF & D0 (BR(Bs-+µµ))

Conclusion

- > LHCb is on a good track to take first data soon.
- It has a wide potential to search for New Physics complementary to new particle searches.
- Searches allow to
 - find New Physics in model independent analysis,
 e.g. by measuring B_s-mixing and related CP-asymmetries.
 - pin-down the nature of New Physics e.g. by the study of rare decays.

The challenge is to achieve that performance with real data!

Backup slides

Physics motivation

- > A copious number of B-mesons is produced at LHC (10^{5} Hz @ $2x10^{32}$ cm⁻²s⁻¹).
- > SM contributions to mixing and many decay processes are well understood.
- New Physics may alter SM predictions
 - \Rightarrow LHCb aims to search for New Physics contributions

to loop processes, e.g.

Performance: Vertex locator

Tracking

Performance: Particle Identification

Performance of VeLo

Proper time resolution: ~ 40 fs ($B_s \rightarrow D_s^- \pi^+$)

Calorimeter

- **Calorimeter system** to identify electrons, hadrons and neutrals
- Important for the first level of the trigger
- Scintillating Pad Detector / PreShower
- O Electromagnetic calorimeter
 O Hadron Calorimeter

Muon identification

Muon ID efficiency (%) vs μ - π DLL cut

Pion mis ID efficiency (%) vs μ - π DLL cut

S.Bachmann/HCP'07

Trigger

HLT rate	Event type	Calibration	Physics
200 Hz	Exclusive B candidates	Tagging	B (core program)
600 Hz	High mass di-muons	Tracking	J/ψ , b \rightarrow J/ψ X (unbiased)
300 Hz	D* candidates	PID	Charm (mixing & CPV)
900 Hz	Inclusive b (e.g. $b \rightarrow \mu$)	Trigger	B (data mining)

Flavor tagging

Opposite side

- Charge of the kaon in the $b \rightarrow c \rightarrow s$ chain
- Charge of the lepton in semi-leptonic decays
- Charge of accompanying b jet

➤ Same side

- Charge of the K accompanying B_s
- Charge of the π from B** \rightarrow B* π^{\pm}

Tagging power in $\epsilon(1-2\omega)^2$

Tag (%)	B _d	B _s
Muon	1.1	1.5
Electron	0.4	0.7
Kaon opp. side	2.1	2.3
Vertex charge	1.0	1.0
Same side π/k	0.7 (π)	3.5 (K)
Combined (neu.net)	~ 5.1	~ 9.5

Δm_s from $B_s \rightarrow D_s^{-}(K^+K^-\pi^-)K^+$

 $B_{s}^{0} \rightarrow D_{s}^{-}\pi^{+}$

-has a large branching fraction of (3.4±0.7)x10⁻³.
- is flavor specific.

Total efficiency: ε_{tot} =0.39% Signal yield: 140 k ± 0.67 k (stat.) ± 40 k (syst.) (assuming 1 year of nominal running, i.e. 2 fb⁻¹) B/S at 90% CL: [0.014, 0.05] (bb combinatorial) [0.08, 0.4] (bb specific)

Sensitivity to Δm_s

- > Plot made for 1 year of data (80k selected events, LHCb) for $\Delta m_s = 20 \text{ ps}^{-1}$
- Control of mistag rate, resolution, background and acceptance important
- > Expected sensitivity for 2 fb-1 (i.e. year of data) $\sigma(\Delta m_s) = \pm 0.007 \text{ ps}^{-1}$ CDF: $\Delta m_s = (17.8 \pm 0.1) \text{ ps}^{-1}$

Sensitivity for New Physics

$B_s \rightarrow \Phi(K^+K^-) \Phi(K^+K^-)$

- FCNC (b→sss) with SM prediction for CP-asymmetry < 1%. see e.g. M.Raidal, PRL 89,231803(2002)
- Sizeable CP asymmetry is an unambiguous sign for NP.
- Like in $B_s \rightarrow J/\psi \phi$ a full angular analysis to extract CP-asymmetry is needed.
- Experimentally demanding, as full hadronic trigger is needed.

Remark:

- In SM $B_s \rightarrow J/\psi \phi$ and $B_s \rightarrow \phi \phi$ measure both $arg[V_{tb} * V_{ts}]$. Tree Penguin
- Deviations point to physics beyond the SM.
- Belle/Babar have 2.7σ deviation when comparing tree and penguin decays of B_d to CP-Eigenstate.

Event selection and sensitivity studies

Selection:

- ≻ Reconstruct only $\phi \rightarrow K^+K^-$.
- Full detector simulation including trigger bias.
- Reconstruction based on:
 - o RICH K[±] ID
 - o pt and impact parameter of K^{\pm} and ϕ candidates.
 - $o \; B_s$ and φ invariant mass.
 - o \boldsymbol{B}_s and $\boldsymbol{\phi}$ vertex quality.

Sensitivity to ϕ_s studied by toy MC:

- proper time resolution of 42fs.
- proper time acceptance function.
- flat BG in $m_{\!_B}$ and transversity angle.
- mistag dilution: $\varepsilon(1-2\omega) = 9.6\%$
- exponential lifetime distribution for BG

		$\operatorname{magnitude}$	phase	helicity flip \mathcal{O}'_i
$\mathcal{O}_{7\gamma}$	$^{\mathrm{b}}$	$b \rightarrow s \gamma$	$a_{CP}(b \to s\gamma)$	$ \frac{\Lambda_b \to \Lambda\gamma}{B \to (K^* \to K\pi)\ell^+\ell^-} \\ B \to (K^{**} \to K\pi\pi)\gamma $
$\mathcal{O}_{8\mathrm{g}}$	b See g	$\begin{array}{c} b \to s\gamma \\ B \to X_c \end{array}$	$\begin{aligned} a_{CP}(b \to s\gamma) \\ B \to K\phi \end{aligned}$	$\begin{array}{c} \Lambda_b \to \Lambda \phi \\ B \to K^* \phi \end{array}$
$\mathcal{O}_{9m\ell,10m\ell}$	\mathbf{b}	$b \rightarrow se^+e^-$	$A_{FB}(b \to s\ell^+\ell^-)$	$B \to (K^* \to K\pi)\ell^+\ell^-$
$\mathcal{O}_{S,P}$	\mathbf{s}	$B_{d,s} \to \mu^+ \mu^-$	$B_{d,s} \to \tau^+ \tau^-$	$b \rightarrow s \tau^+ \tau^-$

From G. Hiller [hep-ph/0308180]

2.) $B^0 \rightarrow K^{*0} \mu^+ \mu^-$

SM processes contributing to decay:

 $BR(B^{0} \rightarrow lls) = 4.5x10^{-6}$ $BR(B^{0} \rightarrow llK) = 0.5x10^{-6}$

Decay is very sensitive to extensions of SM, especially to models with right handed currents:

Analysis of angular distributions allow to extract this information about new Physics.

Observables in $B^0 \rightarrow K^{*0} \mu^+ \mu^-$

Two observables are of special interest, as they have small theoretical errors and are very sensitive to NP:

Forward-Backward Asymmetry in θ_l :

$$A_{FB}(s) = \frac{\int_0^1 \frac{\mathrm{d}^2\Gamma}{\mathrm{d}s\mathrm{d}cos\theta} \mathrm{d}cos\theta - \int_{-1}^0 \frac{\mathrm{d}^2\Gamma}{\mathrm{d}s\mathrm{d}cos\theta} \mathrm{d}cos\theta}{\int_0^1 \frac{\mathrm{d}^2\Gamma}{\mathrm{d}s\mathrm{d}cos\theta} \mathrm{d}cos\theta + \int_{-1}^0 \frac{\mathrm{d}^2\Gamma}{\mathrm{d}s\mathrm{d}cos\theta} \mathrm{d}cos\theta}} \mathrm{d}cos\theta$$

<u>Transverse Asymmetry:</u> (asymmetry in the spin amplitude of the K*)

$$A_T^{(2)}(s) = \frac{|A_{\perp}|^2 - |A_{\parallel}|^2}{|A_{\perp}|^2 + |A_{\parallel}|^2}.$$

 K^{-}

 θ_{K^*}

 π^+

 B^0

 θ_1

1+

AFB(s) in SM and different SUSY models: SUSY I = SUGRA SUSY II = MIA MSSM (from Phys.Rev.D61 (2000) 074024)

 $\tan(\beta) = 5$ from HEP-ph/0612166 С 0.75 0.5 0.25 0 -0.25 -0.5 NLO а -0.75**Susy** h

Non-MFV MSSM with

0.5 1 1.5 2 2.5 M_{µ⁺ µ⁻ [GeV]}

 $A_{T}^{\ (2)}$

Selection of events: $B^0 \rightarrow K^{*0} \mu^+ \mu^-$

Expected yield for $2fb^{-1}$: 7200 ± 180(stat.) ± 2200 (BR)

Estimate for Background:

No. of events per 2fb ⁻¹
9 ± 3
1050 ± 250
690±180
1770±310

A_{FB} and $A_{T}^{(2)}$ from $B^{0} \rightarrow K^{*0} \mu \mu$

1 year of data taking, errors expected to be limited by statistics

