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Designing with VHDL 

(control questions)
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LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

entity a2of3 is
port (a0  : in std_logic;

a1  : in std_logic;
a2  : in std_logic;
y   : out std_logic);

end a2of3;

Simple concurrent 
assignments

architecture a2 of a2of3 is
signal g0, g1, g2 : std_logic;

begin
g2 <= a2 and a0;
y <= g0 or (g1 or g2);
g1 <= a1 and a2;
g0 <= a0 and a1;

end;

architecture a1 of a2of3 is
signal g0, g1, g2 : std_logic;

begin
g0 <= a0 and a1;
g1 <= a1 and a2;
g2 <= a2 and a0;
y <= g0 or g1 or g2;

end;

The two architectures are 1) equivalent; 2) different
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Port-signal mapping

carr: a2of3
port map(

... => ...,

... => ...,

... => ...,

... => ...);

port 
name

signal 
name

port 
name

signal 
name

=>

=>

1)

2) Which one is correct?
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...
carr: a2of3
port map(

a0  => a,
a1  => b,
a2  => cin,
y   => cout);

...

Instantiation of sub-blocks
-- component declaration
component a2of3 is
port (a0 : in std_logic;

a1 : in std_logic;
a2 : in std_logic;
y  : out std_logic);

end component;

...
carr: a2of3
port map(a, b, cin, cout);
...

...
carr: a2of3
port map(a, cin, b, cout);
...

a) b) c)

The three instantiations are 1) equivalent; 2) all different; 
3) one (which?) differs from the others
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Multiple drivers
...
(A, B, C : in  std_logic;
Y : out std_logic);
...
begin

Y <= not C;
Y <= A or B;

end;

This code is
1) OK, the first assignment will be just ignored;
2) not allowed;
3) allowed, but represents an inverter and an 

or-gate with outputs shorted together
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Multiple drivers
...

begin

Y <= A when OE_A='1' else 'Z';

Y <= B when OE_B='1' else 'Z';

end;

This is allowed only when the signals are of the type

1) std_logic

2) std_ulogic

3) bit
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Ports and signals
port (

a     : in std_logic;
b     : in std_logic;
c     : in std_logic;
ya    : out std_logic;
yao   : out std_logic);

…
begin

ya <= a and b;
yao <= ya or c;

...

1) This code is OK

2) A modification is necessary to get this code 
compiled (what?)
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Data types
subtype reg_data is std_logic_vector(31 downto 0);

subtype reg_cmd is std_logic_vector( 0 downto 3);

subtype byte    is std_logic_vector( 8 downto 1);

subtype fixedp   is std_logic_vector( 7 downto -2);

type mem_array is array(0 to 63) of reg_data;

type dat_array is array(7 to 0) of reg_data;

type addr_data is std_logic_vector(15 downto 0);

type state_type is (idle, run, stop, finish);

type state_type is (idle, out, stop, finish);

Which declarations are not correct and why?
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Ranges

generic (N : Natural := 4);
port (

a : in std_logic_vector(0 to N-1);
c : out std_logic_vector(N-1 downto 0);

…
c <= a;

1) The code is not correct, as the indexes of the two 
vectors have different directions
2) The code is correct, c(0) is connected to a(N-1)
3) The code is correct, c(0) is connected to a(0)
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Constants

constant Nbits  : Integer := 8;
constant Nwords : Natural := 6;
constant LowIdx : Positive := 0;

constant all0 : std_logic_vector(Nbits-1 downto 0) = (others => '0');

constant Tco    : real := 5 ns;
constant Tsetup : time := 2 ns;
constant Thold  : integer := 1 ns;
constant Tdel : time := 3;

Which declarations are not correct and why?
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Concurrent assignments
y <= (a or b) and not c;
y <= a or b and not c;
y <= a and b or not c;
y <= a and b and not c;
y <= (a nor b) nor c;
y <= a nor b nor c;
y <= (a nand b) nand c;
y <=  a nand b  nand c;
y <=  a xor b  and c;
y <= (a xor b) and c;

Which assignments are not correct and why?
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Conditional and selected 
assignments

y <= (a or b) when c ='0';

with a & b & c select
y <= '1' when "110"| "100"| "010",

'0' when "011"| "111";

with a & b & c select
y <= '1' when "110"| "100"| "010",

'0' when "011"| "110",
'-' when others;

Why these assignments are not correct?
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Generate
...
generic (N : Natural := 4);
port (

a : in std_logic_vector(N-1 downto 0);
g : in std_logic;
c : out std_logic_vector(N-1 downto 0) );

end for_gen;
architecture ... of for_gen is
signal i : Integer;
begin

gn: for i in 0 to N-1 generate
c(i) <= a(i) and g;

end generate;
i is automatically declared 
within the for…generate 
loop

The declaration of i is 
necessary

?

The range must be exactly the same 
incl. the direction (downto) as in the 
declaration of c() and a()

The index i of c(i) and a(i) must be within 
the limits 0..N-1

?
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The integer type

signal my_int1 : Integer range -1 to 16;

signal my_int2 : Integer range -32 to 2;

How many bits will be used to store the following 
integers:

5 6 4

6 8 7
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Mathematical operations with 
integers

Which assignments are 
not correct and why?

process
variable byte : Integer range 0 to 16#FF#;
variable sint : Integer range -128 to 127;
variable word : Integer range 0 to 16#FFFF#;
variable intg : Integer range -2**15 to 2**15-1;
begin

byte := 20;

byte := -20;

sint := -20;

sint := 150;

word := -1;

word := 1000**2;

word := 16#1000#;
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Adder
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.STD_LOGIC_UNSIGNED.all;
entity adder is
generic (N : Natural := 8);
port (
cin : in std_logic;
a   : in std_logic_vector(N-1 downto 0);
b   : in std_logic_vector(N-1 downto 0);
cout: out std_logic;
y   : out std_logic_vector(N-1 downto 0));

end adder;
architecture behav of adder is
signal sum : std_logic_vector(N downto 0);
begin
sum  <= cin + ('0' & a) + ('0' & b);
y    <= sum(y'range);
cout <= sum(sum'high);

end;

This adder was designed for adding 
two std_logic_vectors 
representing unsigned integers.

Can we use the 
generated hardware 
to add correctly a 
and b if they 
represent signed 
integers?
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Signal vs. variable

si vi

1 -6      1 -6

-5  2     -5  2

-4  3   -5 -4  2  3

Which is the 
correct value of 
si and vi after 
the waits?

Hint: the leftmost is the initial value
signal si : Integer range -7 to 7;
begin
process
variable vi : Integer range -7 to 7;
begin

si <= 0;
vi := 0;
si <= si + 1;
vi := vi + 1;
wait for 10 ns;
si <= si + 1;
vi := vi + 1;
wait for 10 ns;
si <= si + 1;
vi := si;
wait for 10 ns;
wait;

end process;
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DFF with asynchronous reset
process(clk, rst_n)
begin

if rst_n = '0' then q <= '0'; end if;
if clk'event and clk='1' then
q <= d;

end if;
end process;

process(clk, rst_n)
begin

if rst_n = '0' then q := '0';
elsif clk'event and clk='1' then
q := d;

end if;
end process;

process(clk, rst_n)
begin

if rst_n = '0' then q <= '0';
elsif clk'event and clk then
q <= d;

end if;
end process;

process(clk)
begin

if rst_n = '0' then q <= '0';
elsif clk'event and clk='1' then
q <= d;

end if;
end process;

Find the errors!
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Decoder with enable

…
port (

a     : in std_logic_vector(1 downto 0);
e     : in std_logic;
y     : out std_logic_vector(2 downto 0));

…
process(a, e)
begin

if a = "00" then y <= "00" & e;
elsif a = "01" then y <= '0' & e & '0';
elsif a = "10" then y <= e & "00";

end if;
end process;

This entity is supposed to be a decoder with enable, but 
has a bug (syntax & compile is OK)
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DFFs with variables(1)

Q

D

C

FDclk Q

D

C

FD
d

q2

q1

clk Q

D

C

FD
d

q2
q1

process(clk)
variable q1v, q2v : std_logic;
begin

if rising_edge(clk) then

q1v := d;        q2v := q1v;
q2v := q1v;      q1v := d; 

end if;
q1 <= q1v;
q2 <= q2v;

end process;

?
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DFFs with variables(2)

signal qv : std_logic;
…
process(clk)
begin

if rising_edge(clk) then
qv <= a and b;
q  <= qv;

end if;
end process;

process(clk)
variable qv : std_logic;
begin

if rising_edge(clk) then
qv := a and b;
q  <= qv;

end if;
end process;

b
YIN1

IN2

AND2

clk

a

Y

VCC

Q

D

CLK

CLRN

PRN

DFF

q

clk

YIN1

IN2

AND2

Y

VCC
Q

D

CLK

CLRN

PRN

DFF
b
a

Q

D

CLK

CLRN

PRN

DFF

q

?
?
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State machines in VHDL
type state_type is (S0, SL, SR, SA);
signal present_st, next_st : state_type;
begin
process(present_st, L, R, W)
begin

next_st <= present_st;
case present_st is
when S0 => if W = '1' then next_st <= SA; LR <= '1'; LL <= '1';

elsif L = '1' then next_st <= SL; LL <= '1';
elsif R = '1' then next_st <= SR; LR <= '1';
end if;

when SL => if L = '0' and R = '1' then next_st <= SR; LR <= '1'; LL <= '0';
else next_st <= S0; LR <= '0'; LL <= '0';

end if;
when SR => if L = '1' then next_st <= SL; LL <= '1';

else next_st <= S0; LL <= '0'; LR <= '0';
end if;

when SA => next_st <= S0; LL <= '0'; LR <= '0';
end case;

end process;
process(clk, rst_n)
begin

if rst_n = '0'           then present_st <= S0;
elsif clk'event and clk='1' then present_st <= next_st;
end if;

end process;
end;

LR
LL

L

clk

rst_n

L

R

W

LL

LR

statem

R

clk
rst_n

W

What is wrong in this description?

synthesis without 
errors!
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State machine - encoding
1. A state machine with 5 states, encoded 

binary will have:
a) 8 states in total
b) 5 states in total
c) 32 states in total

2. The same state machine encoded one-hot 
will have:

a) 5 states in total
b) 32 states in total
c) 8 states in total



© V. Angelov VHDL Vorlesung SS2009                                  24

Synchronize input signals

Which one of the two 
schemes should be 
avoided and why?

D

CLK

Q

D

CLK

Q

D

CLK

Q

D

CLK

Q

D

CLK

Q
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Simple test bench example

200 400 600 800 1 us

signal clk1  : std_logic := '1';
signal rst1  : std_logic;
signal d1    : std_logic;
signal clk2  : std_logic;
signal rst2  : std_logic;
signal d2    : std_logic;
begin

clk1 <= not clk1 after 50 ns;
rst1 <= '0' after 0 ns,

'1' after 300 ns,
'0' after 400 ns;

d1   <= '0' after 0 ns,
'1' after 400 ns,
'0' after 500 ns;

process
begin

rst2 <= '0';
d2   <= '0';
wait for 300 ns;
rst2 <= '1';
wait for 100 ns;
d2   <= '1';
wait for 300 ns;
rst2 <= '0';
wait for 200 ns;
d2   <= '0';
wait;

end process;

process
begin

clk2 <= '0';
wait for 50 ns;
clk2 <= '1';
wait for 50 ns;

end process;

rst1
clk1
d1
rst2
clk2
d2

Find the waveform of each signal!
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Digital Filters(1)

x1 x2 x3
x3 x1x2

1) FIR
2) IIR

1) FIR
2) IIR

Are the two filters 
equivalent?

[ ]nx [ ]nx

[ ]ny[ ]ny

[ ]nx [ ]nx

[ ]ny[ ]ny

plot the 
response
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Digital Filters(2)

1) FIR
2) IIR

[ ]nx

[ ]ny

8
1

8
1

8
6

What kind of filter is this one?

Sketch the response of the filter

[ ]nx

[ ]ny
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I/O

• The unused unconnected input 
pins should be
– pulled high or low by internal 

resistors

– left free in order to save power

– programmed as outputs driving '0'

VCC
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Timing(1)

• Positive setup time means
– the D input must be stable some time 

before the rising edge of the clock
– the D input must be stable some time 

after the rising edge of the clock
• Positive hold time means

– the D input must be stable some time 
before the rising edge of the clock

– the D input must be stable some time 
after the rising edge of the clock

D

CK

Q

D

CLK
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Timing(2)

• The operation of a chip at 1 Hz can be 
affected by:
– setup time violations
– hold time violations

• The operation of a chip at 100 MHz can be 
affected by:
– setup time violations
– hold time violations
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Special cores, I/O timing

• In order to multiply the input clock by 5/7 
we can use a
– PLL
– DLL

• In order to achieve identical setup/hold 
times on all bits of a synchronous 32-bit 
input bus we must first use the D-flip-flops
– in the core logic cells
– in the I/O cells
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