
© V. Angelov VHDL Vorlesung SS2009 1

Designing with VHDL

(control questions)

© V. Angelov VHDL Vorlesung SS2009 2

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

entity a2of3 is
port (a0 : in std_logic;

a1 : in std_logic;
a2 : in std_logic;
y : out std_logic);

end a2of3;

Simple concurrent
assignments

architecture a2 of a2of3 is
signal g0, g1, g2 : std_logic;

begin
g2 <= a2 and a0;
y <= g0 or (g1 or g2);
g1 <= a1 and a2;
g0 <= a0 and a1;

end;

architecture a1 of a2of3 is
signal g0, g1, g2 : std_logic;

begin
g0 <= a0 and a1;
g1 <= a1 and a2;
g2 <= a2 and a0;
y <= g0 or g1 or g2;

end;

The two architectures are 1) equivalent; 2) different

© V. Angelov VHDL Vorlesung SS2009 3

Port-signal mapping

carr: a2of3
port map(

... => ...,

... => ...,

... => ...,

... => ...);

port
name

signal
name

port
name

signal
name

=>

=>

1)

2) Which one is correct?

© V. Angelov VHDL Vorlesung SS2009 4

...
carr: a2of3
port map(

a0 => a,
a1 => b,
a2 => cin,
y => cout);

...

Instantiation of sub-blocks
-- component declaration
component a2of3 is
port (a0 : in std_logic;

a1 : in std_logic;
a2 : in std_logic;
y : out std_logic);

end component;

...
carr: a2of3
port map(a, b, cin, cout);
...

...
carr: a2of3
port map(a, cin, b, cout);
...

a) b) c)

The three instantiations are 1) equivalent; 2) all different;
3) one (which?) differs from the others

© V. Angelov VHDL Vorlesung SS2009 5

Multiple drivers
...
(A, B, C : in std_logic;
Y : out std_logic);
...
begin

Y <= not C;
Y <= A or B;

end;

This code is
1) OK, the first assignment will be just ignored;
2) not allowed;
3) allowed, but represents an inverter and an

or-gate with outputs shorted together

© V. Angelov VHDL Vorlesung SS2009 6

Multiple drivers
...

begin

Y <= A when OE_A='1' else 'Z';

Y <= B when OE_B='1' else 'Z';

end;

This is allowed only when the signals are of the type

1) std_logic

2) std_ulogic

3) bit

© V. Angelov VHDL Vorlesung SS2009 7

Ports and signals
port (

a : in std_logic;
b : in std_logic;
c : in std_logic;
ya : out std_logic;
yao : out std_logic);

…
begin

ya <= a and b;
yao <= ya or c;

...

1) This code is OK

2) A modification is necessary to get this code
compiled (what?)

© V. Angelov VHDL Vorlesung SS2009 8

Data types
subtype reg_data is std_logic_vector(31 downto 0);

subtype reg_cmd is std_logic_vector(0 downto 3);

subtype byte is std_logic_vector(8 downto 1);

subtype fixedp is std_logic_vector(7 downto -2);

type mem_array is array(0 to 63) of reg_data;

type dat_array is array(7 to 0) of reg_data;

type addr_data is std_logic_vector(15 downto 0);

type state_type is (idle, run, stop, finish);

type state_type is (idle, out, stop, finish);

Which declarations are not correct and why?

© V. Angelov VHDL Vorlesung SS2009 9

Ranges

generic (N : Natural := 4);
port (

a : in std_logic_vector(0 to N-1);
c : out std_logic_vector(N-1 downto 0);

…
c <= a;

1) The code is not correct, as the indexes of the two
vectors have different directions
2) The code is correct, c(0) is connected to a(N-1)
3) The code is correct, c(0) is connected to a(0)

© V. Angelov VHDL Vorlesung SS2009 10

Constants

constant Nbits : Integer := 8;
constant Nwords : Natural := 6;
constant LowIdx : Positive := 0;

constant all0 : std_logic_vector(Nbits-1 downto 0) = (others => '0');

constant Tco : real := 5 ns;
constant Tsetup : time := 2 ns;
constant Thold : integer := 1 ns;
constant Tdel : time := 3;

Which declarations are not correct and why?

© V. Angelov VHDL Vorlesung SS2009 11

Concurrent assignments
y <= (a or b) and not c;
y <= a or b and not c;
y <= a and b or not c;
y <= a and b and not c;
y <= (a nor b) nor c;
y <= a nor b nor c;
y <= (a nand b) nand c;
y <= a nand b nand c;
y <= a xor b and c;
y <= (a xor b) and c;

Which assignments are not correct and why?

© V. Angelov VHDL Vorlesung SS2009 12

Conditional and selected
assignments

y <= (a or b) when c ='0';

with a & b & c select
y <= '1' when "110"| "100"| "010",

'0' when "011"| "111";

with a & b & c select
y <= '1' when "110"| "100"| "010",

'0' when "011"| "110",
'-' when others;

Why these assignments are not correct?

© V. Angelov VHDL Vorlesung SS2009 13

Generate
...
generic (N : Natural := 4);
port (

a : in std_logic_vector(N-1 downto 0);
g : in std_logic;
c : out std_logic_vector(N-1 downto 0));

end for_gen;
architecture ... of for_gen is
signal i : Integer;
begin

gn: for i in 0 to N-1 generate
c(i) <= a(i) and g;

end generate;
i is automatically declared
within the for…generate
loop

The declaration of i is
necessary

?

The range must be exactly the same
incl. the direction (downto) as in the
declaration of c() and a()

The index i of c(i) and a(i) must be within
the limits 0..N-1

?

© V. Angelov VHDL Vorlesung SS2009 14

The integer type

signal my_int1 : Integer range -1 to 16;

signal my_int2 : Integer range -32 to 2;

How many bits will be used to store the following
integers:

5 6 4

6 8 7

© V. Angelov VHDL Vorlesung SS2009 15

Mathematical operations with
integers

Which assignments are
not correct and why?

process
variable byte : Integer range 0 to 16#FF#;
variable sint : Integer range -128 to 127;
variable word : Integer range 0 to 16#FFFF#;
variable intg : Integer range -2**15 to 2**15-1;
begin

byte := 20;

byte := -20;

sint := -20;

sint := 150;

word := -1;

word := 1000**2;

word := 16#1000#;

© V. Angelov VHDL Vorlesung SS2009 16

Adder
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.STD_LOGIC_UNSIGNED.all;
entity adder is
generic (N : Natural := 8);
port (
cin : in std_logic;
a : in std_logic_vector(N-1 downto 0);
b : in std_logic_vector(N-1 downto 0);
cout: out std_logic;
y : out std_logic_vector(N-1 downto 0));

end adder;
architecture behav of adder is
signal sum : std_logic_vector(N downto 0);
begin
sum <= cin + ('0' & a) + ('0' & b);
y <= sum(y'range);
cout <= sum(sum'high);

end;

This adder was designed for adding
two std_logic_vectors
representing unsigned integers.

Can we use the
generated hardware
to add correctly a
and b if they
represent signed
integers?

© V. Angelov VHDL Vorlesung SS2009 17

Signal vs. variable

si vi

1 -6 1 -6

-5 2 -5 2

-4 3 -5 -4 2 3

Which is the
correct value of
si and vi after
the waits?

Hint: the leftmost is the initial value
signal si : Integer range -7 to 7;
begin
process
variable vi : Integer range -7 to 7;
begin

si <= 0;
vi := 0;
si <= si + 1;
vi := vi + 1;
wait for 10 ns;
si <= si + 1;
vi := vi + 1;
wait for 10 ns;
si <= si + 1;
vi := si;
wait for 10 ns;
wait;

end process;

© V. Angelov VHDL Vorlesung SS2009 18

DFF with asynchronous reset
process(clk, rst_n)
begin

if rst_n = '0' then q <= '0'; end if;
if clk'event and clk='1' then
q <= d;

end if;
end process;

process(clk, rst_n)
begin

if rst_n = '0' then q := '0';
elsif clk'event and clk='1' then
q := d;

end if;
end process;

process(clk, rst_n)
begin

if rst_n = '0' then q <= '0';
elsif clk'event and clk then
q <= d;

end if;
end process;

process(clk)
begin

if rst_n = '0' then q <= '0';
elsif clk'event and clk='1' then
q <= d;

end if;
end process;

Find the errors!

© V. Angelov VHDL Vorlesung SS2009 19

Decoder with enable

…
port (

a : in std_logic_vector(1 downto 0);
e : in std_logic;
y : out std_logic_vector(2 downto 0));

…
process(a, e)
begin

if a = "00" then y <= "00" & e;
elsif a = "01" then y <= '0' & e & '0';
elsif a = "10" then y <= e & "00";

end if;
end process;

This entity is supposed to be a decoder with enable, but
has a bug (syntax & compile is OK)

© V. Angelov VHDL Vorlesung SS2009 20

DFFs with variables(1)

Q

D

C

FDclk Q

D

C

FD
d

q2

q1

clk Q

D

C

FD
d

q2
q1

process(clk)
variable q1v, q2v : std_logic;
begin

if rising_edge(clk) then

q1v := d; q2v := q1v;
q2v := q1v; q1v := d;

end if;
q1 <= q1v;
q2 <= q2v;

end process;

?

© V. Angelov VHDL Vorlesung SS2009 21

DFFs with variables(2)

signal qv : std_logic;
…
process(clk)
begin

if rising_edge(clk) then
qv <= a and b;
q <= qv;

end if;
end process;

process(clk)
variable qv : std_logic;
begin

if rising_edge(clk) then
qv := a and b;
q <= qv;

end if;
end process;

b
YIN1

IN2

AND2

clk

a

Y

VCC

Q

D

CLK

CLRN

PRN

DFF

q

clk

YIN1

IN2

AND2

Y

VCC
Q

D

CLK

CLRN

PRN

DFF
b
a

Q

D

CLK

CLRN

PRN

DFF

q

?
?

© V. Angelov VHDL Vorlesung SS2009 22

State machines in VHDL
type state_type is (S0, SL, SR, SA);
signal present_st, next_st : state_type;
begin
process(present_st, L, R, W)
begin

next_st <= present_st;
case present_st is
when S0 => if W = '1' then next_st <= SA; LR <= '1'; LL <= '1';

elsif L = '1' then next_st <= SL; LL <= '1';
elsif R = '1' then next_st <= SR; LR <= '1';
end if;

when SL => if L = '0' and R = '1' then next_st <= SR; LR <= '1'; LL <= '0';
else next_st <= S0; LR <= '0'; LL <= '0';

end if;
when SR => if L = '1' then next_st <= SL; LL <= '1';

else next_st <= S0; LL <= '0'; LR <= '0';
end if;

when SA => next_st <= S0; LL <= '0'; LR <= '0';
end case;

end process;
process(clk, rst_n)
begin

if rst_n = '0' then present_st <= S0;
elsif clk'event and clk='1' then present_st <= next_st;
end if;

end process;
end;

LR
LL

L

clk

rst_n

L

R

W

LL

LR

statem

R

clk
rst_n

W

What is wrong in this description?

synthesis without
errors!

© V. Angelov VHDL Vorlesung SS2009 23

State machine - encoding
1. A state machine with 5 states, encoded

binary will have:
a) 8 states in total
b) 5 states in total
c) 32 states in total

2. The same state machine encoded one-hot
will have:

a) 5 states in total
b) 32 states in total
c) 8 states in total

© V. Angelov VHDL Vorlesung SS2009 24

Synchronize input signals

Which one of the two
schemes should be
avoided and why?

D

CLK

Q

D

CLK

Q

D

CLK

Q

D

CLK

Q

D

CLK

Q

© V. Angelov VHDL Vorlesung SS2009 25

Simple test bench example

200 400 600 800 1 us

signal clk1 : std_logic := '1';
signal rst1 : std_logic;
signal d1 : std_logic;
signal clk2 : std_logic;
signal rst2 : std_logic;
signal d2 : std_logic;
begin

clk1 <= not clk1 after 50 ns;
rst1 <= '0' after 0 ns,

'1' after 300 ns,
'0' after 400 ns;

d1 <= '0' after 0 ns,
'1' after 400 ns,
'0' after 500 ns;

process
begin

rst2 <= '0';
d2 <= '0';
wait for 300 ns;
rst2 <= '1';
wait for 100 ns;
d2 <= '1';
wait for 300 ns;
rst2 <= '0';
wait for 200 ns;
d2 <= '0';
wait;

end process;

process
begin

clk2 <= '0';
wait for 50 ns;
clk2 <= '1';
wait for 50 ns;

end process;

rst1
clk1
d1
rst2
clk2
d2

Find the waveform of each signal!

© V. Angelov VHDL Vorlesung SS2009 26

Digital Filters(1)

x1 x2 x3
x3 x1x2

1) FIR
2) IIR

1) FIR
2) IIR

Are the two filters
equivalent?

[]nx []nx

[]ny[]ny

[]nx []nx

[]ny[]ny

plot the
response

© V. Angelov VHDL Vorlesung SS2009 27

Digital Filters(2)

1) FIR
2) IIR

[]nx

[]ny

8
1

8
1

8
6

What kind of filter is this one?

Sketch the response of the filter

[]nx

[]ny

© V. Angelov VHDL Vorlesung SS2009 28

I/O

• The unused unconnected input
pins should be
– pulled high or low by internal

resistors

– left free in order to save power

– programmed as outputs driving '0'

VCC

© V. Angelov VHDL Vorlesung SS2009 29

Timing(1)

• Positive setup time means
– the D input must be stable some time

before the rising edge of the clock
– the D input must be stable some time

after the rising edge of the clock
• Positive hold time means

– the D input must be stable some time
before the rising edge of the clock

– the D input must be stable some time
after the rising edge of the clock

D

CK

Q

D

CLK

© V. Angelov VHDL Vorlesung SS2009 30

Timing(2)

• The operation of a chip at 1 Hz can be
affected by:
– setup time violations
– hold time violations

• The operation of a chip at 100 MHz can be
affected by:
– setup time violations
– hold time violations

© V. Angelov VHDL Vorlesung SS2009 31

Special cores, I/O timing

• In order to multiply the input clock by 5/7
we can use a
– PLL
– DLL

• In order to achieve identical setup/hold
times on all bits of a synchronous 32-bit
input bus we must first use the D-flip-flops
– in the core logic cells
– in the I/O cells

	Designing with VHDL��(control questions)
	Simple concurrent assignments
	Port-signal mapping
	Instantiation of sub-blocks
	Multiple drivers
	Multiple drivers
	Ports and signals
	Data types
	Ranges
	Constants
	Concurrent assignments
	Conditional and selected assignments
	Generate
	The integer type
	Mathematical operations with integers
	Adder
	Signal vs. variable
	DFF with asynchronous reset
	Decoder with enable
	DFFs with variables(1)
	DFFs with variables(2)
	State machines in VHDL
	State machine - encoding
	Synchronize input signals
	Simple test bench example
	Digital Filters(1)
	Digital Filters(2)
	I/O
	Timing(1)
	Timing(2)
	Special cores, I/O timing

