
© V. Angelov VHDL-FPGA@PI 2013 1

The real hardware

© V. Angelov VHDL-FPGA@PI 2013 2

The real hardware

•

Propagation delays
–

worst case, typical case, best case…

–

setup/hold, fMAX

•

Clock tree and timing analysis
•

Power consumption

•

Timing of the I/O pins
–

I/O vs. internal registers

–

I/O delays, slew rate settings
•

Timing simulations

© V. Angelov VHDL-FPGA@PI 2013 3

Back to the real world – timing
aspects

•

Don't forget, independently of your design
entry method, in the real world the design
consists of electrically interconnected
gates and flip-flops

•

The signals need time to
propagate through the gates
–

For a pure combinational circuit this can be
specified in the delay matrix

D

CK

Q

© V. Angelov VHDL-FPGA@PI 2013 4

Timing aspects – variations
(corners)

•

The properties of the logic gates and flip-flops
are not constant, unlike the electrons, the real
gates aren't perfect clonings!
–

Variation inside the same chip

–

Variations chip to chip
–

Variations with the temperature (slower at higher
temperatures)

–

Variations with the supply voltage (faster at higher
voltages)

–

Dependence on the different capacitive load

© V. Angelov VHDL-FPGA@PI 2013 5

Timing aspects – derating factors

•

Derating

equation for a single cell
PVTDATASHEET KKKDelayDelay ⋅⋅⋅=)Process Vdd, T,(

Junction Temperature derating

factor

Vdd

derating

factor

Process derating

factor
0.9

1.0

1.1

1.2

 1.5 1.6 1.7 1.8 1.9 2

K
v

Vdd, V

0.9

1.0

1.1

1.2

-25 0 25 50 75 100 125

K
t

T, C

TK

VK

Slow 1.1989
Typical 1.0000
Fast 0.8648

PKProcess

© V. Angelov VHDL-FPGA@PI 2013 6

•

The routing of the signals in the chip is not ideal
–

Capacitive load

–

Capacitive coupling to other signals
–

The Ohmical

resistance is not 0

–

Discontinuities at the vias
–

Inductance

–

On the board –

transmission line
•

The power/gnd

is not ideal

–

Inside the chip
–

On the board

Timing aspects – routing

VDD

0V

10mV

R+L

© V. Angelov VHDL-FPGA@PI 2013 7

Timing aspects – setup/hold

•

The data to the flip-flop inputs must be
stable some time before (setup time tSU

)
and after (hold time tH

) the active edge of
the clock
–

If the conditions above are not fulfilled, we
speak of timing violations

•

The flip-flop outputs toggle with some
delay after the active edge of the clock
–

clock to output

© V. Angelov VHDL-FPGA@PI 2013 8

0.2

0.3

0.4

0.5

0.6
de

la
y,

 n
s

0.1

0.2

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

En
er

gy
, p

J

fanout

Example DFF ASIC cell
D

CK

Q

CEB

Static power 89 pW
Area 332 μm2Input capacitance

CEB 5.33 fF
CK 5.14 fF
D 3.70 fF

CEB↓

CK↑

0.161
CEB↑

CK↑

0.210

D ↓

CK↑

0.175
D ↑

CK↑

0.188

Setup time, ns
All hold times 0

CK↑

Q↑

CK↑

Q↓

min CLK

pulse
width 0.25ns

© V. Angelov VHDL-FPGA@PI 2013 9

D

ENA

Q
PRE

CLR

D

ENA

Q
PRE

CLR

D

ENA

Q
PRE

CLR

D

ENA

Q
PRE

CLR

a b c q~reg0

clk

rst_n

en_n

d q

Example with a shift register

clock tree

clkb

delay ∆tCLK

> tCO

+tPD

tPD

fMAX

=1/(tCO

+tPD

+tS

)MAX

∆tCLK

+ tH

< tCO

+tPD

-

The first condition
gives the max
frequency
-

If the second is not
fulfilled, the circuit
will not work correctly
even at 1 Hz!!!

clk
rst_n

d

en_n

a

b
c
q

clkb

tco

clock skew
∆tCLK

© V. Angelov VHDL-FPGA@PI 2013 10

Clock distribution – FPGA case
•

The FPGAs

have special networks for global and

high fanout

signals like clock, OE, reset
–

using the normal routing for such signals "guarantees"
problems!

•

The FPGA tools normally insert the proper clock
buffer, but it can be instantiated manually
–

Set the clock constraints, even if the frequency is low (e.g.
1MHz or 100Hz for some slow device), otherwise the hold
times might be violated!

–

Use PLLs

and DCMs

to improve the jitter and to multiply
the clock frequency or to adjust the phase if necessary

© V. Angelov VHDL-FPGA@PI 2013 11

•

Phase-locked loop

–

Zero delay between input and output
–

Less jitter at the output

–

Restored clock symmetry

PLL

Phase
Detector

Lowpass
 filter

VCO clock bufferreference
clock

Voltage Controlled Oscillator

output
clock

feedback

variation of the clock period,
deviation from the ideal clock

tH tL

© V. Angelov VHDL-FPGA@PI 2013 12

PLL – clock multiplication

•

With proper clock dividers at the reference
clock and in the feedback, the output clock
frequency can be modified by a rational
factor

inout f
N
Mf =⇒PLL

1/N

1/M
outf

inf

M
fout

N
fin

© V. Angelov VHDL-FPGA@PI 2013 13

DLL

•

Delay-locked loop

•

Compensate the delay in the clock
distribution

Phase Detector
and control

feedback

inf

Mux

buffer

inout ff =

© V. Angelov VHDL-FPGA@PI 2013 14

DLL properties

•

DLLs are typically realized digitally, the possible
time shift is discrete

•

A DLL can not suppress the jitter!
•

The DLLs typically have multiple outputs shifted
at 0, 90, 180, 270 degree or even double clock
output
–

by XORing

the 0 and 90 output a double frequency

can be produced but at the expense of worse jitter
•

Generally the PLLs

are better!

© V. Angelov VHDL-FPGA@PI 2013 15

Routing (fanout)
capacitance

Power consumption in CMOS
VDD

VSS

PMOS

VSS

NMOS

Routing
resistance

Input
capacitance

() staticswitchingDDfanoutfallrise PfVCEEfP +⋅⋅++= 2)(

dynamic

Both transistors conduct
for short time while
switching (next slide)

Leakage currents,
temperature
dependent

Static

and dynamic
 components

© V. Angelov VHDL-FPGA@PI 2013 16

 0

 1

 2

 3

 4

 5

100 200 300 400 500 600 700

Vi
n,

 V
ou

t [
V]

time [ns]

 0

100

200

300

400

I [
uA

]
Power consumption in a CMOS

inverter

Vin

VSS

PMOS

NMOS

VDD

()∫ ⋅= dttIVEE DDrisefall ,

Vout

© V. Angelov VHDL-FPGA@PI 2013 17

0.0

0.1

0.2

0.3

0.4

0.5

de
la

y,
 n

s

A1->Z(r)
B->Z(r)

A2->Z(r)
A1->Z(f)

B->Z(f)
A2->Z(f)

0.0

0.1

0.2

0.3

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

En
er

gy
, p

J

fanout

A1->Z(r)
B->Z(r)

A2->Z(r)
A1->Z(f)

B->Z(f)
A2->Z(f)

Example – combinational ASIC cell

Input capacitance
A1

3.9 fF

B

5.0 fF

A2

4.6 fF

A1

Z
B

A2

Static power 79 pW
Area 36 μm2

pJ

x MHz = µW

© V. Angelov VHDL-FPGA@PI 2013 18

Power minimization strategies

•

Technology
–

Smaller voltages and capacitances but
leakage currents!

•

Clock frequency
–

As low as possible (dynamic control)

–

Clock gating
•

Toggle rate
–

Smart masking of unused bits dynamically

–

Pipelining (prevent propagation of glitches)

D

CK

Q

CLK

CLK_G
GATE

0.5 µm → 0.35 µm → 0.25 µm → 0.18 µm →
 0.13 µm → 90 nm → 65 nm → 40 nm → 28nm...

for ASIC

© V. Angelov VHDL-FPGA@PI 2013 19

bypass

in
out

pure combinational logic

Gating of combinational logic

bypass

in
out

0

1

0

1

Mask the
(temporary)
unused logic, the
AND

gate can be

part of the MUX!

good ↔ bad

© V. Angelov VHDL-FPGA@PI 2013 20

I/O timing
If the input signal needs to be
processed synchronously, then
it must be first sampled by a
DFF
Two possible solutions:
1)

use a DFF inside the chip

core
2)

use a DFF inside the input

cell
In the first case the setup time
will be increased by the routing
delay in the chip, will vary from
pin to pin and will change with
each next place & route.

Use the DFFs

in the I/O cells !

2

3

5

1

D

CLK

Q

C
L

D

CK

Q

2

3

5

1

D

CLK

Q

C
L

1

2

2

3

5

1

D

CLK

Q

C
L

D C
K

Q

2

3

5

1

D

CLK

Q

C
L

1’2’

© V. Angelov VHDL-FPGA@PI 2013 21

Synchronizing asynchronous
signals(1)

•

Setup violations are inevitable with asynchronous

data
sources

•

The DFF may oscillate if the input changes within the
setup window

•

The best solution is to use two DFFs

coupled directly,
without any gates in between, so the first has more time
to relax

•

Use slower clocks (if possible) and faster DFFs

with min
setup time to minimize the probability for oscillations

D

CK

Q D

CK

Qasync. input to the core

this is NOT a solution
for synchronous inputs!

Should we use the I/O
cell DFF here?

© V. Angelov VHDL-FPGA@PI 2013 22

tCO

D

CK

Q D

CK

Q
D1 Q2D2

CLK

Synchronizing asynchronous
signals(2)

CLK

D1

D2

Q2

stable

tSU tH

as short as possible!

unstable

tCO

tSU tH

© V. Angelov VHDL-FPGA@PI 2013 23

D

CK

QD

CK

Q

tCO

D1 Q2D2

CLK

Synchronizing asynchronous
signals(3)

CLK

D1

D2

Q2

unstable

tSU tH

tCO

+ tCOMB

tCOMB

unstable

routing and combinational logic delay

tSU tH

© V. Angelov VHDL-FPGA@PI 2013 24

Synchronizing asynchronous
signals(4)

D

CK

Q

D

CK

Q

D

CK

Q

D

CK

Q

Error

CLK

Async. Data

Error = different values stored in the middle and at the end of the period

How to test the synchronizer ?

© V. Angelov VHDL-FPGA@PI 2013 25

Input pins
•

In some FPGAs

programmable input delays are

available to move the sampling window of the data
relative to the clock
–

Set constraints on the input setup/hold time!

•

The input cells can be programmed for various levels
(5V, 3.3V, 2.5V, 1.8V, LVTTL, LVCMOS)
–

read carefully the data sheets and the board documentation!

•

Programmable pull-up/down resistors are usually
available –

use them for inputs which are not always

connected to prevent floating
–

floating inputs increase the power consumption of the chip and
introduce noise

© V. Angelov VHDL-FPGA@PI 2013 26

Output pins
•

Similarly when some output signal is synchronous to the
clock, use the output DFFs

in the I/O cells to have well

defined clock to output delay!
•

In some FPGAs

programmable output delays are

available
–

set constraints for clock to output!

•

The slew rate of the output cells is usually programmable
–

try to use the slow slew rate option on most of the outputs to
prevent large current spikes on the VIO

•

The output pins are limited to source/sink currents, there
are maximum recommended values per pin, per I/O
bank (a group of pins)
–

read carefully the datasheets!

© V. Angelov VHDL-FPGA@PI 2013 27

D (PIN)

Y (PIN)
A (PIN)

Q (PIN)D

CK

Q D

CK

Q

CLK (PIN)

B (PIN)

Timing parameters (summary)

tCIN

tDIN

tSU tH tCO

tCOMB_FF

tQOUT

period T

D(PIN) setup = tDIN

+ tSU

– tCIN

D(PIN) hold = tH

– (tDIN

– tCIN

)
TMIN

= tCO

+ tCOMB_FF

+ tSU

Q(PIN) clock to output = tCIN

+ tCO

+ tQOUT

tCOMB

tPD

(A→Y)=tA

+ tCOMB

+ tYOUT

tA

tB

tYOUT

© V. Angelov VHDL-FPGA@PI 2013 28

Gate level and timing
simulations

•

The simulations in the FPGA design flow
•

Why do we need different types of
simulations?

•

ModelSim

simulations of Xilinx and Altera
 FPGAs

–

gate level, timing (with backannotation)
–

directory structure, Makefile

© V. Angelov VHDL-FPGA@PI 2013 29

Design flow CPLD/FPGA

Your favourite text editor!
Some recommendations:
emacs, notepad++,
nedit, with syntax
colouring and more for
VHDL

and Verilog

LeoSpec
Precision
Synplify

FPGA vendors
Synopsys

ModelSim
Aldec

AHDL

FPGA
vendor

Device
programming

Each step can take seconds, minutes, hours ...
(place & route)

functional
simulation

synthesis

timing
estimation

gate-level
simulation

place &
route

sdf

simulation

timing
analysis

design entry:
schematic, HDL

board
production

& test

© V. Angelov VHDL-FPGA@PI 2013 30

Gate level and timing simulations

•

The functional simulation is the fastest, but there are
cases where it is not good/pessimistic enough, not all
errors can be found
–

this is the fastest simulation, needs less computer resources and
all source code signals are present with unchanged names

•

The netlist

after synthesis can be used for simulation
–

this simulation is slower than the functional but faster than the
timing, some signals can not be found anymore

•

The cell and routing delays are known after p & r –

this
can be used for more realistic simulation (best/typ/worst)
–

this is the slowest simulation, needs most computer resources,
many signals can not be found (especially when the hierarchy is
not preserved), new signals are inserted

© V. Angelov VHDL-FPGA@PI 2013 31

Gate-level simulation (X)

In case of Xilinx FPGA designs you need to compile (only once) the
library unisim

located at:

<Xilinx_install>\vhdl\src\unisims*.vhd
Then you need to compile the synthesis output netlist

of your top

design, for Xilinx the location is:
<Project>\netgen\synthesis\<top>.vhd

Note that this file will be not automatically generated after synthesis,
you need to specify

"Generate Post-Synthesis Simulation Model"
In the Properties

you can set some options, like VHDL or Verilog

 output etc.

R

© V. Angelov VHDL-FPGA@PI 2013 32

Timing Simulation (X)
Typically done after placing and routing of the design.
In case of Xilinx FPGA designs you need to compile (only once) the
library simprim

located at:

<Xilinx_install>\vhdl\src\simprims*_mti.vhd
Then you need to compile the output netlist, for Xilinx the location is:

<Project>\netgen\par\<top>.vhd
The simulation tool needs the timing information, stored in the
Standard Delay File (SDF):

<Project>\netgen\par\<top>.sdf
Note that these files will be not automatically generated after P & R,
you need to specify

"Generate Post-Place & Route Simulation Model"
In the Properties

you can set some options, like VHDL or Verilog

 output etc.

R

© V. Angelov VHDL-FPGA@PI 2013 33

Gate-level and timing simulation
directory structure (X)

R

<project directory>
├───SIM
│

├───SRC

│

├───unisim
│

├───simprim

│

├───layoutx
│

├───synthesisx

│

└───work
├───SRC
└───xilinx

└───netgen
├───synthesis
└───par

Created by the Make script to store:
the compiled Xilinx libraries
the compiled netlists

of the project

the compiled testbench

contains all testbench

sources of the project

Contain the netlist

after
- synthesis
-

place & route + SDF

contains all source file of the project
the ISE project directory

© V. Angelov VHDL-FPGA@PI 2013 34

Gate-level and timing simulation
Makefile (X 1)

xil_sim=c:\Xilinx\9.2\vhdl\src # The location of the Xilinx simulation models
design=cnt3 # The top level design name
testbench=./SRC/clk_gen.vhd ./SRC/$(design)_tb.vhd # The testbench file(s)
net_synx=../xilinx/netgen/synthesis/$(design)_synthesis.vhd # netlist after synthesis
net_parx=../xilinx/netgen/par/$(design)_timesim.vhd # netlist after place & route
sdf_xil=../xilinx/netgen/par/$(design)_timesim.sdf # standard

delay

file

(SDF)
unisim: # The Xilinx unisim library

vlib $@
vcom -quiet -93 -work $@ "$(xil_sim)\unisims\unisim_VPKG.vhd"
vcom -quiet -93 -work $@ "$(xil_sim)\unisims\unisim_VCOMP.vhd"
vcom -quiet -93 -work $@ "$(xil_sim)\unisims\unisim_SMODEL.vhd"
vcom -quiet -93 -work $@ "$(xil_sim)\unisims\unisim_VITAL.vhd"

simprim: # The Xilinx simprim library
vlib $@
vcom -quiet -93 -work $@ "$(xil_sim)\simprims\simprim_Vpackage_mti.vhd"
vcom -quiet -93 -work $@ "$(xil_sim)\simprims\simprim_Vcomponents_mti.vhd"
vcom -quiet -93 -work $@ "$(xil_sim)\simprims\simprim_SMODEL_mti.vhd"
vcom -quiet -93 -work $@ "$(xil_sim)\simprims\simprim_VITAL_mti.vhd"

synthesisx: unisim $(net_synx) # Compile the synthesis netlist
vlib $@
vcom -quiet -93 -work $@ $(net_synx)

layoutx: simprim $(net_parx) # Compile the p & r netlist
vlib $@
vcom -quiet -93 -work $@ $(net_parx)

R

© V. Angelov VHDL-FPGA@PI 2013 35

Gate-level and timing simulation Makefile (X 2)
simsyn: $(testbench)

synthesisx # Simulate the synthesis netlist
vmap libdut synthesisx
rm -rf work; vlib work
vcom -quiet -93 -work work $(testbench)
vsim 'work.$(design)_tb' -t 1ns -do 'wave_synx.do'

simlay: $(testbench)

layoutx # Simulate the p & r netlist without timing backannotation
vmap libdut layoutx
rm -rf work; vlib work
vcom -quiet -93 -work work $(testbench)
vsim 'work.$(design)_tb' -t 1ns -do 'wave_sdfx.do'

simsdf: $(testbench)

layoutx # Simulate the p & r netlist with timing backannotation
vmap libdut layoutx
rm -rf work; vlib work
vcom -quiet -93 -work work $(testbench)
vsim 'work.$(design)_tb' -sdftyp /dut=$(sdf_xil)

-t 1ps -do 'wave_sdfx.do'
simsdf_nc: $(testbench)

layoutx # Simulate the p & r netlist with timing backannotation
vmap libdut layoutx # but no timing checks
rm -rf work; vlib work
vcom -quiet -93 -work work $(testbench)
vsim 'work.$(design)_tb' +notimingchecks -sdftyp /dut=$(sdf_xil)

-t 1ps \
-do 'wave_sdfx.do'

clean: # Clean all library directories
rm -rf work modelsim.ini transcript vsim.wlf simprim unisim synthesisx layoutx

.PHONY: simsyn simlay simsdf simsdf_nc clean

R

© V. Angelov VHDL-FPGA@PI 2013 36

Timing simulation – directory
structure (A)

Created by the Make script to store:
the compiled Altera

library

the compiled netlist

of the project
the compiled testbench

<project directory>
├───SIM
│

├───SRC

│

├───flex10ke_components
│

├───layouta

│

└───work
├───SRC
└───altera

└───simulation
└───modelsim Contain the netlist

after

place & route + SDF

the Quartus

project directory

© V. Angelov VHDL-FPGA@PI 2013 37

Timing simulation Makefile (A)
alt_sim=d:\Programme\q81\quartus\eda\sim_lib # The location of the Altera sim. models
alt_family=flex10ke # Note that the family depends on the chip used in the project!
alt_lib=$(alt_family)_components
design=cnt3 # The top level design name
testbench=./SRC/clk_gen.vhd ./SRC/$(design)_tb.vhd # The testbench file(s)
net_para=../altera/simulation/modelsim/$(design).vho # netlist after place & route
sdf_alt=../altera/simulation/modelsim/$(design)_vhd.sdo # standard delay file (SDF)
$(alt_lib):

vlib $@
vcom -quiet -93 -work $@ "$(alt_sim)\$(alt_family)_atoms.vhd"
vcom -quiet -93 -work $@ "$(alt_sim)\$(alt_family)_components.vhd"
vmap $(alt_family)

$@
layouta: $(alt_lib)

$(net_para)
vlib $@; vcom -quiet -93 -work $@ $(net_para)

simlay: $(testbench)

layouta # Simulate the p & r netlist without
vmap libdut layouta # timing backannotation
rm -rf work; vlib work
vcom -quiet -93 -work work $(testbench)
vsim 'work.$(design)_tb' -t 1ns -do 'wave_sdfa.do'

simsdf: $(testbench)

layouta # Simulate the p & r netlist with
vmap libdut layouta # timing backannotation
rm -rf work; vlib work
vcom -quiet -93 -work work $(testbench)
vsim 'work.$(design)_tb' -sdftyp /dut=$(sdf_alt)

-t 1ps -do 'wave_sdfa.do'
clean: # Clean all library directories

rm -rf functional work modelsim.ini transcript vsim.wlf $(alt_lib)

layouta
.PHONY: simlay simsdf clean

© V. Angelov VHDL-FPGA@PI 2013 38

Recommendations (1)
•

Do not use the text editors of the FPGA vendor software tools and of
the simulation tools! These programs are not very stable, you can
easily lose your work!

•

Portability for code reuse:
–

Do not use the FPGA vendor software tools for simulations, and if
possible avoid synthesis with them to have more independent design
flow

–

Avoid using specific FPGA library components
•

Do not work only with GUI
–

try to find out how the software stores all important parameters

in the

corresponding text files and edit them directly (e.g. constraint

files)
–

If possible write scripts for all steps (make), many programs create them
automatically –

so you can be sure that all steps are done in the right

order next time, doing this by mouse clicking is not very reliable

© V. Angelov VHDL-FPGA@PI 2013 39

Recommendations (2)
•

Avoid becoming a fanatic fan of some FPGA vendor –

 for each application take the best suitable chip, if your
HDL code follows the recommendations above, it will be
portable and easy to change the technology

•

Maintain your HDL code in repositories (CVS, SVN).
Some FPGA software tools offer version control –

 nobody knows how it works, in most cases not as
expected, do not rely on it!

•

Put your sources in a well organized directory tree, DO
NOT MIX with the hundreds of files generated by the
software!

	The real hardware
	The real hardware
	Back to the real world – timing aspects
	Timing aspects – variations (corners)
	Timing aspects – derating factors
	Timing aspects – routing
	Timing aspects – setup/hold
	Example DFF ASIC cell
	Example with a shift register
	Clock distribution – FPGA case
	PLL
	PLL – clock multiplication
	DLL
	DLL properties
	Power consumption in CMOS
	Power consumption in a CMOS inverter
	Example – combinational�ASIC cell
	Power minimization strategies
	Gating of combinational logic
	I/O timing
	Synchronizing asynchronous signals(1)
	Synchronizing asynchronous signals(2)
	Synchronizing asynchronous signals(3)
	Synchronizing asynchronous signals(4)
	Input pins
	Output pins
	Timing parameters (summary)
	Gate level and timing simulations
	Design flow CPLD/FPGA
	Gate level and timing simulations
	Gate-level simulation (X)
	Timing Simulation (X)
	Gate-level and timing simulation directory structure (X)
	Gate-level and timing simulation Makefile (X 1)
	Gate-level and timing simulation�Makefile (X 2)
	Timing simulation – directory structure (A)
	Timing simulation�Makefile (A)
	Recommendations (1)
	Recommendations (2)

