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Introduction to Digital Design
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Introduction to Digital Design

•
 

Why digital processing?
•

 
Basic logical circuits, first conclusions

•
 

Combinational circuits
–

 
Adder, multiplexer, decoder ...

•
 

Sequential circuits
–

 
Circuits with memory

–
 

State machine, synchronous  circuits
•

 
General structure of a digital design
–

 
Top-down

–
 

Hardware/software
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Why digital processing (1)?
•

 
The world is to a good approximation analogue

•
 

The result of some measurement can 
theoretically take continuous values, but we 
store it as a discrete value, multiple of some unit

•
 

In most of the measurements additional 
corrections and processing of the primary 
information are necessary

∏∑∫+            22 dtba
dt
d
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Why digital processing (2)?
•

 
Block diagram of some measurement device

A
D

Digital 
Proc.Analog

Noise, 
Disturbances, 
Nonlinearity, 
Temperature, 
Supply voltage

Discretization
 error, 

Nonlinearity

Rounding 
errors

•
 

How to arrange the full processing in order to 
get the best results?
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Why digital processing (3)?
•

 
Where to do what? –

 
the tendency is to start the 

digital processing as early as possible in the 
complete chain

•
 

How ? This is our main subject now

AS
IC

FPGA

CPU
14 13 12 11 10 9

1 2 3 4 5 6

VCC

8

7

GND

14

1
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Notations of the logic elements

•
 

The most used are shown below
•

 
Frequent use of non-standard symbols

YA
B

1A
B

& Y 1A
B

Y

Y=(A*B)

NOT

Y

A    B    Y
0    0    0
0    1    1
1    0    1
1    1    1

A

Y

OR

A

B

XNOR

B
Y=(A+B)

A
Y

Y

B B

A    B    Y
0    0    0
0    1    0
1    0    0
1    1    1

OR

A

A

A

Y = A

Y

B

A

NOR
XOR

Y

AA

AND

B

AND

A    B    Y
0    0    0
0    1    1
1    0    1
1    1    0

B

NAND

B
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Useful Boolean relations
A+!A = 1

A+ A = A

A+ 0 = A

A+ 1 = 1

!(!A)= A

A+B = B+A

A+(B+C) = (A+B)+C

A*(B+C) = A*B+A*C

A+(A*B) = A

A+(!A*B) = A+B

!(A+B) = !A * !B

(A*B)+(!A*C) = (A+C)*(!A+B)

A*!A = 0

A* A = A

A* 0 = 0

A* 1 = A

A*B = B*A

A*(B*C) = (A*B)*C

A+(B*C) = (A+B)*(A+C)

A*(A+B) = A

A*(!A+B)=
 

A*B

!(A*B) = !A + !B

commutative

associative

distrib
utive

absorptive

de Morgan's

~     !   NOT
   ::   XOR

            OR
   *       AND

⊕+
∨+
∧⋅
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NAND or NOR can do 
everything…

NAND

NAND

NAND

NOR

NAND

NAND

NOR

NOR

NOT

NANDAND

NOR

NOROR

NOR

with NAND with NOR
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XOR with NAND or NOR

XOR

= =

A :+: B = A*!B + !A*B
A + B = !(!A*!B)

OR

=

(de Morgan)

A:+:B = (A + B)*(!A + !B)=
(A + B)*!(A * B)

(de Morgan)
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Simplifying Boolean 
expressions

F=A*!C + A*!B + !A*B*!C + !A*!B = !C*(A+!A*B) + !B = !C*(A+B)+!B

 

=

= !C*A+!C*B+!B = A*!C + !B + !C = !B + !C A+(A*B) = A
A+(!A*B)= A+B

F=A*!C + A*!B + !A*B*!C + !A*!B
For

 

A=0 F=B*!C +!B = !B+!C

For

 

A=1 F=!C+!B

F=A*!C + A*!B + !A*B*!C + !A*!B
For

 

B=0 F=A*!C + A + !A = 1

For

 

B=1 F=A*!C + !A*!C = !C

F(a1

 

, a2

 

, …
 

aN

 

) = 
= a1

 

*F(1, a2

 

, …
 

aN

 

) + !a1

 

*F(0, a2

 

, …
 

aN

 

)
0
1

F(0, a2

 

, …
 

aN

 

)

a1

F
F(1, a2

 

, …
 

aN

 

)

With 4:1 mux, two variables can be eliminated
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What kind of logical elements do 
we need?

•
 

Exactly like a house, that can be built using 
many identical small bricks, one logical circuit 
can be built using many identical NOR (OR-

 NOT) or NAND (AND-NOT) elements
•

 
For practical reasons it is much 
better to have a rich set of 
different logical elements, this will 
save area and power and will 
speed up the circuit

VCC
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•
 

If the function is more frequently 1, it is better to 
calculate the inverted function in order to have 
less terms:

Sum of products representation

•
 

Truth table

Y = !A*!B*!C + !A*B*C + A*!B*C + A*B*!C + A*B*C

Y = ! ( !A*!B*C + !A*B*!C + A*!B*!C )

A B C Y
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1
1

 
0 0 0

1 0 1 1
1 1 0 1
1 1 1 1

A

C

CB

A

B

CB

Y

A
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Karnaugh  Map (K-Map) with 3 
signals

Y = !A*!B*!C+!A*B*C+A*!B*C+A*B*!C+A*B*C

A

A

C C

B BB

1

1

1

1 1

Y = !A*!B*!C + A*B + A*C + B*C

A

A

C C

B BB

1

11

1
Y = A*!B + !A*C

Y =!B*C+A*!B*!C+!A*!B*C+!A*B*C

00

0

00

00
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K-Map with 4 signals

A

A

C C

D DD

B

1 1

1

1

1 1

0

0

0 0

0

0

0

0

0

0

F = !B*!D + A*!C*!D + !A*B*!C*D
A*!C*!D

!B*!D

The four corner cells can 
be combined together as 
!B*!D

The two cells bottom left 
can be combined as 
A*!C*!D

One minterm
 

remains 
!A*B*!C*D

Finally we get:
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K-Map with don't care

A

A

C C

D DD

B

1 1

1

1

1 1

x

x

x x

x

0

0

0

0

0

!B*!D

!C*!D

!A*B

!A*!C

F = !B*!D + !C*!D + !A*!C

F = !B*!D + !C*!D + !A*B

If the function is not used in 
some combinations (x -

 
don't 

care) of the input signals, we 
are free to replace any x with 
0 or 1.

In this example we have two 
options to include the 
minterm

 
!A*B*!C*D
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K-Map for XOR

A

A

C C

D DD

B

0 1

0

0

1 0

1

1

1 0

0

0

1

1

0

1

F = A :+: B :+: C :+: D

When going from one field to 
any neighbour field in the K-

 map, only ONE signal is 
changed (Gray code, see later) 
but the output toggles.
As can be seen, this prevents 
any optimization, the function 
can be built by 8 product terms.

In the general case of XOR between N signals, the number of product 
terms needed is 2N-1! Actually XOR is the worst function to be 
implemented as sum of products.
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Conclusions(1) –
 

PAL/CPLD/HDL

•
 

The sum of products representation was a good 
move! It seems to be a universal method (with 
some exceptions) to build any logical function –

 PAL and CPLD
•

 
Drawing of the circuit is tedious and not very 
reliable! 

•
 

Writing of equations seems to be easier and 
more reliable → languages to describe 
hardware (HDL -

 
hardware description 

language)
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Conclusions(2) –  ASIC
Another possibility is to have many different logic functions. Here 
are shown only a small subset of the variations with AND-OR-

 NOT primitive functions available in a typical ASIC library

All about 130 units + with different fanout
 

capability

AO32

AO22

AO31

AO211
AOI211

AO31M10

AO22M10

AO22M20
AOI22M10

AO21M10

AO21M20
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Conclusions(3) –  LUT/FPGA
•

 
Another possible architecture for logical functions is to 
implement the truth table directly as a ROM

•
 

When increasing the number of the inputs N, the size of 
the memory grows very quickly as 2N!

•
 

If we have reprogrammable small memory blocks (LUT -
 Look Up Table), we could easily realize any function –

 the only limit is the number of the input signals

•
 

For larger number of inputs we need to do something

LUT

a
b
c

F(a, b, c)
0 0 0 : 1
0 0 1 : 0
0 1 0 : 0
0 1 1 : 1
…

The FPGAs
 

contain a lot 
of LUT with 4 to 6 inputs + 
something more
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Conclusions(4) –  FPGA
•

 
Another possible architecture is to use multiplexers

•
 

Examples of simple 2-input logical functions built with 
2:1 multiplexer

This approach is 
used in some FPGA 
architectures

B

B

A

A

A

'1'

B

B

B

Y

Y

1

0

Y 1

Y
0

A

1

A

Y

B

A

0

1

Y
'1'

0

A

'0'

'0'
A

Y

B

=

=

=

=
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Combinational circuits
•

 
... are the circuits, where the outputs depend only on the 
present values of the inputs

•
 

Practically there is always some delay
 

in the reaction of 
the circuit, depending on the temperature, supply 
voltage, the particular input and the state of the other 
inputs

•
 

it is good to know the min and max values  (worst/best 
case) A1

AN

F(A1

 

, A2

 

, ... AN

 

)
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Special combinational circuits -
 multiplexer

•
 

Used to control data streams –
 

several data 
sources to a single receiver

0
1
2
3

I1
I2

I0

I3

S1..0

Y

S Y
0 I0
1 I1
2 I2
3 I3

Y = !S[1]*!S[0]*I[0]+
!S[1]* S[0]*I[1]+
S[1]*!S[0]*I[2]+
S[1]* S[0]*I[3]

I3

Y

S0

I2

I0

I1

S1
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Special combinational circuits -
 demultiplexer

•
 

To some extend an opposite to the multiplexer

0
1
2
3

Y1
Y2

Y0

Y3

S1..0

I

S Y0 Y1 Y2 Y3
0 I 0 0 0
1 0 I 0 0
2 0 0 I 0
3 0 0 0 I

Y[0] = !S[1]*!S[0]*I
Y[1] = !S[1]* S[0]*I
Y[2] =  S[1]*!S[0]*I
Y[3] =  S[1]* S[0]*I

Y1

Y0

S1

I

S0

Y2

Y3
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Special combinational circuits -
 adder

•
 

Add/subtract –
 

for more than some bits here it is not practical 
to use the sum-of-products approach (Why?)

•
 

Binary system
–

 
Integer numbers ≥

 
0 (unsigned)

–
 

Integer numbers –
 

positive and negative (signed) -
 

later
–

 
Adding of binary integer numbers, carry

•
 

Building blocks
–

 
Half-

 
and Full-

 
adder

1011
0110
10001

+ ?
To calculate the most significant bit of the result we 
have to go through all the other bits, the carry jumps 
from bit to bit and this takes time!
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Half-
 

and Full-
 

adder

A + B = 2·Cout + S

A + B + Cin
 

= 2·Cout + S

A
B

S
Cout

FA
Cin

A
B

S
Co

Ci

A
B

S
Cout

HAA
B

S
Co

Half-adder

Full-adder

B

SA

Cout

B

A

Cin

S

Cout
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4 bit ripple carry adder

1111
0001
10000

+ A3..0
B3..0
S4..0

A0
B0

S0HA

A1B1

S1FA

A2B2

S2FA

A3B3

S3FA
S4

Ripple carry adder

Co0

Co1

Co2

A
B

S
Co

Ci

A
B

S
Co

Ci

A
B

S
Co

Ci

A
B

S
Co

A

B

S[0]

CO[0]

S[1]

CO[1]

S[2]

CO[2]

S[3]

S[4]

0 F

0 1
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Signed integers
•

 
One’s complement –

 
invert all bits of A

 
to get the negative of A

–
 

The 0
 

has two representations +0
 

and -0.
–

 
Not practical for mathematical operations

•
 

Two’s complement –
 

invert all bits and add 1
–

 
The sum of A

 
and (not A +1)

 
is 2N

 

but expressed with N
 

bits is 
00..00

 
=> -A=2N-A

–
 

All numbers from 00..00
 

to 01..11
 

are positive (0
 

to 2N-1-1)
–

 
All numbers from 11..11 (-1)

 
to 10..00 (-2N-1)

 
are negative, the 

MSB is 1
 

when the number is negative
–

 
The full range is asymmetric, from -2N-1

 

to +2N-1-1
 

(for 8 bits, from      
-128

 
to +127). Note that the VHDL Integer

 
is symmetric: from          

-(231-1)

 
to +(231-1)

–
 

Before doing mathematical operations with two signed numbers with 
different length, the shorter must be sign-extended to the length of the 
other
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Two’s complement –  a closer 
look

•
 

Let A
 

be a positive integer:

•
 

Then the negative of A
 

is

•
 

Subtracting 2N
 

from both sides yields (         ):

•
 

In two’s complement the MSB has weight -2N-1
 instead of +2N-1

 
–

 
note that this is valid for both 

positive and negative numbers!

0  ,2 1

1

0
== −

−

=
∑ N

N

k

k
k aaA

1  , 222  as drepresente 1

1

0

1

0
==−− −

−

=

−

=
∑∑ N

N

k

k
k

N

k

k
k

N bbaA

1
1

2

0

1
1

2

0

1

0

1

0
22222222 −

−

−

=

−
−

−

=

−

=

−

=

−=−+=−=−=− ∑∑∑∑ N
N

N

k

k
k

NN
N

N

k

k
k

N
N

k

k
k

N

k

k
k bbbbbaA

11 =−Nb
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Carry, borrow

•
 

For unsigned integers, carry out = 1 
means, that
–

 
when adding A+B

 
the result is above 2N-1

–
 

when subtracting A-B, B
 

is larger than A, in 
this case we speak of borrow

1011  11
0110   6
10001   1

+ 0011  3
0110  6
11101 13

-

carry
borrow
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Carry, borrow, overflow

•
 

For signed integers, carry output = 1 is not 
necessary bad

•
 

but

1011  -5
0110   6
10001   1

+ 0011  3
0110  6
11101 -3

-

carry
borrow

1011  -5
1010  -6
10101   5

+ 0011  3
1010 -6
11001  7

-

carry
borrow

correct

wrong

Overflow = carry out  XOR carry between the last two bits
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Correct   Wrong
pos + pos →

 
pos    neg

neg + neg →
 

neg    pos
pos –

 
neg →

 
pos    neg

neg –
 

pos →
 

neg    pos

Overflow

•
 

For signed integers, overflow can be 
detected by the wrong sign of the result:

pos + neg
pos –

 
pos

neg –
 

neg
Always correct

This is overflow!

The MSB is 1 for the negative numbers and 0 for the positive 
(incl. 0), so one can detect the overflow only using the MSBs

 
of 

the two operands and of the result
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Subtracting using an adder

•
 

Add/subtract with two’s complement 
numbers can be done exactly like with 
unsigned integers

•
 

For N-bit signed:
A–B=A+(2N–B)=A+two’s_complement(B)

=
B

A
Cin

NOT

'1'

B

A
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A_GT_B

B2

B0

A1

B1

A0

A2

Comparator

A

B
A_GT_B

Other possibilities:
>=, <, <=, 
signed/unsigned

A2.!B2

A2=B2

A1.!B1

A1=B1

A0.!B0

B[2..0]

A[2..0]

A_GT_B

5 6 7 0

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5

If (A2=1 and B2=0) or
(A2=B2 and A1=1 and B1=0) or
(A2=B2 and A1=B1 and A0=1 and B0=0)
…
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Combinational ↔ sequential circuits

•
 

Theoretically we can make a combinational circuit which 
gets all input data and solves the complete problem 
after some delay

•
 

This approach is hardly usable, even when the problem 
has an analytical solution

•
 

The data come in most of the cases sequentially in time, 
the algorithms have branches

A typical digital design consists of several blocks of 
combinational circuits and circuits with memory, the 
processing is done in small portions in equal steps in time
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•
 

In order to memorize the previous state of the circuit, 
one needs feedback from the output(s) to the input(s)

•
 

R-S flip-flop, two possible implementations:

•
 

Two stable states after deactivation of the inputs

Circuits with memory (R-S)

Q\

Q
S\

R\

Q\

R
Q

S

R\
S\

Q\
Q

R
S

Q\
Q
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•
 

Synchronous R-S, R and S are gated by the 
signal C

•
 

(transparent) Latch: when C=1, Q follows  D, 
when C→0, Q memorizes the last value of D

Circuits with memory (sR-S, Latch)

C

Q

D

Q\

S

C

Q

Q\

R

C
D

Q\
Q

R
S

Q\
Q
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Circuits with memory (JKFF, DFF)

•
 

Sensitive to the edge of the clock signal, in the rest of 
the time the outputs do not depend on the inputs

•
 

JKFF: similar to the synchronous R-S, but when J and K 
are both 1, it toggles its state

•
 

Consists of two synchronous R-S flip-flops (master-
 slave)

–
 

Used in counters in the past
•

 
DFF: similar to the Latch: when  C↑,

 
Q memorizes D

–
 

Currently the most used memorizing component together 
with the memories (RAM)

–
 

Some flip-flop types have an additional enable input and 
asynchronous set or reset inputs



© V. Angelov VHDL-FPGA@PI 2013                                  38

Circuits with memory (DFF)
•

 
D must be stable tS

 

(setup) before and tH
 

(hold) 
after the active edge of the clock signal CLK

•
 

The output Q settles within some time tCO
 

, if the 
conditions are violated (tS

 

, tH
 

) the state of the 
flip-flop is unknown, oscillations are possible

D

CLK

?Q

tS tH

tCO

DFF

D

CK

Q
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State of a sequential circuit

According to H. Hellermann
 

(Digital 
Computer System Principles):

“The state
 

of a sequential circuit is a 
collection of state variables

 
whose values at 

any one time contain all the information 
about the past necessary to account for the 
circuit’s future behaviour”
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State machines

.

.

.

.

.

.

.

.

.

CLK

The next state S[1..M]i+1

 

is a function of the present S[1..M]i
 

and of the 
inputs I[1..N]. The outputs Y[1..K] are function of the present state S[1..M]i

 

, 
but could depend on the inputs I[1..N]

I1
I2

IN

Y1
Y2

YK

S1

S2

SM

Moore machine: the 
outputs depend only 
on the state

Mealy machine: the 
outputs depend on the 
state and on the inputs
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State machine example

The description of a state machine is often done by state diagrams. Here 
are shown all the states, the transitions with their conditions and the 
outputs. For convenience the condition to stay in the same state

 
can be 

omitted. The conditions to exit any state should be never in conflict!

Outputs (Moore machine)Inputs State

S0

SL

SA

SR

LL LR

1 X 0 0  0

0  11  0

1  1

X X X

0 X X

0 1 X

X X 1

1 X X

X 0 X
1 1 X

0 1 0

L  R  W

0 0 0
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.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

CLK

Synchronous circuits

At each rising clock edge the registers memorize the current values at 
their inputs. The outputs are updated after some small delay tCO

T=tH
 

+tL

tH tL

Clock signal

register
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Register Transfer Level (RTL)

•
 

A digital synchronous circuit consists of 
registers and combinational logic between 
them

•
 

The description of such a circuit actually 
specifies what happens after each clock 
cycle –

 
the data transfer between the 

registers –
 

RTL
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Structural approach: top-down

U1

U2

A

B

C

Y1

Y2

A

B

A

B

Y

Y

my_top •
 

Try to understand the problem, do 
not stop at the first most obvious 
solution
•

 
Divide into subdesigns

 
(3..8), with 

possibly less connections between 
them, prepare block diagrams before 
starting with the implementation
•

 
Clearly define the function of each 

block and the interface between the 
blocks, independently on the 
implementation(s) of each block
•

 
Develop the blocks (in team) and 

then check the functionality
•

 
Combine all blocks into the top 

module, if some of them is not 
finished, put temporarily

 
a dummy

Iterative process !
•

 
Don't delay the documentation, it is 

part of each design phase
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Structural approach: top-down
• Think about compatibility and extensibility of the design
•

 
Try to do the functionality of the module symmetrical and include all simple 

and reasonable extensions
•

 
Maximize orthogonality, do not implement functions, just because they are 

"nice", but are combinations of already implemented functions (example: 
many ways to clear or increment some CPU register). An architecture with 
high orthogonality

 
tends to provide more function at the same level of 

complexity and cost
•

 
The hardware should be not damageable by the user, think about auto-

 consistency of the configuration and about protections
•

 
Do not spread the important constants like dimensions, addresses etc. in 

the several sources of the design, put them into one central place
• Try to be technologically independent as long as possible
• Make the configuration registers read/write instead of write only
• Think about testing and debugging
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Hardware : software?

U1

μC, RISC

A

B

C

Y1

Y2

A

B

I/O

I/O

Y

I/O

my_top

• select the processor core
•

 
for the architecture of the 

hardware
 

part proceed as 
described before

again: inc r5
load r2, [r5]
and r2, 0xAB
bra cc_zero, again
store [r3], r6
...HW

SW

Just a few questions more:

•
 

Divide in two parts -
 

hardware : 
software, taking into account the 
desired speed, size, flexibility, 
power consumption and other 
conditions
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Questions, questions...

•
 

How to partition the design? Where to put the boundary 
between software and hardware?

•
 

How to enter the design?
•

 
How to check whether each subblock

 
works as 

expected, according to the description?
•

 
How to select the possible implementation in a silicon 
chip?

•
 

How to check whether the chip will work so as we want 
before ordering it?

•
 

How to check the chip functionality when we get it back?
•

 
How to test the chips in the production (and the boards 
after assembly)?
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Technologies
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Technologies
•

 
Small Scale Integration (SSI) ICs (74xx, 4000)

•
 

Simple Programmable Logic Devices (SPLD) -
 

PAL 
(Programmable Array Logic) & GAL (Generic Array 
Logic), Complex Programmable Logic Devices (CPLD)
–

 
Architecture, manufacturers, overview of the available products

•
 

Field Programmable Gate Arrays (FPGA)
–

 
Architecture, manufacturers, overview of the available products

•
 

Design flow FPGA/CPLD
•

 
Application Specific Integrated Circuit (ASIC)
–

 
Standard cell (structured ASIC)

–
 

Others (gate array, full-custom)
–

 
Design flow
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TTL (transistor-transistor logic)
•

 
7400 -

 
4 х

 
(4 bipolar transistors + 4 resistors)

•
 

74хх
 

–
 

many combinations of different logical elements 
(AND, OR, NOT), flip-flops, counters and many others.

•
 

From the modern point of view –
 

slow, hungry (for 
electrical power) monster

•
 

Small Scale Integration
IC (SSI)
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TTL families
•

 
The basic family was 
replaced by the LS

 
(Low-

 power Shottky)
•

 
Other popular 
subfamilies: AS

 (Advanced Shottky), ALS
 (Advanced Low-power 

Shottky) and F
 

(Fast)
•

 
The industry standard for 
long time, used in mini 
computers and other 
digital devices

74151

4
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Q
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D
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CMOS technology
•

 
Built with nMOS

 
and pMOS

 
transistors

S

Y

S

D

NMOS

D
VSS

NMOS

PMOS

Y

VDD

VDD

VSS

Y

VDD

AA=1A

VSS

A=0

PMOSG

G

Y

VDD

Y

VSS

VDD

Y Y

B
A

VSS

YA=1

B

VDD

B=1

A=1

VDD
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B=0

A=0

B=0

A

VSS

Y



© V. Angelov VHDL-FPGA@PI 2013                                  53

CMOS SSI ICs
•

 
Two families widely used:
–

 
4000

•
 

slow and low power, good for battery devices
•

 
with wide range of power supply voltages (3..15V)

•
 

many exotic chips –
 

large (decade) counters, 
counter+decoder

 
etc.

–
 

74HC(T)
•

 
functionally equivalent to the well known 74xx family

•
 

faster than the 4000
•

 
very low static power, the dynamical power rises linearly with 
the frequency

•
 

successfully replaced the TTL family, but it was too late –
 

the 
PLD, CPLD, FPGA and ASIC came
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Simple PLD –  GAL (generic array logic)
 1

2

3

4

5

16

17

18

0000

0224

0256

0480

0512

0736

0768

0992

19

XOR-2048
AC1-2120

XOR-2049
AC1-2121

XOR-2050
AC1-2122

XOR-2051
AC1-2123

2824201612840 PTD
2128

OLMC

OLMC

OLMC

OLMC

Programmable 
AND array

Output Logic Macrocells

In
pu

ts

CLK

8 PTs/OLMC

pin #
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SPLD -  the AND array

Programmable connections
•

 
Each AND has enough inputs to 

build the product of any 
combination of the input signals or 
their negations
•

 
Group of several (typically 8) 

ANDs
 

are hardwired
 

to a OR, 
which is routed to an output (PAL)
•

 
The PLAs

 
have programmable OR 

array but were never widely used

I2 I1

Q3

I0

Q2 Q1

I3

Q0
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GAL –  Output Logic Macrocell

•
 

The polarity is 
programmable, 
sometimes it is easier to 
calculate the negation of 
the output signal

•
 

The output can be fed 
back to the programmable 
AND array

•
 

The chip output can be 
put into tri-state

• Optional register

Fr
om

/to
 th

e 
A

N
D

 m
at

rix

0/1

0/1

Fr
om

/to
 th

e 
A

N
D

 m
at

rix

 

D

CLK

Q

Q

 

OE
CLK
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PAL/GAL –  summary
• The first widely used programmable logic devices
•

 
Used in the past to replace several small scale integration ICs, 

like 74xx
• Very successfully used for small state machines
•

 
Manufactured first by MMI (Monolitic

 
Memories Inc.), later by 

AMD, Lattice and others
•

 
The first devices were one time programmable (OTP) and with 

either combinational or registered macrocells
 

(or a fixed mixture), 
the later were electrically erasable/programmable (up to 100 times) 
with freely programmable type of the macrocells
•

 
Software tools –

 
based on Hardware Description Languages 

(HDL) –
 

ABEL, CUPL, PALASM or schematics
•

 
The next generation of PLD –

 
Complex PLD (CPLD) are based on 

the same architecture
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CPLD –
 

ispMACH
 

4000 (Lattice)

Output Routing Pool

CLK0..3pwr/gnd GOE0/1 JTAGpwr/gnd pwr/gnd

Global

Routing

Pool

Similar to a GAL
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CPLD –  ispMACH  4000 -  GLB

36 inputs 
from GRP

Generic Logic Block

cluster

n−1  n−2 n−1  n−4

to
n+1

n+2  n+1

to
n+4

Fast 5−PT
Path

to
XOR

(MC)

Individual PT
Allocator

Cluster Allocator

n

from

fromto

shared 
clock, oe, 
reset

PT
Cluster 0

PT
Cluster 15

inputs

AND array programmable 
fuse

83 PTs

x16
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power up
init

shared
PT init

PT init

PT init/CE

From Logic
Allocator

Single PT

delay

R P

D/T/L

CE

From I/O Cell

ORP

GRP

To

CLK0..3

PT clock

Shared
PT clock

CPLD –
 

ispMACH
 

4000 Macrocell

The FF can be 
configured as DFF, 
TFF, Latch, with 
optional asynchronous 
set/reset

The output of the cell can be routed to some I/O cell via the Output 
Routing Pool and/or to other cells via the Global Routing Pool

Up to 80 PTs
 

are 
possible, by using 
the PTs

 
of the 

neighbour cells 
(cluster allocator). 

set/reset logic

Clock source selection
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CPLD –
 

ispMACH
 

4000 I/O-
 

cell

GOE0..3

From ORP

VCC

From ORP

To Macrocell

To GRP

Global
fuses

Vcco

bus keeper pull−up

pull−down

The output cell can be configured as input, output or bidirectional. 
Weak pull-up/down resistors and bus keepers are globally available.

Output enable selection

output
input

w
ith

 tr
i-s

ta
te

From Output Routing Pool

To Macrocell
To Global Routing Pool

I/O 
pin
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CPLDs  –  Altera, Xilinx
•

 
MAX II (0.18 um) with up to 2k cells and 8k flash 
bits, with SRAM based configuration + built-in flash 
memory

•
 

MAX V –
 

like MAX II + PLL
•

 
MAX 3000A –

 
true CPLD, up to 512 cells, 3.3V

•
 

Cool Runner II, up to 512 cells, 1.8V core, with 
SRAM based configuration + built in flash

•
 

XC9500 (XL, XV), up to 288 cells (5V, 3.3V, 2.5V)

R
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CPLDs  –  Lattice
•

 
ispMACH

 
4000 Z-ZE (zero power 1.8V 

core), C, B, V (1.8, 2.5, 3.3V core), up to 
512 cells, probably the fastest

 
true CPLD 

now
•

 
MachXO, 1.2, 1.8, 2.5, 3.3V core, up to 2k 
cells (LUT4), RAM, with SRAM based 
configuration + built in flash memory

•
 

MachXO2 –
 

same as MachXO
 

+ up to 7k 
cells (LUT4), PLL, hardcores

 
I2C, SPI, user 

flash memory
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CPLD –  summary
Sum of product terms architecture, similar to PAL/GAL

•
 

Simple model of the internal delays and from pin to pin
•

 
Ready to operate immediately after power up

•
 

In situ programmable using JTAG, FLASH memory cells 
store the configuration (about 10,000 times)

•
 

Reliable copy protection possible
•

 
Radiation tolerant (the newer CPLDs

 
are similar to 

FPGA + built-in FLASH and are NOT radiation tolerant!)
•

 
Limited number of logic elements (up to about 1k)

•
 

Higher price/logic element
•

 
No internal RAM
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FPGA –  general  structure

Logic Block (LE, LC, Slice)

I/O Blocks and pins

-
 

contains a look up 
table (LUT) with 4 to 6 
inputs and a FF. In 
some FPGAs

 
several 

Logic Blocks are 
grouped into clusters 
with some local routing.

Routing channels
-

 
general purpose

-
 

for global signals like 
clocks, reset, output 
enable, with high fanout

 and low skew
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FPGA –  Virtex  4 SLICE L/M

LUT

FX

G
inputs

FXINA MUXFX

FXINB

D
FF/LAT

Q

REV

D

CE

CLK

SR

BY

BX

CE

CLK

SR

Y

YQ

F5
MUXF5

X
LUT

F
inputs

D

FF/LAT

Q

REV

D

CE

CLK

SR

XQ

UG070_5_20_071504

Each SLICE contains two 
LUT4, two FFs

 
and 

MUXes. The two LUT4 
can be combined into one 
LUT5.

The Configurable Logic 
Block (CLB) contains 2x 
SLICEL and 2x SLICEM. 
The Ms can be used for 
distributed RAM and large 
shift registers.

The CLB has 8 LUT4, 8 
FFs, can be used for 64 
bits distributed RAM or 
shift register
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FPGA –  Virtex  5 with  LUT6

WP284_01_121907

B

BQ

BMUX

6-Input LUT
B6

BX

B5
B4
B3
B2
B1

COUT

CIN

In the modern sub-micron processes the routing delay becomes a 
substantial part of the whole delay. On the other side the logic

 
needs 

less area. Therefore the leading manufacturers go to larger LUT6.

Can operate as 1 LUT6 
or 2 LUT5 with common 
inputs

x4  → SLICE, 2 x SLICEs
 

→ CLB

The CLB contains 8 LUT6, 8 FFs; can be used as distributed RAM 
with 256 bits or as a 128 bit shift register
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FPGA –  Actel  antifuse  (1)

C-Cell

Cluster 1
C-R-C

For combinational 
logic 

R-Cell

Supercluster
 

Type 1
C-R-C  C-R-C

Cluster 2
C-R-R

Supercluster
 

Type 2
C-R-R  C-R-C
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Data In
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CLR

Q Y

CKPCKS

HCLK

CLKA,
CLKB,
Int. logic
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FPGA –  Actel  antifuse  (2)

The same for 
the FLASH 
FPGAs

 
of 

Actel

•
 

Don‘t need configuration memory, 
lower price, more reliable

•
 

Illegal copy is impossible
•

 
Radiation tolerant

•
 

Perfect prototyping service

•
 

Every chip is exactly once 
programmable

•
 

Design flow similar to ASIC
•

 
Slightly slower
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Low cost FPGAs  overview

Name
 

LUT4 (k)
 

RAM kBits
 

18x18
 

PLLs
 

Tech
Cyclone II

 
4-68

 
120-1100

 
13-150

 
2-4

 
90nm

Cyclone III
 

5-120
 

400-3800
 
23-288

 
2-4

 
65nm (lp)

Cyclone IV E
 

14-150
 

270-3800
 
15-266

 
2-4

 
60nm (lp)

Cyclone V E
 

25-301
 

1760-12200
 

50-684
 

4-8
 

28nm (lp)

Name
 

LUT4 (k)
 

RAM kBits
 

18x18
 

DLLs
 

Tech
Spartan 3

 
2-75

 
72-1800

 
4-104

 
2-4

 
90nm

Spartan 3E
 

2-33
 

72-650
 

4-36
 

2-8
 

90nm
Spartan 3A/AN

 
2-25

 
54-576

 
3-32

 
2-8

 
90nm

Spartan 3D
 

37-53
 

1500-3200
 

84-126
 

8
 
90nm

Spartan 6
 
3-147

 
216-4800

 
8-180

 
4PLL

 
45nm

Artix-7
 

16-71
 

208-974
 
60-250

 
4PLL

 
28nm

R

with built-in flash equivalent
 

LUT4, but LUT6
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Low cost FPGAs  overview

Name

 

LUT4 (k)

 

RAM kBits

 

18x18

 

PLLs

 

Tech
LatticeXP

 

3-20

 

54-396

 

---

 

2-4

 

130nm
LatticeXP2

 

5-40

 

166-885

 

12-32

 

2-4

 

90nm

XP and XP2 have built-in configuration flash

Name LUT4 
(k)

RAM kBits 18x18 SerDes Speed

 Gbps
Tech

Cyclone

 

IV GX 14-150 540-6400 0-360 2-8 3.125 60nm

Cyclone

 

V GX/T 77-301 4460-12200 300-684 2-12 6.144 28nm

Spartan

 

6 24-147 936-4824 38-180 2-8 3.125 45nm

Artix-7 16-215 208-2888 60-740 4-16 6.6 28nmw
ith

 S
er

D
es
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FPGA summary
•

 
The price/logic goes down

•
 

The speed goes up
•

 
Special blocks like RAM, CPU, multiplier…

•
 

Flexible I/O cells, including fast serial links and 
differential signals

•
 

Infinitely times programmable (with some 
exceptions)

•
 

External memory or interface for initialization after 
power up needed –

 
copy protection impossible 

(with some exceptions)
•

 
More sensitive to radiation, compared to CPLD 
(with some exceptions)

Manufacturers: Actel, Altera, Lattice, Xilinx
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Design flow CPLD/FPGA

Your favourite text editor!
Some recommendations: 
emacs, notepad++, 
nedit, with syntax 
colouring and more for 
VHDL

 

and Verilog

LeoSpec
Precision
Synplify

FPGA vendors
Synopsys

ModelSim
Aldec AHDL

FPGA 
vendor

Device 
programming

Each step can take seconds, minutes, hours ... 
(place & route)

functional 
simulation

synthesis

timing 
estimation

gate-level 
simulation

place & 
route

sdf

 
simulation

timing 
analysis

design entry: 
schematic, HDL

board 
production 

& test
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FPGA development tools
•

 
Each manufacturer has own tools, absolutely necessary 
for placing and routing, optionally for synthesis, simulation 
etc. The free versions have some limitations

•
 

Leading suppliers of synthesis tools -
 

Mentor Graphics 
(Leonardo Spectrum, Precision), Synopsys (FPGA 
compiler), Synplicity

 
(Synplify) –

 
already part of Synopsys

•
 

Leading suppliers of simulation tools -
 

Mentor Graphics 
(ModelSim), Aldec

 
(Active HDL)

•
 

The FPGA manufacturers offer free but limited versions of 
the synthesis and simulation tools mentioned above
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ASICs  -  Standard Cells, Gate 
Arrays, Full Custom

•
 

Standard Cells
–

 
rich library with primitive functions and flip-flops

–
 

I/O cells for different standards and voltages
–

 
core generators for memory, CPU, interfacing, PLL

–
 

the user must pay all production masks
–

 
multiproject

 
wafer option for prototyping

•
 

Gate Array
–

 
array of ready simple gates

–
 

the user prepares only some routing masks
–

 
compared to Standard Cells: cheaper, slower, no mixed mode

•
 

Full custom –
 

for very high volumes
–

 
the most optimal, even longer development time and higher costs
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ASIC ↔ FPGA
•

 
ASICs

 
compared to CPLD and FPGAs:

–
 

lower price in high volume production runs
–

 
possibility for mixed mode designs (with analog

 
part)

–
 

higher design density, higher operation speed, lower power
–

 
much longer development time, several months per submission

–
 

higher development costs and much more expensive software

•
 

FPGA to ASIC
–

 
FPGA architecture, with fixed routing and function of each cell

–
 

compared to FPGA
•

 
cheaper for mid-volume production and large designs

•
 

faster & smaller chips, lower power, no configuration memories
•

 
radiation tolerant

–
 

Altera
 

HardCopy, eASIC
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Design flow ASIC

Synopsys

ModelSim

Cadence
First

Encounter
submission

DRC, LvS

The process can take months!
The manufacturing too!
Price for ≈100 prototypes ≈$10,000

functional 
simulation

synthesis

timing 
estimation

gate-level 
simulation

place & 
route

sdf

 
simulation

timing 
analysisdesign entry: 

schematic, HDL

production

wafer test

packaging 
& test

board 
production 

& test

Calibre

PrimeTime

Your favour text editor!
Some recomendations: 
emacs, notepad++, 
nedit, with syntax 
coloring

 

and more for 
VHDL

 

and Verilog
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