
© V. Angelov VHDL-FPGA@PI 2013 1

Introduction to Digital Design

© V. Angelov VHDL-FPGA@PI 2013 2

Introduction to Digital Design

•

Why digital processing?
•

Basic logical circuits, first conclusions

•

Combinational circuits
–

Adder, multiplexer, decoder ...

•

Sequential circuits
–

Circuits with memory

–

State machine, synchronous circuits
•

General structure of a digital design
–

Top-down

–

Hardware/software

© V. Angelov VHDL-FPGA@PI 2013 3

Why digital processing (1)?
•

The world is to a good approximation analogue

•

The result of some measurement can
theoretically take continuous values, but we
store it as a discrete value, multiple of some unit

•

In most of the measurements additional
corrections and processing of the primary
information are necessary

∏∑∫+ 22 dtba
dt
d

© V. Angelov VHDL-FPGA@PI 2013 4

Why digital processing (2)?
•

Block diagram of some measurement device

A
D

Digital
Proc.Analog

Noise,
Disturbances,
Nonlinearity,
Temperature,
Supply voltage

Discretization
 error,

Nonlinearity

Rounding
errors

•

How to arrange the full processing in order to
get the best results?

© V. Angelov VHDL-FPGA@PI 2013 5

Why digital processing (3)?
•

Where to do what? –

the tendency is to start the

digital processing as early as possible in the
complete chain

•

How ? This is our main subject now

AS
IC

FPGA

CPU
14 13 12 11 10 9

1 2 3 4 5 6

VCC

8

7

GND

14

1

© V. Angelov VHDL-FPGA@PI 2013 6

Notations of the logic elements

•

The most used are shown below
•

Frequent use of non-standard symbols

YA
B

1A
B

& Y 1A
B

Y

Y=(A*B)

NOT

Y

A B Y
0 0 0
0 1 1
1 0 1
1 1 1

A

Y

OR

A

B

XNOR

B
Y=(A+B)

A
Y

Y

B B

A B Y
0 0 0
0 1 0
1 0 0
1 1 1

OR

A

A

A

Y = A

Y

B

A

NOR
XOR

Y

AA

AND

B

AND

A B Y
0 0 0
0 1 1
1 0 1
1 1 0

B

NAND

B

© V. Angelov VHDL-FPGA@PI 2013 7

Useful Boolean relations
A+!A = 1

A+ A = A

A+ 0 = A

A+ 1 = 1

!(!A)= A

A+B = B+A

A+(B+C) = (A+B)+C

A*(B+C) = A*B+A*C

A+(A*B) = A

A+(!A*B) = A+B

!(A+B) = !A * !B

(A*B)+(!A*C) = (A+C)*(!A+B)

A*!A = 0

A* A = A

A* 0 = 0

A* 1 = A

A*B = B*A

A*(B*C) = (A*B)*C

A+(B*C) = (A+B)*(A+C)

A*(A+B) = A

A*(!A+B)=

A*B

!(A*B) = !A + !B

commutative

associative

distrib
utive

absorptive

de Morgan's

~ ! NOT
 :: XOR

 OR
 * AND

⊕+
∨+
∧⋅

© V. Angelov VHDL-FPGA@PI 2013 8

NAND or NOR can do
everything…

NAND

NAND

NAND

NOR

NAND

NAND

NOR

NOR

NOT

NANDAND

NOR

NOROR

NOR

with NAND with NOR

© V. Angelov VHDL-FPGA@PI 2013 9

XOR with NAND or NOR

XOR

= =

A :+: B = A*!B + !A*B
A + B = !(!A*!B)

OR

=

(de Morgan)

A:+:B = (A + B)*(!A + !B)=
(A + B)*!(A * B)

(de Morgan)

© V. Angelov VHDL-FPGA@PI 2013 10

Simplifying Boolean
expressions

F=A*!C + A*!B + !A*B*!C + !A*!B = !C*(A+!A*B) + !B = !C*(A+B)+!B

=

= !C*A+!C*B+!B = A*!C + !B + !C = !B + !C A+(A*B) = A
A+(!A*B)= A+B

F=A*!C + A*!B + !A*B*!C + !A*!B
For

A=0 F=B*!C +!B = !B+!C

For

A=1 F=!C+!B

F=A*!C + A*!B + !A*B*!C + !A*!B
For

B=0 F=A*!C + A + !A = 1

For

B=1 F=A*!C + !A*!C = !C

F(a1

, a2

, …

aN

) =
= a1

*F(1, a2

, …

aN

) + !a1

*F(0, a2

, …

aN

)
0
1

F(0, a2

, …

aN

)

a1

F
F(1, a2

, …

aN

)

With 4:1 mux, two variables can be eliminated

© V. Angelov VHDL-FPGA@PI 2013 11

What kind of logical elements do
we need?

•

Exactly like a house, that can be built using
many identical small bricks, one logical circuit
can be built using many identical NOR (OR-

 NOT) or NAND (AND-NOT) elements
•

For practical reasons it is much
better to have a rich set of
different logical elements, this will
save area and power and will
speed up the circuit

VCC

© V. Angelov VHDL-FPGA@PI 2013 12

•

If the function is more frequently 1, it is better to
calculate the inverted function in order to have
less terms:

Sum of products representation

•

Truth table

Y = !A*!B*!C + !A*B*C + A*!B*C + A*B*!C + A*B*C

Y = ! (!A*!B*C + !A*B*!C + A*!B*!C)

A B C Y
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1
1

0 0 0

1 0 1 1
1 1 0 1
1 1 1 1

A

C

CB

A

B

CB

Y

A

© V. Angelov VHDL-FPGA@PI 2013 13

Karnaugh Map (K-Map) with 3
signals

Y = !A*!B*!C+!A*B*C+A*!B*C+A*B*!C+A*B*C

A

A

C C

B BB

1

1

1

1 1

Y = !A*!B*!C + A*B + A*C + B*C

A

A

C C

B BB

1

11

1
Y = A*!B + !A*C

Y =!B*C+A*!B*!C+!A*!B*C+!A*B*C

00

0

00

00

© V. Angelov VHDL-FPGA@PI 2013 14

K-Map with 4 signals

A

A

C C

D DD

B

1 1

1

1

1 1

0

0

0 0

0

0

0

0

0

0

F = !B*!D + A*!C*!D + !A*B*!C*D
A*!C*!D

!B*!D

The four corner cells can
be combined together as
!B*!D

The two cells bottom left
can be combined as
A*!C*!D

One minterm

remains
!A*B*!C*D

Finally we get:

© V. Angelov VHDL-FPGA@PI 2013 15

K-Map with don't care

A

A

C C

D DD

B

1 1

1

1

1 1

x

x

x x

x

0

0

0

0

0

!B*!D

!C*!D

!A*B

!A*!C

F = !B*!D + !C*!D + !A*!C

F = !B*!D + !C*!D + !A*B

If the function is not used in
some combinations (x -

don't

care) of the input signals, we
are free to replace any x with
0 or 1.

In this example we have two
options to include the
minterm

!A*B*!C*D

© V. Angelov VHDL-FPGA@PI 2013 16

K-Map for XOR

A

A

C C

D DD

B

0 1

0

0

1 0

1

1

1 0

0

0

1

1

0

1

F = A :+: B :+: C :+: D

When going from one field to
any neighbour field in the K-

 map, only ONE signal is
changed (Gray code, see later)
but the output toggles.
As can be seen, this prevents
any optimization, the function
can be built by 8 product terms.

In the general case of XOR between N signals, the number of product
terms needed is 2N-1! Actually XOR is the worst function to be
implemented as sum of products.

© V. Angelov VHDL-FPGA@PI 2013 17

Conclusions(1) –

PAL/CPLD/HDL

•

The sum of products representation was a good
move! It seems to be a universal method (with
some exceptions) to build any logical function –

 PAL and CPLD
•

Drawing of the circuit is tedious and not very
reliable!

•

Writing of equations seems to be easier and
more reliable → languages to describe
hardware (HDL -

hardware description

language)

© V. Angelov VHDL-FPGA@PI 2013 18

Conclusions(2) – ASIC
Another possibility is to have many different logic functions. Here
are shown only a small subset of the variations with AND-OR-

 NOT primitive functions available in a typical ASIC library

All about 130 units + with different fanout

capability

AO32

AO22

AO31

AO211
AOI211

AO31M10

AO22M10

AO22M20
AOI22M10

AO21M10

AO21M20

© V. Angelov VHDL-FPGA@PI 2013 19

Conclusions(3) – LUT/FPGA
•

Another possible architecture for logical functions is to
implement the truth table directly as a ROM

•

When increasing the number of the inputs N, the size of
the memory grows very quickly as 2N!

•

If we have reprogrammable small memory blocks (LUT -
 Look Up Table), we could easily realize any function –

 the only limit is the number of the input signals

•

For larger number of inputs we need to do something

LUT

a
b
c

F(a, b, c)
0 0 0 : 1
0 0 1 : 0
0 1 0 : 0
0 1 1 : 1
…

The FPGAs

contain a lot
of LUT with 4 to 6 inputs +
something more

© V. Angelov VHDL-FPGA@PI 2013 20

Conclusions(4) – FPGA
•

Another possible architecture is to use multiplexers

•

Examples of simple 2-input logical functions built with
2:1 multiplexer

This approach is
used in some FPGA
architectures

B

B

A

A

A

'1'

B

B

B

Y

Y

1

0

Y 1

Y
0

A

1

A

Y

B

A

0

1

Y
'1'

0

A

'0'

'0'
A

Y

B

=

=

=

=

© V. Angelov VHDL-FPGA@PI 2013 21

Combinational circuits
•

... are the circuits, where the outputs depend only on the
present values of the inputs

•

Practically there is always some delay

in the reaction of
the circuit, depending on the temperature, supply
voltage, the particular input and the state of the other
inputs

•

it is good to know the min and max values (worst/best
case) A1

AN

F(A1

, A2

, ... AN

)

© V. Angelov VHDL-FPGA@PI 2013 22

Special combinational circuits -
 multiplexer

•

Used to control data streams –

several data
sources to a single receiver

0
1
2
3

I1
I2

I0

I3

S1..0

Y

S Y
0 I0
1 I1
2 I2
3 I3

Y = !S[1]*!S[0]*I[0]+
!S[1]* S[0]*I[1]+
S[1]*!S[0]*I[2]+
S[1]* S[0]*I[3]

I3

Y

S0

I2

I0

I1

S1

© V. Angelov VHDL-FPGA@PI 2013 23

Special combinational circuits -
 demultiplexer

•

To some extend an opposite to the multiplexer

0
1
2
3

Y1
Y2

Y0

Y3

S1..0

I

S Y0 Y1 Y2 Y3
0 I 0 0 0
1 0 I 0 0
2 0 0 I 0
3 0 0 0 I

Y[0] = !S[1]*!S[0]*I
Y[1] = !S[1]* S[0]*I
Y[2] = S[1]*!S[0]*I
Y[3] = S[1]* S[0]*I

Y1

Y0

S1

I

S0

Y2

Y3

© V. Angelov VHDL-FPGA@PI 2013 24

Special combinational circuits -
 adder

•

Add/subtract –

for more than some bits here it is not practical
to use the sum-of-products approach (Why?)

•

Binary system
–

Integer numbers ≥

0 (unsigned)

–

Integer numbers –

positive and negative (signed) -

later
–

Adding of binary integer numbers, carry

•

Building blocks
–

Half-

and Full-

adder

1011
0110
10001

+ ?
To calculate the most significant bit of the result we
have to go through all the other bits, the carry jumps
from bit to bit and this takes time!

© V. Angelov VHDL-FPGA@PI 2013 25

Half-

and Full-

adder

A + B = 2·Cout + S

A + B + Cin

= 2·Cout + S

A
B

S
Cout

FA
Cin

A
B

S
Co

Ci

A
B

S
Cout

HAA
B

S
Co

Half-adder

Full-adder

B

SA

Cout

B

A

Cin

S

Cout

© V. Angelov VHDL-FPGA@PI 2013 26

4 bit ripple carry adder

1111
0001
10000

+ A3..0
B3..0
S4..0

A0
B0

S0HA

A1B1

S1FA

A2B2

S2FA

A3B3

S3FA
S4

Ripple carry adder

Co0

Co1

Co2

A
B

S
Co

Ci

A
B

S
Co

Ci

A
B

S
Co

Ci

A
B

S
Co

A

B

S[0]

CO[0]

S[1]

CO[1]

S[2]

CO[2]

S[3]

S[4]

0 F

0 1

© V. Angelov VHDL-FPGA@PI 2013 27

Signed integers
•

One’s complement –

invert all bits of A

to get the negative of A

–

The 0

has two representations +0

and -0.
–

Not practical for mathematical operations

•

Two’s complement –

invert all bits and add 1
–

The sum of A

and (not A +1)

is 2N

but expressed with N

bits is
00..00

=> -A=2N-A

–

All numbers from 00..00

to 01..11

are positive (0

to 2N-1-1)
–

All numbers from 11..11 (-1)

to 10..00 (-2N-1)

are negative, the

MSB is 1

when the number is negative
–

The full range is asymmetric, from -2N-1

to +2N-1-1

(for 8 bits, from
-128

to +127). Note that the VHDL Integer

is symmetric: from

-(231-1)

to +(231-1)

–

Before doing mathematical operations with two signed numbers with
different length, the shorter must be sign-extended to the length of the
other

© V. Angelov VHDL-FPGA@PI 2013 28

Two’s complement – a closer
look

•

Let A

be a positive integer:

•

Then the negative of A

is

•

Subtracting 2N

from both sides yields ():

•

In two’s complement the MSB has weight -2N-1
 instead of +2N-1

–

note that this is valid for both

positive and negative numbers!

0 ,2 1

1

0
== −

−

=
∑ N

N

k

k
k aaA

1 , 222 as drepresente 1

1

0

1

0
==−− −

−

=

−

=
∑∑ N

N

k

k
k

N

k

k
k

N bbaA

1
1

2

0

1
1

2

0

1

0

1

0
22222222 −

−

−

=

−
−

−

=

−

=

−

=

−=−+=−=−=− ∑∑∑∑ N
N

N

k

k
k

NN
N

N

k

k
k

N
N

k

k
k

N

k

k
k bbbbbaA

11 =−Nb

© V. Angelov VHDL-FPGA@PI 2013 29

Carry, borrow

•

For unsigned integers, carry out = 1
means, that
–

when adding A+B

the result is above 2N-1

–

when subtracting A-B, B

is larger than A, in
this case we speak of borrow

1011 11
0110 6
10001 1

+ 0011 3
0110 6
11101 13

-

carry
borrow

© V. Angelov VHDL-FPGA@PI 2013 30

Carry, borrow, overflow

•

For signed integers, carry output = 1 is not
necessary bad

•

but

1011 -5
0110 6
10001 1

+ 0011 3
0110 6
11101 -3

-

carry
borrow

1011 -5
1010 -6
10101 5

+ 0011 3
1010 -6
11001 7

-

carry
borrow

correct

wrong

Overflow = carry out XOR carry between the last two bits

© V. Angelov VHDL-FPGA@PI 2013 31

Correct Wrong
pos + pos →

pos neg

neg + neg →

neg pos
pos –

neg →

pos neg

neg –

pos →

neg pos

Overflow

•

For signed integers, overflow can be
detected by the wrong sign of the result:

pos + neg
pos –

pos

neg –

neg
Always correct

This is overflow!

The MSB is 1 for the negative numbers and 0 for the positive
(incl. 0), so one can detect the overflow only using the MSBs

of

the two operands and of the result

© V. Angelov VHDL-FPGA@PI 2013 32

Subtracting using an adder

•

Add/subtract with two’s complement
numbers can be done exactly like with
unsigned integers

•

For N-bit signed:
A–B=A+(2N–B)=A+two’s_complement(B)

=
B

A
Cin

NOT

'1'

B

A

© V. Angelov VHDL-FPGA@PI 2013 33

A_GT_B

B2

B0

A1

B1

A0

A2

Comparator

A

B
A_GT_B

Other possibilities:
>=, <, <=,
signed/unsigned

A2.!B2

A2=B2

A1.!B1

A1=B1

A0.!B0

B[2..0]

A[2..0]

A_GT_B

5 6 7 0

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5

If (A2=1 and B2=0) or
(A2=B2 and A1=1 and B1=0) or
(A2=B2 and A1=B1 and A0=1 and B0=0)
…

© V. Angelov VHDL-FPGA@PI 2013 34

Combinational ↔ sequential circuits

•

Theoretically we can make a combinational circuit which
gets all input data and solves the complete problem
after some delay

•

This approach is hardly usable, even when the problem
has an analytical solution

•

The data come in most of the cases sequentially in time,
the algorithms have branches

A typical digital design consists of several blocks of
combinational circuits and circuits with memory, the
processing is done in small portions in equal steps in time

© V. Angelov VHDL-FPGA@PI 2013 35

•

In order to memorize the previous state of the circuit,
one needs feedback from the output(s) to the input(s)

•

R-S flip-flop, two possible implementations:

•

Two stable states after deactivation of the inputs

Circuits with memory (R-S)

Q\

Q
S\

R\

Q\

R
Q

S

R\
S\

Q\
Q

R
S

Q\
Q

© V. Angelov VHDL-FPGA@PI 2013 36

•

Synchronous R-S, R and S are gated by the
signal C

•

(transparent) Latch: when C=1, Q follows D,
when C→0, Q memorizes the last value of D

Circuits with memory (sR-S, Latch)

C

Q

D

Q\

S

C

Q

Q\

R

C
D

Q\
Q

R
S

Q\
Q

© V. Angelov VHDL-FPGA@PI 2013 37

Circuits with memory (JKFF, DFF)

•

Sensitive to the edge of the clock signal, in the rest of
the time the outputs do not depend on the inputs

•

JKFF: similar to the synchronous R-S, but when J and K
are both 1, it toggles its state

•

Consists of two synchronous R-S flip-flops (master-
 slave)

–

Used in counters in the past
•

DFF: similar to the Latch: when C↑,

Q memorizes D

–

Currently the most used memorizing component together
with the memories (RAM)

–

Some flip-flop types have an additional enable input and
asynchronous set or reset inputs

© V. Angelov VHDL-FPGA@PI 2013 38

Circuits with memory (DFF)
•

D must be stable tS

(setup) before and tH

(hold)
after the active edge of the clock signal CLK

•

The output Q settles within some time tCO

, if the
conditions are violated (tS

, tH

) the state of the
flip-flop is unknown, oscillations are possible

D

CLK

?Q

tS tH

tCO

DFF

D

CK

Q

© V. Angelov VHDL-FPGA@PI 2013 39

State of a sequential circuit

According to H. Hellermann

(Digital
Computer System Principles):

“The state

of a sequential circuit is a
collection of state variables

whose values at

any one time contain all the information
about the past necessary to account for the
circuit’s future behaviour”

© V. Angelov VHDL-FPGA@PI 2013 40

State machines

.

.

.

.

.

.

.

.

.

CLK

The next state S[1..M]i+1

is a function of the present S[1..M]i

and of the
inputs I[1..N]. The outputs Y[1..K] are function of the present state S[1..M]i

,
but could depend on the inputs I[1..N]

I1
I2

IN

Y1
Y2

YK

S1

S2

SM

Moore machine: the
outputs depend only
on the state

Mealy machine: the
outputs depend on the
state and on the inputs

© V. Angelov VHDL-FPGA@PI 2013 41

State machine example

The description of a state machine is often done by state diagrams. Here
are shown all the states, the transitions with their conditions and the
outputs. For convenience the condition to stay in the same state

can be

omitted. The conditions to exit any state should be never in conflict!

Outputs (Moore machine)Inputs State

S0

SL

SA

SR

LL LR

1 X 0 0 0

0 11 0

1 1

X X X

0 X X

0 1 X

X X 1

1 X X

X 0 X
1 1 X

0 1 0

L R W

0 0 0

© V. Angelov VHDL-FPGA@PI 2013 42

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

CLK

Synchronous circuits

At each rising clock edge the registers memorize the current values at
their inputs. The outputs are updated after some small delay tCO

T=tH

+tL

tH tL

Clock signal

register

© V. Angelov VHDL-FPGA@PI 2013 43

Register Transfer Level (RTL)

•

A digital synchronous circuit consists of
registers and combinational logic between
them

•

The description of such a circuit actually
specifies what happens after each clock
cycle –

the data transfer between the

registers –

RTL

© V. Angelov VHDL-FPGA@PI 2013 44

Structural approach: top-down

U1

U2

A

B

C

Y1

Y2

A

B

A

B

Y

Y

my_top •

Try to understand the problem, do
not stop at the first most obvious
solution
•

Divide into subdesigns

(3..8), with

possibly less connections between
them, prepare block diagrams before
starting with the implementation
•

Clearly define the function of each

block and the interface between the
blocks, independently on the
implementation(s) of each block
•

Develop the blocks (in team) and

then check the functionality
•

Combine all blocks into the top

module, if some of them is not
finished, put temporarily

a dummy

Iterative process !
•

Don't delay the documentation, it is

part of each design phase

© V. Angelov VHDL-FPGA@PI 2013 45

Structural approach: top-down
• Think about compatibility and extensibility of the design
•

Try to do the functionality of the module symmetrical and include all simple

and reasonable extensions
•

Maximize orthogonality, do not implement functions, just because they are

"nice", but are combinations of already implemented functions (example:
many ways to clear or increment some CPU register). An architecture with
high orthogonality

tends to provide more function at the same level of

complexity and cost
•

The hardware should be not damageable by the user, think about auto-

 consistency of the configuration and about protections
•

Do not spread the important constants like dimensions, addresses etc. in

the several sources of the design, put them into one central place
• Try to be technologically independent as long as possible
• Make the configuration registers read/write instead of write only
• Think about testing and debugging

© V. Angelov VHDL-FPGA@PI 2013 46

Hardware : software?

U1

μC, RISC

A

B

C

Y1

Y2

A

B

I/O

I/O

Y

I/O

my_top

• select the processor core
•

for the architecture of the

hardware

part proceed as
described before

again: inc r5
load r2, [r5]
and r2, 0xAB
bra cc_zero, again
store [r3], r6
...HW

SW

Just a few questions more:

•

Divide in two parts -

hardware :
software, taking into account the
desired speed, size, flexibility,
power consumption and other
conditions

© V. Angelov VHDL-FPGA@PI 2013 47

Questions, questions...

•

How to partition the design? Where to put the boundary
between software and hardware?

•

How to enter the design?
•

How to check whether each subblock

works as

expected, according to the description?
•

How to select the possible implementation in a silicon
chip?

•

How to check whether the chip will work so as we want
before ordering it?

•

How to check the chip functionality when we get it back?
•

How to test the chips in the production (and the boards
after assembly)?

© V. Angelov VHDL-FPGA@PI 2013 48

Technologies

© V. Angelov VHDL-FPGA@PI 2013 49

Technologies
•

Small Scale Integration (SSI) ICs (74xx, 4000)

•

Simple Programmable Logic Devices (SPLD) -

PAL
(Programmable Array Logic) & GAL (Generic Array
Logic), Complex Programmable Logic Devices (CPLD)
–

Architecture, manufacturers, overview of the available products

•

Field Programmable Gate Arrays (FPGA)
–

Architecture, manufacturers, overview of the available products

•

Design flow FPGA/CPLD
•

Application Specific Integrated Circuit (ASIC)
–

Standard cell (structured ASIC)

–

Others (gate array, full-custom)
–

Design flow

© V. Angelov VHDL-FPGA@PI 2013 50

1 2
1
3

G
N
D

7

1
4

6

1
2

9

V
C
C

3

1
0

4 5

1
1

8

TTL (transistor-transistor logic)
•

7400 -

4 х

(4 bipolar transistors + 4 resistors)

•

74хх

–

many combinations of different logical elements
(AND, OR, NOT), flip-flops, counters and many others.

•

From the modern point of view –

slow, hungry (for
electrical power) monster

•

Small Scale Integration
IC (SSI)

© V. Angelov VHDL-FPGA@PI 2013 51

TTL families
•

The basic family was
replaced by the LS

(Low-

 power Shottky)
•

Other popular
subfamilies: AS

 (Advanced Shottky), ALS
 (Advanced Low-power

Shottky) and F

(Fast)
•

The industry standard for
long time, used in mini
computers and other
digital devices

74151

4
3
2
1

15
14
13
12

11
10

9
7

6

5
D0
D1
D2
D3
D4
D5
D6
D7

A
B
C
G

W

Y

74LS283

5
3

14
12

6
2

15
11

7

4
1
13
10

9

A1
A2
A3
A4

B1
B2
B3
B4

C0

S1
S2
S3
S4

C4

1/4 of 7402

2

3
1

1/4 of 7400

1

2
3

74LS161

3
4
5
6

7
10
2
9
1

14
13
12
11
15

A
B
C
D

ENP
ENT
CLK
LOAD
CLR

QA
QB
QC
QD

RCO

1/4 of 7408

1

2
3

1/4 of 7432

1

2
3

1/2 of 7473
14

1

3

12

13

2

J

CLK

K

Q

QC
L

1/2 of 7474

2

3

5

6

4
1

D

CLK

Q

Q

P
R

C
L

74LS174

3
4
6

11
13
14

9
1

2
5
7
10
12
15

D1
D2
D3
D4
D5
D6

CLK
CLR

Q1
Q2
Q3
Q4
Q5
Q6

1/6 of 7414

1 2

1/4 of 74125

2 3

1

1/4 of 7486

1

2
3

1/2 of 7420

1
2

4
5

6

© V. Angelov VHDL-FPGA@PI 2013 52

CMOS technology
•

Built with nMOS

and pMOS

transistors

S

Y

S

D

NMOS

D
VSS

NMOS

PMOS

Y

VDD

VDD

VSS

Y

VDD

AA=1A

VSS

A=0

PMOSG

G

Y

VDD

Y

VSS

VDD

Y Y

B
A

VSS

YA=1

B

VDD

B=1

A=1

VDD

VSS

B=0

A=0

B=0

A

VSS

Y

© V. Angelov VHDL-FPGA@PI 2013 53

CMOS SSI ICs
•

Two families widely used:
–

4000

•

slow and low power, good for battery devices
•

with wide range of power supply voltages (3..15V)

•

many exotic chips –

large (decade) counters,
counter+decoder

etc.

–

74HC(T)
•

functionally equivalent to the well known 74xx family

•

faster than the 4000
•

very low static power, the dynamical power rises linearly with
the frequency

•

successfully replaced the TTL family, but it was too late –

the
PLD, CPLD, FPGA and ASIC came

© V. Angelov VHDL-FPGA@PI 2013 54

Simple PLD – GAL (generic array logic)
 1

2

3

4

5

16

17

18

0000

0224

0256

0480

0512

0736

0768

0992

19

XOR-2048
AC1-2120

XOR-2049
AC1-2121

XOR-2050
AC1-2122

XOR-2051
AC1-2123

2824201612840 PTD
2128

OLMC

OLMC

OLMC

OLMC

Programmable
AND array

Output Logic Macrocells

In
pu

ts

CLK

8 PTs/OLMC

pin #

© V. Angelov VHDL-FPGA@PI 2013 55

SPLD - the AND array

Programmable connections
•

Each AND has enough inputs to

build the product of any
combination of the input signals or
their negations
•

Group of several (typically 8)

ANDs

are hardwired

to a OR,
which is routed to an output (PAL)
•

The PLAs

have programmable OR

array but were never widely used

I2 I1

Q3

I0

Q2 Q1

I3

Q0

© V. Angelov VHDL-FPGA@PI 2013 56

GAL – Output Logic Macrocell

•

The polarity is
programmable,
sometimes it is easier to
calculate the negation of
the output signal

•

The output can be fed
back to the programmable
AND array

•

The chip output can be
put into tri-state

• Optional register

Fr
om

/to
 th

e
A

N
D

 m
at

rix

0/1

0/1

Fr
om

/to
 th

e
A

N
D

 m
at

rix

D

CLK

Q

Q

OE
CLK

© V. Angelov VHDL-FPGA@PI 2013 57

PAL/GAL – summary
• The first widely used programmable logic devices
•

Used in the past to replace several small scale integration ICs,

like 74xx
• Very successfully used for small state machines
•

Manufactured first by MMI (Monolitic

Memories Inc.), later by

AMD, Lattice and others
•

The first devices were one time programmable (OTP) and with

either combinational or registered macrocells

(or a fixed mixture),
the later were electrically erasable/programmable (up to 100 times)
with freely programmable type of the macrocells
•

Software tools –

based on Hardware Description Languages

(HDL) –

ABEL, CUPL, PALASM or schematics
•

The next generation of PLD –

Complex PLD (CPLD) are based on

the same architecture

© V. Angelov VHDL-FPGA@PI 2013 58

CPLD –

ispMACH

4000 (Lattice)

Output Routing Pool

CLK0..3pwr/gnd GOE0/1 JTAGpwr/gnd pwr/gnd

Global

Routing

Pool

Similar to a GAL

© V. Angelov VHDL-FPGA@PI 2013 59

CPLD – ispMACH 4000 - GLB

36 inputs
from GRP

Generic Logic Block

cluster

n−1 n−2 n−1 n−4

to
n+1

n+2 n+1

to
n+4

Fast 5−PT
Path

to
XOR

(MC)

Individual PT
Allocator

Cluster Allocator

n

from

fromto

shared
clock, oe,
reset

PT
Cluster 0

PT
Cluster 15

inputs

AND array programmable
fuse

83 PTs

x16

© V. Angelov VHDL-FPGA@PI 2013 60

power up
init

shared
PT init

PT init

PT init/CE

From Logic
Allocator

Single PT

delay

R P

D/T/L

CE

From I/O Cell

ORP

GRP

To

CLK0..3

PT clock

Shared
PT clock

CPLD –

ispMACH

4000 Macrocell

The FF can be
configured as DFF,
TFF, Latch, with
optional asynchronous
set/reset

The output of the cell can be routed to some I/O cell via the Output
Routing Pool and/or to other cells via the Global Routing Pool

Up to 80 PTs

are
possible, by using
the PTs

of the

neighbour cells
(cluster allocator).

set/reset logic

Clock source selection

© V. Angelov VHDL-FPGA@PI 2013 61

CPLD –

ispMACH

4000 I/O-

cell

GOE0..3

From ORP

VCC

From ORP

To Macrocell

To GRP

Global
fuses

Vcco

bus keeper pull−up

pull−down

The output cell can be configured as input, output or bidirectional.
Weak pull-up/down resistors and bus keepers are globally available.

Output enable selection

output
input

w
ith

 tr
i-s

ta
te

From Output Routing Pool

To Macrocell
To Global Routing Pool

I/O
pin

© V. Angelov VHDL-FPGA@PI 2013 62

CPLDs – Altera, Xilinx
•

MAX II (0.18 um) with up to 2k cells and 8k flash
bits, with SRAM based configuration + built-in flash
memory

•

MAX V –

like MAX II + PLL
•

MAX 3000A –

true CPLD, up to 512 cells, 3.3V

•

Cool Runner II, up to 512 cells, 1.8V core, with
SRAM based configuration + built in flash

•

XC9500 (XL, XV), up to 288 cells (5V, 3.3V, 2.5V)

R

© V. Angelov VHDL-FPGA@PI 2013 63

CPLDs – Lattice
•

ispMACH

4000 Z-ZE (zero power 1.8V

core), C, B, V (1.8, 2.5, 3.3V core), up to
512 cells, probably the fastest

true CPLD

now
•

MachXO, 1.2, 1.8, 2.5, 3.3V core, up to 2k
cells (LUT4), RAM, with SRAM based
configuration + built in flash memory

•

MachXO2 –

same as MachXO

+ up to 7k
cells (LUT4), PLL, hardcores

I2C, SPI, user

flash memory

© V. Angelov VHDL-FPGA@PI 2013 64

CPLD – summary
Sum of product terms architecture, similar to PAL/GAL

•

Simple model of the internal delays and from pin to pin
•

Ready to operate immediately after power up

•

In situ programmable using JTAG, FLASH memory cells
store the configuration (about 10,000 times)

•

Reliable copy protection possible
•

Radiation tolerant (the newer CPLDs

are similar to

FPGA + built-in FLASH and are NOT radiation tolerant!)
•

Limited number of logic elements (up to about 1k)

•

Higher price/logic element
•

No internal RAM

© V. Angelov VHDL-FPGA@PI 2013 65

FPGA – general structure

Logic Block (LE, LC, Slice)

I/O Blocks and pins

-

contains a look up
table (LUT) with 4 to 6
inputs and a FF. In
some FPGAs

several

Logic Blocks are
grouped into clusters
with some local routing.

Routing channels
-

general purpose

-

for global signals like
clocks, reset, output
enable, with high fanout

 and low skew

2

3

5

1

D

CLK

Q

C
L

2

3

5

1

D

CLK

Q

C
L

2

3

5

1

D

CLK

Q

C
L

2

3

5

1

D

CLK

Q

C
L

2

3

5

1

D

CLK

Q

C
L

2

3

5

1

D

CLK

Q

C
L

2

3

5

1

D

CLK

Q

C
L

2

3

5

1

D

CLK

Q

C
L

2

3

5

1

D

CLK

Q

C
L

2

3

5

1

D

CLK

Q

C
L

2

3

5

1

D

CLK

Q

C
L

2

3

5

1

D

CLK

Q

C
L

2

3

5

1

D

CLK

Q

C
L

2

3

5

1

D

CLK

Q

C
L

2

3

5

1

D

CLK

Q

C
L

2

3

5

1

D

CLK

Q

C
L

© V. Angelov VHDL-FPGA@PI 2013 66

FPGA – Virtex 4 SLICE L/M

LUT

FX

G
inputs

FXINA MUXFX

FXINB

D
FF/LAT

Q

REV

D

CE

CLK

SR

BY

BX

CE

CLK

SR

Y

YQ

F5
MUXF5

X
LUT

F
inputs

D

FF/LAT

Q

REV

D

CE

CLK

SR

XQ

UG070_5_20_071504

Each SLICE contains two
LUT4, two FFs

and

MUXes. The two LUT4
can be combined into one
LUT5.

The Configurable Logic
Block (CLB) contains 2x
SLICEL and 2x SLICEM.
The Ms can be used for
distributed RAM and large
shift registers.

The CLB has 8 LUT4, 8
FFs, can be used for 64
bits distributed RAM or
shift register

© V. Angelov VHDL-FPGA@PI 2013 67

FPGA – Virtex 5 with LUT6

WP284_01_121907

B

BQ

BMUX

6-Input LUT
B6

BX

B5
B4
B3
B2
B1

COUT

CIN

In the modern sub-micron processes the routing delay becomes a
substantial part of the whole delay. On the other side the logic

needs

less area. Therefore the leading manufacturers go to larger LUT6.

Can operate as 1 LUT6
or 2 LUT5 with common
inputs

x4 → SLICE, 2 x SLICEs

→ CLB

The CLB contains 8 LUT6, 8 FFs; can be used as distributed RAM
with 256 bits or as a 128 bit shift register

© V. Angelov VHDL-FPGA@PI 2013 68

D0
D1

D2

D3

DB

A0 B0 A1 B1

Sa

Sb

Y

FPGA – Actel antifuse (1)

C-Cell

Cluster 1
C-R-C

For combinational
logic

R-Cell

Supercluster

Type 1
C-R-C C-R-C

Cluster 2
C-R-R

Supercluster

Type 2
C-R-R C-R-C

S0
S1

Routed
Data In

D

PRE

CLR

Q Y

CKPCKS

HCLK

CLKA,
CLKB,
Int. logic

© V. Angelov VHDL-FPGA@PI 2013 69

FPGA – Actel antifuse (2)

The same for
the FLASH
FPGAs

of

Actel

•

Don‘t need configuration memory,
lower price, more reliable

•

Illegal copy is impossible
•

Radiation tolerant

•

Perfect prototyping service

•

Every chip is exactly once
programmable

•

Design flow similar to ASIC
•

Slightly slower

© V. Angelov VHDL-FPGA@PI 2013 70

Low cost FPGAs overview

Name

LUT4 (k)

RAM kBits

18x18

PLLs

Tech
Cyclone II

4-68

120-1100

13-150

2-4

90nm

Cyclone III

5-120

400-3800

23-288

2-4

65nm (lp)

Cyclone IV E

14-150

270-3800

15-266

2-4

60nm (lp)

Cyclone V E

25-301

1760-12200

50-684

4-8

28nm (lp)

Name

LUT4 (k)

RAM kBits

18x18

DLLs

Tech
Spartan 3

2-75

72-1800

4-104

2-4

90nm

Spartan 3E

2-33

72-650

4-36

2-8

90nm
Spartan 3A/AN

2-25

54-576

3-32

2-8

90nm

Spartan 3D

37-53

1500-3200

84-126

8

90nm

Spartan 6

3-147

216-4800

8-180

4PLL

45nm

Artix-7

16-71

208-974

60-250

4PLL

28nm

R

with built-in flash equivalent

LUT4, but LUT6

© V. Angelov VHDL-FPGA@PI 2013 71

Low cost FPGAs overview

Name

LUT4 (k)

RAM kBits

18x18

PLLs

Tech
LatticeXP

3-20

54-396

2-4

130nm
LatticeXP2

5-40

166-885

12-32

2-4

90nm

XP and XP2 have built-in configuration flash

Name LUT4
(k)

RAM kBits 18x18 SerDes Speed

 Gbps
Tech

Cyclone

IV GX 14-150 540-6400 0-360 2-8 3.125 60nm

Cyclone

V GX/T 77-301 4460-12200 300-684 2-12 6.144 28nm

Spartan

6 24-147 936-4824 38-180 2-8 3.125 45nm

Artix-7 16-215 208-2888 60-740 4-16 6.6 28nmw
ith

 S
er

D
es

© V. Angelov VHDL-FPGA@PI 2013 72

FPGA summary
•

The price/logic goes down

•

The speed goes up
•

Special blocks like RAM, CPU, multiplier…

•

Flexible I/O cells, including fast serial links and
differential signals

•

Infinitely times programmable (with some
exceptions)

•

External memory or interface for initialization after
power up needed –

copy protection impossible

(with some exceptions)
•

More sensitive to radiation, compared to CPLD
(with some exceptions)

Manufacturers: Actel, Altera, Lattice, Xilinx

© V. Angelov VHDL-FPGA@PI 2013 73

Design flow CPLD/FPGA

Your favourite text editor!
Some recommendations:
emacs, notepad++,
nedit, with syntax
colouring and more for
VHDL

and Verilog

LeoSpec
Precision
Synplify

FPGA vendors
Synopsys

ModelSim
Aldec AHDL

FPGA
vendor

Device
programming

Each step can take seconds, minutes, hours ...
(place & route)

functional
simulation

synthesis

timing
estimation

gate-level
simulation

place &
route

sdf

simulation

timing
analysis

design entry:
schematic, HDL

board
production

& test

© V. Angelov VHDL-FPGA@PI 2013 74

FPGA development tools
•

Each manufacturer has own tools, absolutely necessary
for placing and routing, optionally for synthesis, simulation
etc. The free versions have some limitations

•

Leading suppliers of synthesis tools -

Mentor Graphics
(Leonardo Spectrum, Precision), Synopsys (FPGA
compiler), Synplicity

(Synplify) –

already part of Synopsys

•

Leading suppliers of simulation tools -

Mentor Graphics
(ModelSim), Aldec

(Active HDL)

•

The FPGA manufacturers offer free but limited versions of
the synthesis and simulation tools mentioned above

© V. Angelov VHDL-FPGA@PI 2013 75

ASICs - Standard Cells, Gate
Arrays, Full Custom

•

Standard Cells
–

rich library with primitive functions and flip-flops

–

I/O cells for different standards and voltages
–

core generators for memory, CPU, interfacing, PLL

–

the user must pay all production masks
–

multiproject

wafer option for prototyping

•

Gate Array
–

array of ready simple gates

–

the user prepares only some routing masks
–

compared to Standard Cells: cheaper, slower, no mixed mode

•

Full custom –

for very high volumes
–

the most optimal, even longer development time and higher costs

© V. Angelov VHDL-FPGA@PI 2013 76

ASIC ↔ FPGA
•

ASICs

compared to CPLD and FPGAs:

–

lower price in high volume production runs
–

possibility for mixed mode designs (with analog

part)

–

higher design density, higher operation speed, lower power
–

much longer development time, several months per submission

–

higher development costs and much more expensive software

•

FPGA to ASIC
–

FPGA architecture, with fixed routing and function of each cell

–

compared to FPGA
•

cheaper for mid-volume production and large designs

•

faster & smaller chips, lower power, no configuration memories
•

radiation tolerant

–

Altera

HardCopy, eASIC

© V. Angelov VHDL-FPGA@PI 2013 77

Design flow ASIC

Synopsys

ModelSim

Cadence
First

Encounter
submission

DRC, LvS

The process can take months!
The manufacturing too!
Price for ≈100 prototypes ≈$10,000

functional
simulation

synthesis

timing
estimation

gate-level
simulation

place &
route

sdf

simulation

timing
analysisdesign entry:

schematic, HDL

production

wafer test

packaging
& test

board
production

& test

Calibre

PrimeTime

Your favour text editor!
Some recomendations:
emacs, notepad++,
nedit, with syntax
coloring

and more for
VHDL

and Verilog

	Introduction to Digital Design
	Introduction to Digital Design
	Why digital processing (1)?
	Why digital processing (2)?
	Why digital processing (3)?
	Notations of the logic elements
	Useful Boolean relations
	NAND or NOR can do everything…
	XOR with NAND or NOR
	Simplifying Boolean expressions
	What kind of logical elements do we need?
	Sum of products representation
	Karnaugh Map (K-Map) with 3 signals
	K-Map with 4 signals
	K-Map with don't care
	K-Map for XOR
	Conclusions(1) – PAL/CPLD/HDL
	Conclusions(2) – ASIC
	Conclusions(3) – LUT/FPGA
	Conclusions(4) – FPGA
	Combinational circuits
	Special combinational circuits - multiplexer
	Special combinational circuits - demultiplexer
	Special combinational circuits - adder
	Half- and Full- adder
	4 bit ripple carry adder
	Signed integers
	Two’s complement – a closer look
	Carry, borrow
	Carry, borrow, overflow
	Overflow
	Subtracting using an adder
	Comparator
	Combinational ↔ sequential circuits
	Circuits with memory (R-S)
	Circuits with memory (sR-S, Latch)
	Circuits with memory (JKFF, DFF)
	Circuits with memory (DFF)
	State of a sequential circuit
	State machines
	State machine example
	Synchronous circuits
	Register Transfer Level (RTL)
	Structural approach: top-down
	Structural approach: top-down
	Hardware : software?
	Questions, questions...
	Technologies
	Technologies
	TTL (transistor-transistor logic)
	TTL families
	CMOS technology
	CMOS SSI ICs
	Simple PLD – GAL (generic array logic)
	SPLD - the AND array
	GAL – Output Logic Macrocell
	PAL/GAL – summary
	CPLD – ispMACH 4000 (Lattice)
	CPLD – ispMACH 4000 - GLB
	CPLD – ispMACH 4000 Macrocell
	CPLD – ispMACH 4000 I/O- cell
	CPLDs – Altera, Xilinx
	CPLDs – Lattice
	CPLD – summary
	FPGA – general structure
	FPGA – Virtex 4 SLICE L/M
	FPGA – Virtex 5 with LUT6
	FPGA – Actel antifuse (1)
	FPGA – Actel antifuse (2)
	Low cost FPGAs overview
	Low cost FPGAs overview
	FPGA summary
	Design flow CPLD/FPGA
	FPGA development tools
	ASICs - Standard Cells, Gate Arrays, Full Custom
	ASIC ↔ FPGA
	Design flow ASIC

