Precision measurements of the Cabbibo-Kobayashi-Maskawa angle y at LHCb

Donal Hill University of Oxford, UK

The Cabbibo-Kobayashi-Maskawa (CKM) angle γ is still the least known angle of the Unitarity Triangle, and is the only one that can be accessed exclusively through tree-level B-meson decays. Its precise determination is of crucial importance to identify possible effects beyond the Standard Model in global CKM fits. Powerful constraints on γ are obtained from the analysis of B^{pm} to D⁰ K^{pm} decays, where the D⁰ meson is reconstructed in the K⁺K⁻ and π^+ π^- final states; the latest results using the Run-1 (2011 and 2012) and Run-2 (2015 and 2016) LHCb datasets are presented. The measurement of B^{pm} to D⁰ K^{pm} decays using a novel partial reconstruction method is also presented, where both D⁰ to D⁰ π^0 and D⁰ to D⁰ γ decays are considered. These world's best results contribute to the ultimate goal of reaching degree-level precision on γ , via the exploitation of all possible decay modes and techniques.